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Abstract 

Abstract 

As with many bioprocesses, the acetone-butanol-ethanol (ABE) fermentation faces 

a number of economic drawbacks when compared to the petrochemical route for 

butanol production . In the 1920s biobutanol was the second largest biotechnology 

industry, after bioethanol production. However it became difficult to compete 

against the petrochemical route for reasons including the low product butanol 

concentration, because of product inhibition resu lted in low butanol productivity 

and due to slow fermentation and low ABE yields. These lead to uneconomical 

butanol recovery by the conventional method, distillation, due to the high degree of 

dilution. Recent interest in biobutanol as a biofuel has led to re-examination of ABE 

fermentation with the aim of improving solvent yield, volumetric productivity and 

final solvent concentration to reduce the cost of production and thereby produce 

biobutanol that is cost-competitive with the chemical synthesis butanol. 

ABE fermentations were carried out in an intensified plug flow reactor 

known as the batch oscillatory baffled bioreactor (BOBB). The "BOBB"s were 

designed and built for this project. The effect of oscillatory flow mixing on ABE 

fermentation was compared to that of conventional stirred tank reactors (STRs) at 

power densities in the range 0 to 1.14 wm·3. The maximum butanol concentration 

in this range in a BOBB was 34% higher than the STR. Some increase in butanol 

productivity was also observed : 0.13 gL-1h·1 in BOBBs, compared to 0.11 gL-1h·1 in 

the STRs. It can be concluded that at similar power densities, BOBB fermentation 

shifts to solventogenesis earlier than in STRs, resulting in higher solvent productivity. 

It is hypothesised that the reason for early solventogenesis in the BOBB was the 

higher so lvent-producing cell concentration, due to the more uniform shear field in 

the BOBB, so the cell would be less exposed to high shear thereby reducing the ri sk 

of cell lysis. 
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Abstract 

Two-stage ABE fermentations in BOBB increased the butanol productivity by 

up to 37.5% over the one-stage fermentation. Butanol productivity was further 

increased by 97% when gas stripping was integrated to the two-stage ABE 

fermentation. While the one-stage fermentation integrated w ith gas stripping 

increased the butanol productivity by 69% to 0.12 gL-1h·1 {as opposed to 0.071 gl-1h-

1 in a similar fermentation without gas stripping). A simple model to describe the 

one-stage at oscillatory Reynolds number (Re0 ) 0 and 938, and the two-stage ABE 

fermentat ion in BOBB II was developed. The model summarizes the physiologica l 

aspects of growth and metabolite synthesis by Clostridium GBL1082. The prediction 

of the models were in good agreement with experimental results incorporating 

mixing (Re0 938} and moderately agreed with results from Re0 0 and the two-stage 

fermentation. 
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1.1 Research Background 

More than a century ago, the production of acetone and butanol via 

fermentation using the "Weizmann Process" was commercially viable. There was a 

high demand for acetone, which was used in the manufacture of the explosive 

cordite during World War 1. At that time, butanol {as a by-product) was stored, as 

there was no ready use for it {DOrre, 2008). It was in the 1920s that butanol became 

an important chemical when the dramatic growth in the automobile industry 

created an urgent need for a solvent in the production of quick-drying lacquers for 

car manufacturing. Butanol proved to be an excellent solvent, and fermentation 

using the Weizmann Process became the method of choice for its production {DOrre, 

2008). Butanol has also been used in the production of the rubber monomers, 

butadiene and dimethyl butadiene {Mollah and Stuckey, 1993). Until 1950, almost 

two-thirds of worldwide butanol demand were met from the fermentation process 

(DOrre, 2008). The largest plants were located in the United States: for example, 

Peoria, Illinois had 96 fermenter units with a total capacity of 21,821 m3
. This plant 

together with the Terre Haute plant {which had 52 fermenter units) produced over 

100 tons of solvent per day {Jones and Woods, 1986). 

In the 1950s, crude oil became much cheaper. Together with the increasing 

prices of biobutanol feedstock {mainly molasses) combined with lower sugar 

contents, this shifted butanol production routes away from biological processes to 

more efficient chemical processes. By 1960, acetone, butanol and ethanol {ABE) 

fermentation had virtually ceased in the UK, USA and Japan {Ni and Sun, 2009), 

followed by Africa and Germany in the 1980s, and finally in China and Russia in the 

1990s (Jones and Woods, 1986; Lee et al., 2008b). Since then, butanol has almost 

exclusively been produced from petrochemicals. The revival of ABE production by 

fermentation depends on economic conditions, principally the cost relative to the 
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petrochemical-based processes. The oil price crises in the 1970s and 1999, have 

revived interest in the ABE fermentation. As shown in Figure 1.1 below, research 

activities in academia and industry significantly increased in the ea rly 1980s and 

again in 2000s as a response to the oil crises with effort distributed fairly evenly 

between various technical aspects fermentation, downstream processing, and 

research on physiology and genetics of solventogenic clostridia, from 1980 to 1990. 

