Development of Antimicrobial Fabrics Based on Silver and Copper Nanoparticles

Norashikin Mat Zain

A doctoral thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University

Department of Chemical Engineering
October 2014
© By Norashikin Mat Zain (2014)
ABSTRACT

With growing public unease surrounding the extent of microbial infections, there is a demand for antimicrobial materials including antimicrobial textiles. Nanotechnology has provided new solutions for the development of antimicrobial fabrics. In this study, nanoparticles of silver (Ag) and copper (Cu) and alloy nanoparticles of Ag and Cu (Ag/Cu) have been synthesized by reduction of their respective nitrates by ascorbic acid, using chitosan as a stabilising agent and microwave heating. UV-vis spectrophotometry indicated the presence of the alloy by a single peak (500 nm) for Ag/Cu nanoparticles, whereas mixtures of Ag and Cu nanoparticles (Ag+Cu) showed two peaks of 420 and 500 nm, corresponding to pure Ag and Cu nanoparticles respectively. Particle size is increased by increasing nitrate concentration and reducing the chitosan concentration. Surface zeta potentials were positive for all the nanoparticles and varied from +27.8 to +33.8 mV. Ag and Cu nanoparticles were shown to be spherical whilst the alloy nanoparticles had an irregular shape. Cu nanoparticles resulted in higher inactivation of bacteria such as Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) than did Ag nanoparticles at the same concentration. The effect was reversed when tested on nanoparticles of the same mean particle size with Ag nanoparticles emerging as more effective. Bacterial inactivation increased with concentration of chitosan and the metal concentration. The nanoparticles showed a more potent antibacterial effect than did ions of the same metal. B. subtilis was more susceptible than E. coli which may be due to the differences in their cell walls structure. MRSA proved harder to inactivate than both B. subtilis and E. coli under identical conditions. Antifungal activity was significantly affected by the types of nanoparticles employed. Ag nanoparticles displayed higher inactivation than Cu ones. Alloved nanoparticles demonstrated the highest inactivation against both bacteria and fungi. This constitutes clear evidence of an antimicrobial synergy between the Ag and Cu. Bacteria and fungi in contact with nanoparticle-impregnated fabrics were revealed by FEGSEM to have taken on a shrunken appearance. Nanoparticle-impregnated fabrics reduced microbial viability by 80-90%, but this decreased in relation to the number of washes the fabric was subjected to and indicated a leached out of the nanoparticles. Pre-treatment of cotton fabrics with tannic acid and citric acid enhanced the durability of the antimicrobial effect when washed and this increased with concentration of the acid. Citric acid treated fabrics showed higher durability than tannic acid treated fabrics. Log reductions of Trichophyton interdigitale (T. interdigitale) were lower than those for B. subtilis, E. coli and MRSA at the same test conditions. The combination of nanoparticles with the antifungal drug fluconazole proved effective and reduced the time necessary to eliminate the T. interdigitale than either nanoparticles or fluconazole alone.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii
ABSTRACT.. iv
PUBLICATIONS AND AWARDS... v
TABLE OF CONTENTS ... vii
LIST OF ABBREVIATIONS ... xii
NOMENCLATURE.. xiii
LIST OF TABLES.. xiv
LIST OF FIGURES... xvii

CHAPTER 1 INTRODUCTION ... 1

1.1 Background ... 1
1.2 Research problems .. 3
1.3 Aim and objectives .. 5
1.4 Thesis structure .. 7

CHAPTER 2 LITERATURE REVIEW .. 10

2.1 Introduction .. 10
2.2 Bacteria and fungus ... 10
 2.2.1 Gram-positive and Gram-negative bacteria ... 10
 2.2.2 Methicillin-resistant *Staphylococcus aureus* (MRSA) ... 13
 2.2.3 Fungi and fungal disease ... 16
 2.2.4 *Trichophyton interdigitale* .. 17
 2.2.5 Fluconazole .. 18
 2.2.6 Minimum inhibitory concentration and minimum bactericidal concentration 19
 2.2.7 Zone of inhibition .. 20
 2.2.8 Viable count method ... 21

2.3 Application of antimicrobial fabrics ... 22
 2.3.1 Medical applications .. 22
 2.3.2 Sportswear .. 23
 2.3.3 Hygienic uses ... 24

