SnO$_2$–TiO$_2$ Hybrid Nanofibers for Efficient Dye-Sensitized Solar Cells

Qamar Wali, Zinab H. Bakr, Nurul Ain Manshor, Azhar Fakharuddin, Rajan Jose
Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology,
Universiti Malaysia Pahang, 26300, Malaysia

ABSTRACT
Pristine SnO$_2$ nanostructures typically result in low open circuit voltage (V_{OC}) <500 mV due to the lower Fermi energy (E_F) when employed as a photoanode materials in dye sensitized solar cells (DSSCs). On the other hand, the most successful photoanode material, i.e., TiO$_2$ nanoparticle although provides a high V_{OC} > 800 mV result in poor charge collection owing to their inferior electron mobility (μ_n). Herein, we employ nanofiber–nanoparticle composite of SnO$_2$–TiO$_2$ which showed similar V_{OC} and short circuit current density (J_{SC}) to a reference TiO$_2$ based DSSCs. The nanocomposite developed here involves multi-porous SnO$_2$ nanofibers characterized by a lower E_F; however, with higher μ_n and TiO$_2$ nanoparticles of higher E_F and lower μ_n. The TiO$_2$ particles in the pores of SnO$_2$ nanofibers were developed by TiCl$_4$ treatment, whose concentration is optimized for the saturated J_{SC} and V_{OC}. The best performing DSSCs fabricated using the composite electrodes deliver power conversion efficiency (PCE) of $\approx 7.9\%$ (V_{OC} ≈ 717 mV; J_{SC} ≈ 21 mA cm$^{-2}$), which is significantly higher than pure SnO$_2$ photoanode with PCE $\approx 3.0\%$ (J_{SC} ≈ 14.0 mA cm$^{-2}$ and V_{OC} ≈ 481 mV) at similar experimental conditions.

KEYWORDS: Photovoltaic; SnO$_2$ nanofibers; TiO$_2$–SnO$_2$ composite; Interfacial charge recombination; Electron life time

DOI: 10.1016/j.solener.2016.03.037