In the last decade, scientific publications in clostridial research increased again, 

generally due to interests in biofuels (Lutke-Eversloh and Bahl, 2011). 
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1990 2000 20 10 

Current Opinion ln Biotechnology 

Figure 1.1 Scientific publications on solventogenic clostridia since 1950. The pie charts on 
top show the ratio between publications on physiology and genetics {white) and those 
covering topics of fermentation and downstream processing {black) for each decade. 
{Uitke-Eversloh and Bahl, 2011) 

Researchers are working to improve the ABE fermentat ion process w ith the 

aim of reducing the cost of production, so that biobutanol is cost-competitive with 

chemically synthesised butanol. Recent developments in molecular techniques to 
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i. Mutant strain, C beijerinckii BA101 produce higher concentrations of butanol 

over its parent strain C. beijerinckii NCIMB 8052 (Qureshi and Blaschek, 

2001a) 

ii. Gene inactivation in C. acetobutylicum ATCC 824 (Green et al., 1996) to 

disrupt metabolic pathways leading to acetate and butyrate production 

iii. Mutant strains of C. acetobutylicum ATCC 824 (Matta-El-Ammouri et al. , 

1986) C. beijerinckii NCIM B 8052 cloned with Neoca/limastix patriciacarum's 

gene (Lopez-Contreras et al., 2001) 

iv. Alternative microbial hosts with artificial metabol ic pathway of clostridia 

{Shen and Liao, 2008; Nielsen et al., 2009) 

Others have focussed their interest on media optimization using non-food 

feedstocks, such as wheat straw, corn stover, barley straw, switchgrass (Qureshi 

and Ezeji, 2008), and palm oil mill effluent {Somrutai et al. , 1996; Ngan et al. , 2004; 

Pang et al., 2004; Hipolito et al., 2008; Takriff et al., 2009). ABE fermentation 

protocols have also been studied including: varying fermentation technique {batch, 

fed batch, continuous, continuous with cell recycling and bleeding, continuous with 

immobilized cell and co-culture fermentation) (Lienhardt et al., 2002; Lee et al. , 

2008a), novel downstream processing {Ezeji et al., 2007) and integration of the 

processes i.e. pretreatment-fermentation-product recovery (Lienhardt et al. , 2002; 

Qureshi and Maddox, 2005; Qureshi et al., 2007; Fischer et al. , 2008). These 

fermentation strategies had been carried out and resulted in differing degrees of 

success. 
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1.3 Research Objectives 

The objectives of this research are: 

i. Development of a batch oscillatory baffled bioreactor (OBB) 

ii. Investigation of the ability of the oscillatory baffle reactor (OBR) as a 

bioreactor to perform ABE fermentation 

iii. Comparison of the effect of different types of mixing (i.e. oscillating and 

stirring) by comparing stirred tank reactors (STRs) and OBBs 

iv. Investigation of the effect of variation of oscillatory Reynolds number (Re0 ) 

on batch ABE fermentation. 

v. Investigation of the effect of mixing protocols in ABE fermentation on cell 

growth and solvent production with a view to maximising productivity. 

vi. Evaluation of OBR ABE fermentation's integration with simultaneous 

product recovery (gas stripping) and the effect on the solvent yield and 

productivity 
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2.1 Butanol 

Butanol {IUPAC nomenclature 1-butanol) is a colourless, flammable liquid with a 

banana-like odour. It is an important bulk chemical in various industrial applications. 

Butanol is a major feedstock for the industrial manufacturing of various chemicals 

including butyl acrylate, butyl acetate, glycol ethers, and plasticizers (Mata et al., 

2010). These chemicals are widely used in water-based coatings, cosmetics, car care 

products, lacquers, pharmaceuticals, textiles, etc. Butanol is also used as a direct 

solvent in paints, dyes, varnishes, coatings and for other industrial purposes (Mata 

et al., 2010}. The latest application of butanol is as a transport fuel and it is 

expected to play a major role in the next generation of biofuels (Durre, 2008). 