2.4 Antimicrobial agents for fabrics ... 25
 2.4.1 Synthetic antimicrobial agents .. 25
2.4.2 Chitosan .. 28
2.4.3 Nanotechnology: a new approach to developing antimicrobial fabric 30
2.5 Routes for nanoparticles synthesis ... 30
 2.5.1 Synthesis of Ag nanoparticles ... 30
 2.5.1.1 Physical routes ... 30
 2.5.1.2 Chemical routes ... 31
 2.5.1.3 Biosynthetic routes ... 32
 2.5.2 Synthesis routes of Cu nanoparticles ... 34
 2.5.2.1 Chemical routes ... 34
 2.5.2.2 Physical routes ... 35
 2.5.2.3 Biosynthetic routes ... 35
 2.5.3 Synthesis routes of nanoalloys ... 36
 2.5.3.1 Chemical routes ... 36
 2.5.3.2 Physical routes ... 37
 2.5.3.3 Biosynthetic route .. 37
 2.5.4 Disadvantages of conventional methods to synthesise nanoparticles 38
 2.5.5 Microwave assisted synthesis .. 39
2.6 Antimicrobial activity of nanoparticles and application on fabrics 41
 2.6.1 Antimicrobial effects of silver and background of use 41
 2.6.2 Antimicrobial effects of copper and background of use 45
 2.6.3 Antifungal activity of nanoparticle-impregnated fabric 47
 2.6.4 Antifungal activity of nanoparticles with antifungal agent.................... 47
2.7 Conventional method for pretreatment of the fabrics 48
2.8 Health and environmental concerns of the use of nanoparticles 49
2.9 Conclusions ... 51

CHAPTER 3 MATERIALS AND METHODS ... 53

3.1 Introduction ... 53
3.2 Materials ... 53
 3.2.1 Chemicals ... 53
 3.2.2 Fabric ... 54
 3.2.3 Nutrient media and diluents .. 54
 3.2.4 Microorganisms ... 54
3.3 Methods ... 55
3.3.1 Preparation of chemical solutions .. 55
3.3.2 Preparation of the nanoparticles .. 55
 3.3.2.1 Preparation of Ag and Cu nanoparticles without chitosan 55
 3.3.2.2 Preparation of Ag and Cu nanoparticles with chitosan 55
 3.3.2.3 Preparation of Ag/Cu nanoparticles ... 56
 3.3.2.4 Preparation of Ag+Cu nanoparticles .. 56
3.3.3 Impregnation of the cotton fabrics with nanoparticles 56
3.3.4 Pretreatment process .. 57
3.3.5 Durability by repeated hand washing and machine wash 57
3.3.6 Bacterial growth media preparation, cultivation and antibacterial activity .. 58
 3.3.6.1 Biological experimental set up ... 58
 3.3.6.2 Plate and liquid culture preparation .. 58
 3.3.6.3 Cultivation of bacteria .. 58
 3.3.6.4 Bacterial growth curves ... 59
 3.3.6.5 Preparation of bacterial sample solution 59
 3.3.6.6 Determination of the MIC and MBC ... 60
 3.3.6.7 Zone of inhibition of the nanoparticle-impregnated cotton fabrics 60
 3.3.6.8 Log reduction of the nanoparticle-impregnated cotton fabrics 60
3.3.7 Fungal growth medium preparation, cultivation and antifungal activity 61
 3.3.7.1 Preparation of Sabouraud dextrose–chloramphenicol agar medium 61
 3.3.7.2 Preparation of *T. interdigitale* spore suspension 61
 3.3.7.3 Determination of the MIC and MFC ... 62
 3.3.7.4 Zone of inhibition against *T. interdigitale* 62
 3.3.7.5 Antifungal efficacy by viable cell count 62
 3.3.7.6 Antifungal compounds .. 63
3.4 Characterization ... 63
 3.4.1 UV-vis spectrophotometry analysis ... 63
 3.4.2 Particle size and zeta potential analysis .. 64
 3.4.3 Observation by FEGSEM .. 64
 3.4.3.1 Nanoparticles .. 64
6.3 Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) analysis ..118
6.4 Morphology of MRSA bacterium in contact with the fabrics 120
6.5 Bacterial inactivation by zone of inhibition and viable count method of nanoparticle-impregnated fabrics against MRSA.................... 122
6.6 Durability of nanoparticle-impregnated fabrics............................... 127
6.7 Effect of pre-treatment of the nanoparticle-impregnated fabrics 129
 6.7.1 pH of pre-treatment solution... 129
 6.7.2 FTIR analysis ... 130
 6.7.3 Adsorption of the pre-treatment agent into cotton fibres............ 133
 6.7.4 Elemental composition .. 135
 6.7.5 Durability after pre-treatment .. 137
6.8 Conclusion .. 140

