SnO₂-TiO₂ Hybrid Nanofibers for Efficient Dye-Sensitized Solar Cells

Qamar Wali, Zinab H. Bakr, Nurul Ain Manshor, Azhar Fakharuddin', Rajan Jose' Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia

ABSTRACT

Pristine SnO_2 nanostructures typically result in low open circuit voltage (V_{OC}) <500 mV due to the lower Fermi energy (E_F) when employed as a photoanode materials in dye sensitized solar cells (DSSCs). On the other hand, the most successful photoanode material, i.e., TiO_2 nanoparticle although provides a high $V_{OC} \ge 800$ mV result in poor charge collection owing to their inferior electron mobility (μ_n) . Herein, we employ nanofiber–nanoparticle composite of SnO_2 – TiO_2 which showed similar V_{OC} and short circuit current density (J_{SC}) to a reference TiO_2 based DSSCs. The nanocomposite developed here involves multi-porous SnO_2 nanofibers characterized by a lower E_F ; however, with higher μ_n and TiO_2 nanoparticles of higher E_F and lower μ_n . The TiO_2 particles in the pores of SnO_2 nanofibers were developed by $TiCl_4$ treatment, whose concentration is optimized for the saturated J_{SC} and V_{OC} . The best performing DSSCs fabricated using the composite electrodes deliver power conversion efficiency (PCE) of $\approx 7.9\%$ ($V_{OC} \approx 717$ mV; $J_{SC} \approx 21$ mA cm⁻²), which is significantly higher than pure SnO_2 photoanode with PCE $\approx 3.0\%$ ($J_{SC} \approx 14.0$ mA cm⁻² and $V_{OC} \approx 481$ mV) at similar experimental conditions.

KEYWORDS: Photovoltaic; SnO₂ nanofibers; TiO₂–SnO₂ composite; Interfacial charge recombination; Electron life time

DOI: 10.1016/j.solener.2016.03.037