"Biobutanol", which is butanol derived from fermentation, has been claimed to be 

"superior biofuel", as it can be blended into standard gasoline similarly to ethanol 

but with several advantages. These include higher energy content and lower vapour 

pressure, which make storage and transportation easier. It is also immiscible with 

water, has a better blending ability with gasoline and diesel fuel, and can be used in 

conventional internal combustion engines without modification (Durre, 2008). 

Butanol can be produced from petrochemical or biotechnology routes. 

Chemically, butanol is derived from crude oil via three major routes: oxo synthesis, 

Reppee synthesis and crotonaldehyde hydrogenation, as shown in Figure 2.1. Oxo 

synthesis is the main process. It involves two main steps: hydroformylation, 

followed by hydrogenation. First, CO and H2 are added to the carbon-carbon double 

bond of propylene using cobalt, rhodium or ruthenium as catalysts. This produces 

an aldehyde mixture, which undergoes hydrogenation to produce butanol (Figure 

2.la}. 
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COtalysl 
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C 2 CH3CHO - CH 3CH(OH)CH2CHO - CHp H•CHCHO + HiO 

Hvcrog&netioo I 
CH3CH2CHiCH20 H • Hz · H 

Figure 2.1 Chemical synthesis of butanol: (a) Oxo synthesis, (b) Reppe synthesis, (c) 
Crotonaldehyde hydrogenation (Lee et al., 2008b) 

Different isomeric ratios of butanol can be obtained, depending on reaction 

conditions of pressure and temperature, and the catalyst used. If hydrogen replaced 

by steam (as in Figure 2.lb}, a mixture of primary butanols can be obtained directly. 

This is known as Reppe synthesis, which produces butanol directly from alkenes and 

operated at 100°C and 1.5 x 106 Pa absolute pressures, in the presence of 

pentacarbonyl iron, butylpyrrolidone and water. This process produces an 88% n­

butanol and 12% isobutanol (Chauvel and Lefebvre, 1989). Crotonaldehyde 

hydrogenation (Figure 2.lc} used to be a common route for petrochemical-derived 

butanol a few decades ago. The process starts from acetaldehyde and consists of 

three-step reactions: aldol condensation, dehydration and hydrogenation. This 

process may again become important in the future as it provides an alternative 

route from ethanol which can be produced biologically from biomass (Machado, 

2010). In this case, acetaldehyde is formed from the dehydrogenation of ethanol 

and the synthesis proceeds from there (Lee et al., 2008b}. 

Biologically, butanol is produced from a fermentation known as the acetone, 

butanol and ethanol (ABE) fermentation. This ABE fermentation can use a wide 

range of biomass, as well as various sugars (glucose, sucrose and lactose) as 

substrates. Other than butanol, products include organic acid (lactate, acetate and 
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butyrate), solvents (acetone and ethanol) and gases (C02 and H2) . The wide range of 

products indicates that this fermentation has a complex metabolic pathway. 

Today's world demand for butanol has been met mainly via the oxo reaction from 

propylene. It is estimated that over 4.5 million tonnes of butanol are produced 

annually, which accounts for a market of 70 million GBP (1.1 billion USO). The 

market growth rate for butanol is estimated at 3.25% per year (Market Publishers, 

2010). 
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2.2 ABE Fermentation 

2.2.1 Microorganisms 

The first microorganism used for ABE fermentation was a bacterium, Clostridium 

acetobutylicum, which was first isolated by Weizmann in the 1910s (Jones and 

Woods, 1986). Other than C. acetobutylicum, another three key species have been 

identified as butanol producers: C. beijerinckii, C. saccharobutylicum and C. 

saccharoperbutylacetonicum. It should be noted that the three species mentioned 

above were originally designated as C. acetobuty/icum until the beginning of the 

1990s (Durre, 2008). All species follow anaerobic fermentation with minor 

differences, such as the type of substrate for optimum solvent production (Durre, 

2008). 

Clostridia are rod-shaped, measuring 0.5 - 2 µm in width and up to 30 µm in 

length (Figure 2.2a). They are Gram-positive bacteria and typically strict anaerobes. 

Clostridia form robust endospores which are resistant to oxygen, heat, and alcohol. 

Spores either occur in central, terminal (Figure 2.2b) or subterminal positions, 

depending on the species. Most clostridia species are motile and have flagella 

projecting in all directions used for propulsion (Andreesen et al., 1989). 

(a) \ '. 

-- -
I 

Figure 2.2 Photomicrographs of C. acetobutylicum during ABE fermentation. (a) Actively 
growing phase-dark vegetative rods. (b) Sporulating rods with terminal phase-bright 
spores. Bar, 10 ,um. (Jones et al., 1982) 
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