CHAPTER 7 ANTIFUNGAL ACTIVITY OF NANOPARTICLE-IMPREGNATED FABRICS AGAINST THE PATHOGENIC FUNGUS TRYCHOPHYTON INTERDIGITALE142
7.1 Introduction ... 142
7.2 MIC and MFC analysis .. 143
7.3 Antifungal activity by zone of inhibition and viable count 146
7.4 Morphology of T. interdigitale in contact with the fabrics................. 150
7.5 Effect of pre-treatment on antifungal activity and durability 152
7.6 The effects of nanoparticle-impregnated fabrics in combination with fluconazole ... 156
7.7 Conclusion .. 160

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 162
8.1 Summary of the experimental work performed 162
8.2 Main conclusions from the study .. 163
8.3 Main contributions of the study to knowledge 167
8.4 Recommendations for future work ... 169

REFERENCES .. 171
APPENDICES ... 202
Appendix A .. 202
Appendix B .. 259
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>FEGSEM</td>
<td>Field emission gun scanning electron microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum bactericidal concentration</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MFC</td>
<td>Minimum fungicidal concentration</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PHMB</td>
<td>Polyhexamethylene biguanide</td>
</tr>
<tr>
<td>QAC</td>
<td>Quaternary ammonium compound</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptone soya agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptone soya broth</td>
</tr>
<tr>
<td>UV-vis</td>
<td>Ultraviolet visible</td>
</tr>
</tbody>
</table>
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>Initial number of bacteria</td>
</tr>
<tr>
<td>N</td>
<td>Number of bacteria after incubation</td>
</tr>
<tr>
<td>owf</td>
<td>On weight fibre</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>W</td>
<td>Weight</td>
</tr>
<tr>
<td>\times</td>
<td>Magnification</td>
</tr>
</tbody>
</table>

Norashikin Mat Zain 2014
LIST OF TABLES

Table 2.1: Possible or probable side effects in 39 number of patients treated with high-dose fluconazole (Anaissie et al., 1995)... 18
Table 2.2: Synthetic antimicrobial agents used for the development of antimicrobial fabrics and their efficiency against microorganisms. 26

Table 2.2: Studies of synthetic antimicrobial agents used for the development of antimicrobial fabrics and their efficiency against microorganisms (continued) ... 27

Table 2.3: Disadvantages of nanoparticles synthesised by different methods......... 38

Table 2.4: The use of Ag nanoparticles for the development of antimicrobial fabrics and their efficiency against microorganisms 43

Table 2.5: The use of Cu nanoparticles for the development of antimicrobial fabrics and their efficiency against microorganisms 46

Table 2.6: Conventional techniques for pretreatment of fabrics to enhance stabilization of nanoparticles against washing... 48

Table 5.1: MIC and MBC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3% (w/v) of chitosan towards 10^8 CFU/mL B. subtilis and E. coli. The subscript denoted comparison of MIC and MBC values in vertical and the superscript denoted comparison of MIC and MBC values in parallel. Different letters signify that the results are statistically significant (p < 0.05).. 88

Table 5.2: MIC and MBC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of 200nm mean particle size towards 10^8 CFU/mL B. subtilis and E. coli. The subscript denoted comparison of MIC and MBC values in vertical and the superscript denoted comparison of MIC and MBC values in parallel. Different letters signify that the results are statistically significant (p < 0.05)... 88
Table 5.3: Log reduction of *B. subtilis* and *E. coli* in contact with cotton fabrics impregnated with Ag and Cu nanoparticles and Ag⁺ and Cu²⁺ ions at different concentrations. Error bars represent the standard deviation from the mean of triplicate determinations. Uppercase letters compare in parallel, and lowercase letters compare in vertical. Different letters signify that the results are statistically significant (*p* < 0.05). 105

Table 5.4: Log reductions of *B. subtilis* and *E. coli* towards nanoparticle-impregnated cotton fabrics of Ag, Cu, Ag+Cu and Ag/Cu (3 wt% chitosan and 50 mM concentration). The data in the table are the mean of triplicate determinations. Uppercase letters compare in parallel, and lowercase letters compare in vertical. Different letters signify that the results are statistically significant (*p* < 0.05) ... 106

Table 5.5: Log reductions of *B. subtilis* and *E. coli* towards cotton fabrics impregnated with Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of 200nm mean particle size. The data in the table are the mean of triplicate determinations. Uppercase letters compare in parallel, and lowercase letters compare in vertical. Different letters signify that the results are statistically significant (*p* < 0.05). ... 108

Table 5.6: Elemental contents of nanoparticle-impregnated fabrics after different washing times. The data are the mean of triplicate determinations. The subscript denoted comparison of the values in vertical. Different letters signify that the results are statistically significant (*p* < 0.05). .. 111

Table 5.7: Durability of cotton fabrics impregnated with nanoparticles of 50 mM and 3% w/v chitosan after different washing protocols. Uppercase superscript compare values in parallel, and lowercase subscript compare values in vertical. Different letters signify that the results are statistically significant (*p* < 0.05).. 112

Table 6.1: MIC and MBC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3% (w/v) of chitosan against 10⁸ CFU/mL MRSA. Different letters signify that the results are statistically significant (*p* < 0.05).. 119
Table 6.2: MIC and MBC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of same mean particle size of 200 nm against 10^8 CFU/mL MRSA. Different letters signify that the results are statistically significant ($p < 0.05$) 119

Table 7.1: MIC and MFC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3% (w/v) of chitosan against 10^6 CFU/mL *T. interdigitale*. Different letters signify that the results are statistically significant ($p < 0.05$) .. 145

Table 7.2: MIC and MFC values of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of same mean particle size of 200 nm against 10^6 CFU/mL *T. interdigitale*. Different letters signify that the results are statistically significant ($p < 0.05$) .. 145

Table 7.3: Antifungal effect of 50 mM with 3% (w/v) chitosan nanoparticle-impregnated cotton fabrics against *T. interdigitale*. Comparisons are shown between fabrics that had not received pretreatment and those that had been pretreated with either tannic or citric acid with 10 machine washes. The data in the table are the mean of the triplicate determinations. Different letters signify statistical differences ($p<0.05$) .. 153

Table 7.4: Log reduction of 30% owf citric acid treated fabric impregnated with Ag/Cu nanoparticles against *T. interdigitale* at different contact time. The data in the table are the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$) ... 155

Table 7.5: Citric acid treated fabrics without and with Ag/Cu nanoparticles (50 mM and 3 wt% chitosan) in combination with fluconazole against *T. interdigitale* at 1 hour contact time. The data in the table are the mean of the triplicate determinations. Different letters signify statistical differences ($p<0.05$). .. 157

Table 7.6: Log reduction of 30% owf citric acid treated fabric with Ag/Cu nanoparticles in combination with fluconazole against *T. interdigitale* at different contact time. The data in the table are the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$) .. 159
LIST OF FIGURES

Figure 2.1: Bacterial cell walls of Gram-positive and Gram-negative bacteria
(Tripati et al., 2012). .. 11

Figure 2.2: Scanning electron microscope of (a) a Gram-positive bacterium and
(b) a Gram-negative bacterium. Abbreviations: CW, Gram-positive cell
wall; OM, outer membrane; PG, peptidoglycan layer; PM, plasma
membrane; S, S-layer (Sleytr & Beveridge, 1999). .. 12

Figure 2.3: MRSA contaminated surface (as indicated by arrows) of intensive
care unit (ICU) patient unit (Ferreira et al., 2011).. 14

Figure 2.4: A cutaneous MRSA abscess located on the hip of a prison inmate,
which had begun to release its purulent contents (Green et al., 2012) 15

Figure 2.5: Skin condition caused by T. interdigitale (Kawakami et al., 2011) 17

Figure 2.6: Determination of (a) MIC (b) MBC of the bacterial strain (Wei et
al., 2009). .. 19

Figure 2.7: Zone of inhibition of cotton fabrics impregnated with Ag
nanoparticles at different Ag: copolymer ratios of 20:1 and 30:1 against S.
aureus (Budama et al., 2013).. 20

Figure 2.8: Zones of inhibition against C. ablicans of Ag nanoparticles coated
fabrics (left and centre) and uncoated fabric (right) after incubation
(Gittard et al., 2010). .. 20

Figure 2.10: Wound infection by bacteria (Pozez et al., 2007). ... 23

Figure 2.11: Bacterial skin infection on an athlete during sport activities
(Larkin-Thier et al., 2010). ... 24

Figure 2.12: Biofilm on sock fibres. (A) Damp sock (Alcian blue); (B) damp
sock (SEM); (C) dry sock (Alcian Blue); (D) dry sock (SEM) (Rayner et
al., 2004). .. 25

Figure 2.13: The structure of chitosan .. 28
Figure 2.14: Solution of *T. viride* cell with silver nitrate, before reaction (left) and after 24 hours of reaction (Fayaz *et al.*, 2010) .. 33

Figure 2.16: Images of latex induced copper nanoparticles at different molar concentrations of the metal precursor. A: 0.5; B: 0.1; C: 0.01 M (Valodkar *et al.*, 2011) .. 36

Figure 2.17: Two main heating mechanisms under microwave irradiation: (a) dipolar polarisation; (b) ionic conduction mechanism (Kappe *et al.*, 2009) ... 40

Figure 2.18: Cotton fabric (a) before and (b) after being coated with Ag nanoparticles (Perelshtein *et al.*, 2008) .. 42

Figure 2.19: Cotton fabric (a) before and (b) after being coated with Cu nanoparticles (Mary *et al.*, 2009) .. 45

Figure 4.1: Agglomeration during the formation of (a) Ag and (b) Cu nanoparticles in the absence of a stabilizing agent, as evidenced by the presence of sediment .. 68

Figure 4.2: Nanoparticles suspensions of (a) Ag synthesized in 10 mM metal salts and different concentration of chitosan of 1, 2 and 3 % (w/v) respectively (from left to right) and (b) their respective UV-vis spectra 70

Figure 4.3: Nanoparticles suspensions of (a) Cu synthesized in 10 mM metal salts and different concentration of chitosan of 1, 2 and 3 % (w/v) respectively (from left to right) and (b) their respective UV-vis spectra 71

Figure 4.4: UV-vis absorbance spectra of (a) Ag and (b) Cu nanoparticles synthesized in 3 % (w/v) chitosan solution and different concentration of metal salts.. 72

Figure 4.5: Nanoparticles suspensions of (a) Ag, Cu, Ag+Cu and Ag/Cu synthesized in 50 mM metal salts and 3 % (w/v) of chitosan (from left to right) and (b) their respective UV-vis spectra .. 73

Figure 4.6: Mean particle size of (a) Ag (b) Cu nanoparticles synthesized in 10 mM metal salts and different concentration of chitosan. Error bars represent standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (*p* < 0.05) .. 75
Figure 4.7: Mean particle size of the nanoparticles prepared by different concentrations of (a) silver nitrate (b) copper nitrate (c) silver and copper nitrate (combined concentration) at 3 % (w/v) of chitosan. Error bars represent standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$). ... 76

Figure 4.8: Zeta potential of nanoparticles of Ag and Cu of 10 mM metal salts and different concentration of chitosan. Error bars represent standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$). ... 77

Figure 4.9: Ag and Cu synthesized in 3 % (w/v) chitosan solution and different concentration of metal salts. Same letters signify that the results are statistically insignificant ($p > 0.05$). .. 78

Figure 4.10: Zeta potential of the nanoparticles of (a) Ag, Cu, Ag+Cu and Ag/Cu of 50 mM metal salts and 3% (w/v) of chitosan (b) Ag, Cu, Ag+Cu and Ag/Cu of 200 nm mean particle respectively. Error bars represent standard deviation from the mean of triplicate determinations. Same letters signify that the results are statistically insignificant ($p > 0.05$). 79

Figure 5.1: (a) Growth curve (b) pH of B. subtilis culture in TSB medium at 37 °C. Error bars represent the standard deviation of triplicate experiments. 84

Figure 5.2: (a) Growth curve (b) pH of E. coli culture in TSB medium at 37 °C. Error bars represent the standard deviation of triplicate experiments. 85

Figure 5.3: FEGSEM image of cotton fabric without nanoparticles at high magnification of 40,000×... 91

Figure 5.4: FEGSEM images of (a) Ag (b) Cu (c) Ag+Cu and (d) Ag/Cu nanoparticles synthesized in 50mM metal salts and 3% (w/v) of chitosan on cotton fibres at high magnification of 40,000×... 92

Figure 5.5: EDX spectra of untreated cotton fabric ... 93

Figure 5.6: EDX spectra of cotton fabric impregnated with (a) Ag and (b) Cu nanoparticles. .. 94
Figure 5.7: EDX spectra of cotton fabric impregnated with (a) Ag+Cu and (b) Ag/Cu nanoparticles.

Figure 5.8: FEGSEM images of *B. subtilis* bacterium in contact with cotton fibre (a) without nanoparticles (b) impregnated with Ag/Cu nanoparticles synthesized in 50mM metal salts and 3% (w/v) of chitosan.

Figure 5.9: FEGSEM images of *E. coli* bacterium in contact with cotton fibre (a) without nanoparticles (b) impregnated with Ag/Cu nanoparticles synthesized in 50mM metal salts and 3 wt% of chitosan.

Figure 5.10: Zone of inhibition of impregnated cotton fabrics with Ag and Cu nanoparticles of 10 mM synthesised in different concentrations of chitosan. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (*p* < 0.05).

Figure 5.11: Zones of inhibition of Ag and Cu nanoparticles at 3 % (w/v) chitosan and 10 to 50 mM metal salts and Ag⁺ and Cu²⁺ ions at 10 to 50 mM towards (a) *E. coli* K12 (b) *B. subtilis*. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (*p* < 0.05).

Figure 5.12: Zones of inhibition of impregnated cotton fabrics with Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in (a) 3 wt% chitosan and 50 mM metal salts solutions (b) 3% chitosan solution with the same mean particle size of 200 nm after overnight incubation at 37°C. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (*p* < 0.05).

Figure 5.13: Log reduction of nanoparticle-impregnated fabrics with Ag and Cu nanoparticles of 10 mM and different concentrations of chitosan towards *B. subtilis* and *E. coli* at 30 minutes contact time. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (*p* < 0.05).
Figure 6.1: (a) Growth curve of MRSA (b) pH of medium during culture of MRSA in TSB medium at 37 °C. Error bars represent the standard deviation of triplicate experiments ... 117

Figure 6.2: FEGSEM images of the MRSA bacterium in contact with cotton fibre (a) without nanoparticles (b) impregnated with Ag/Cu nanoparticles synthesized in 50mM metal salts and 3 wt% of chitosan. ... 121

Figure 6.3: Zone of inhibition of Ag and Cu nanoparticle- and ion-impregnated cotton fabrics against 10^8 CFU/mL MRSA after overnight of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (p < 0.05) .. 122

Figure 6.4: Zone of inhibition of impregnated cotton fabrics with Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3% (w/v) of chitosan impregnated onto fabrics against 10^8 CFU/mL MRSA after overnight of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (p < 0.05). ... 123

Figure 6.5: Zone of inhibition of impregnated cotton fabrics with Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of same mean particle size of 200 nm impregnated onto fabrics against 10^8 CFU/mL MRSA after overnight of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (p < 0.05) ... 123

Figure 6.6: Log reduction of 50 mM Ag and Cu nanoparticle- and ion-impregnated cotton fabrics against 10^8 CFU/mL MRSA after 30 minutes contact time. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant (p < 0.05). ... 124
Figure 6.7: Log reduction of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3% (w/v) of chitosan impregnated onto fabrics against 10^8 CFU/mL MRSA after 30 minutes contact time. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 6.8: Log reduction of Ag, Cu, Ag+Cu and Ag/Cu nanoparticles of same mean particle size of 200 nm impregnated onto fabrics against 10^8 CFU/mL MRSA after 30 minutes contact time. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 6.9: pH of tannic acid solutions at different concentrations. Data are the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 6.10: FTIR-ATR of untreated and tannic acid treated cotton fabrics.

Figure 6.11: FTIR-ATR of untreated and citric acid treated cotton fabrics.

Figure 6.12: FTIR-ATR of untreated and citric acid treated cotton fabrics after curing process.

Figure 6.13: Schematic diagram of the pre-treatment of cotton fabric by tannic acid.

Figure 6.14: Schematic diagrams of pre-treatment of cotton fabric by citric acid (a) before and (b) after crosslinking.

Figure 7.1: Zone of inhibition of 50 mM Ag and Cu nanoparticles synthesized in 3 wt% chitosan and 50 mM ion-impregnated cotton fabrics against 10^6 CFU/mL T. interdigitale after 7 days of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).
Figure 7.2: Zone of inhibition of impregnated cotton fabrics impregnated with Ag, Cu, Ag/Cu and Ag+Cu nanoparticles (a) synthesised in 50 mM metal salts and 3% (w/v) of chitosan (b) of same mean particle size of 200 nm impregnated into fabrics against 10^6 CFU/mL *T. interdigitale* after 7 days of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 7.3: Log reduction of Ag and Cu nanoparticle- and ion-impregnated cotton fabrics against 10^6 CFU/mL *T. interdigitale* after 7 days of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 7.4: Log reduction cotton fabrics impregnated with Ag, Cu, Ag/Cu and Ag+Cu nanoparticles (a) synthesised in 50 mM metal salts and 3% (w/v) of chitosan (b) of same mean particle size of 200 nm impregnated into fabrics against 10^6 CFU/mL *T. interdigitale* after 7 days of incubation. Error bars represent the standard deviation from the mean of triplicate determinations. Different letters signify that the results are statistically significant ($p < 0.05$).

Figure 7.5: FEGSEM images of the fungus *T. interdigitale* in contact with cotton fibre without nanoparticles at low magnification.

Figure 7.6: FEGSEM images of the fungus *T. interdigitale* bacterium in contact with cotton fibre (a) without nanoparticles (b) impregnated with Ag/Cu nanoparticles synthesised in 50 mM metal salts and 3 wt% of chitosan.
CHAPTER 1

INTRODUCTION

1.1 Background

Consumers strive to find the best quality products for their daily requirements. This includes clothing which is comfortable, and stays fresh and odour-free in use (Khan et al., 2011). Cotton fabrics are widely used in the production of underwear, protective clothing, medical garments, white goods and sportswear because of their breathability, moisture absorption and comfort (Filipowska et al., 2011; Kantouch & El-Sayed, 2008).

Microorganisms are part of our daily lives and environments. Bacteria are responsible for significant infections and allergy problems (SaIhi et al., 2005). Fabrics are frequently exposed to the influence of microorganisms, where the formation of spots and odours are the perceivable signs of contamination (El-Naggar et al., 2003). Microorganisms can also survive on fabric substrate (Hebeish et al., 2011). Fabrics made from natural fibres can act as carriers for microorganisms such as bacteria and mould (Lee, 2010). Natural fibres are more vulnerable than synthetics because of their porous, hydrophilic structures that can retain water, oxygen, and nutrients (Hebeish et al., 2011). Besides this, natural fibres in contact with the human body provide warmth which makes the best environment for microbial growth and multiplication (Prusty et al., 2010). These phenomena can lead to discolouration and deterioration of the quality of the fabric, unwanted stains, dermal infection, allergic reactions and other associated illnesses (Filipowska et al., 2011). The growing need for hygienic living environments has led to a great demand for antimicrobial materials which do not allow microbes to attach, survive or at least proliferate on material surfaces (Thomas et al., 2010).
Additionally, antimicrobial fabrics could have a major impact in hospitals due to growing concern over microbial cross-contamination in hospitals from the infected patients and indoor air quality in operational areas (Mohammadkhodaei et al., 2010). It has been claimed that, hygiene problems associated with hospital fabrics can affect the recovery of the patient (Zhao et al., 2008). It is believed that the use of antimicrobial fabrics can efficiently control and inhibit microbial contamination and the spread of disease (Copello et al., 2006). This would reduce the possibility of pathogenic bacteria being transported from the hands or gloves of a health care-worker to the wound site of an at-risk patient (Borkow & Gabbay, 2008). The occurrence of pathogenic bacteria in the hospital environment could be restricted by the utilisation of effective antimicrobial compounds on frequently touched surfaces, such as curtains (particularly around patient beds), uniforms and bedding (O’Hanlon & Enright, 2009).

The requirement for antimicrobial treatment is not limited to hospitals. Besides this, cross contamination by microorganisms can also happen in other places such as hotels, schools, nursing facilities, clinics and public areas (El.Shafei & Abou-Okeil, 2011). It mainly occurs in places where crowded conditions prevail and which do not have frequent cleaning (Hebeish et al., 2011). Therefore, the requirement for fabrics that are resistant to the growth of microorganisms and pathogens is extended (Yan et al., 2011).
1.2 Research problems

Microorganisms have been causing various types of diseases for thousands of years and people unable to avert them. An enhanced awareness and routine of infection control performs has had some influence on the existence of microorganism infections. The growth of microorganisms can be controlled by treatment with antimicrobial agents.

The requirement to use antimicrobial fabrics has been increasing all around the world (Lin et al., 2011). Antimicrobial fabrics are developed for three major reasons: (a) to prevent the spread of disease and avoid the danger of injury-induced infection, (b) to avoid the development of odour from perspiration, stains and soil on fabric materials, and (c) to prevent the deterioration of fabrics caused by mildew, particularly for fabrics made of natural fibres (Diana et al., 2010; Gao and Cranston, 2008).

Nowadays, industrial and textile sectors are paying increased attention to manufacturing antimicrobial fabrics for medical and hygienic applications (Thomas et al., 2010). As a result, different types of antimicrobial agents for fabric application have been created, but unfortunately many of these agents have harmful effects and cannot easily degrade in nature (Dastjerdi & Montazer, 2010). Producing new kinds of fabrics with antimicrobial properties using nanoparticles has attracted a great deal of attention from both scientists and consumers in recent years because of their non-toxic, safe and improved antimicrobial efficiency (Kim et al., 2010). Synthesis of metal nanoparticles has been studied extensively because of their antimicrobial activity (Marambio-Jones & Hoek, 2010).

Copper (Cu) is a potent natural antimicrobial material which has been used since ancient times. For example, Cu is used for storing potable water and along with vinegar and honey for cleansing wounds (Russell, 2002). Cu plays a vital role in human health, such as energy production in cells and the maintenance of essential elements and chemicals such as zinc, oestrogen, and neurotransmitters (Cady et al., 2014).
Chitosan can form electrostatic attraction with metal components thus enhancing the stability of the nanoparticles (Guibal, 2004; El.Shafei & Abou-Okeil 2011). It has low toxicity and it is therefore safe for human applications, and will not cause environmental-toxicity or biological hazards (Kong et al., 2010). Synthesis is inexpensive and leads to waste reduction and energy efficiency.

Modification of fabric with nanoparticles is developed due to their unique properties. However, the surface modification of fabric with nanoparticles is not permanent especially against washing. Most methods used for stabilization of nanoparticles on the fabrics are costly, very time-consuming and are harmful to the environment because of the application of hazardous chemicals or organic solvents (Dastjerdi & Montazer, 2010).

The development of antimicrobial fabrics based on synergistic effects through combining different metal elements provides a new alternative in the fight against various types of pathogenic microorganisms. This study will provide new insight into the antimicrobial activity of the nanoparticles through synergistic effects between Ag and Cu. The results can be used as a basis for further study of the application of the nanoparticle-impregnated fabrics to kill pathogenic bacteria and fungi. This study will contribute to the knowledge of the application of nanoparticle-impregnated fabrics to reduce undesirable phenomena caused by microorganisms.

1.3 Aim and objectives

The aim of this research work was to develop antimicrobial fabrics that have antibacterial and antifungal effects which involve the use of different types of nanoparticles impregnated onto cotton fabrics and a pre-treatment process. Various methods and analyses were used as reported in this thesis to achieve this aim, with the following objectives: