EFFECT OF MAGNESIUM ADDITION ON THE MICROSTRUCTURE AND PROPERTIES OF DUCTILE Ni-RESIST ALLOY USING IN-MOULD MAGNESIUM TREATMENT METHOD

MOHD RASHIDI BIN MAAROF

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > APRIL 2015

ABSTRACT

For engineering reasons, ductile Ni-resist alloys are widely used in oil and gas, automotive industries and elevated temperature purposes. Ductile Ni-resist offers an advantage because this alloy has an austenitic structure at all temperatures. However, ductile Ni-resist alloy faces economical limitation due to the high price of nickel for alloying of ductile Ni-resist. Therefore, the present study aims to explore the possibility to reduce nickel consumption by substituting nickel with manganese to generate austenitic structure of ductile Ni-resist. Austenitic structure was formed by adding a nickel with much higher manganese percentage consumption as compared to standard usage. The control of carbide formation due to increasing Mn/wt. % was conducted using inoculation method. The effect on solidification was evaluated using cooling curve thermal analysis, complemented by microscopic observation and mechanical properties. It was observed that both Mn/wt. % and inoculation affect the austenitic structure and solidification cooling curve. Solidification cooling curve was lowered with increasing Mn/wt. %. It was also observed that graphite microstructure can be modified by both Mn/wt. % and inoculation. The morphology and graphite distribution was affected by increasing Mn/wt. % and inoculation. An isolated region due to segregation known as 'Last To Freeze' was the last area to solidify. Tensile strength and elongation at room temperature dropped by 21.5% (12Mn-10Ni wt %) and 20.0% respectively as compared to D2 standard alloys. Tensile strength at elevated temperature showed that this alloy can withstand up to 150 MPa, dropped by 6.15% (12Mn-10Ni wt. %) compared to D2 standard alloy. Corrosion test proved that corrosion rate is comparable to unmodified ductile Ni-resist. Three dense oxide layers were formed on the alloy surface at elevated temperature. A good agreement was observed between the result of the solidification cooling curve, microstructure and mechanical properties.

ABSTRAK

Aloi Nikel-rintang mulur digunakan secara meluas bagi keperluan kejuruteraan seperti industri minyak dan gas, automotif dan persekitaran bersuhu tinggi.Kelebihan ini disebabkan oleh kewujudan austenit pada semua suhu. Walaubagaimanapun, aloi ini mempunyai kekangan dari sudut ekonomi kerana harga nikel yang mahal untuk tujuan pengaloian. Oleh itu, kajian ini dilakukan untuk mengkaji kesan penggunaan mangan bagi mengurangkan komposisi nikel untuk menghasilkan struktur austenite dalam aloi Nikel-rintang mulur. Pembentukan karbida disebabkan oleh peningkatan peratusan mangan dikawal dengan kaedah penyuntikan. Kesan terhadap pemejalan dinilai melalui analisa terma lengkung penyejukan, dan disokong oleh pemerhatian mikrostruktur dan kekuatan mekanikal. Kajian menunjukkan peratusan penambahan mangan dan kaedah penyuntikan memberi kesan kepada struktur austenit dan lengkung penyejukan pemejalan. Lengkung penyejukan pemejalan menurun dengan penambahan peratusan mangan. Pemerhatian juga menunjukkan mikrostruktur grafit, morfologi dan taburannya boleh diolah dan dipengaruhi oleh peratus penambahan mangan dan penyuntikan. Wujud suatu kawasan terpinggir akibat dari proses pengasingan yang dikenali sebagai 'kawasan terakhir memejal' yang merupakan kawasan yang terakhir memejal. Kekuatan tegasan dan pemanjangan pada suhu bilik masing-masing merosot 21.5% (12Mn-10Ni wt. %) dan 20.0%. Kekuatan bahan pada suhu tinggi adalah 150 MPa, merosot sebanyak 6.15% (12Mn-10Ni wt. %) berbanding aloi kelas D2. Ujian kakisan membuktikan aloi setanding dengan aloi Nikel-rintang mulur yang tidak diubahsuai. Tiga lapisan berlainan oksida tumpat terbentuk pada permukaan aloi. Terdapat pertalian berpadanan di antara keputusan lengkung penyejukan pemejalan, mikrostruktur dan sifat mekanikal.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xxi
	LIST OF SYMBOLS	xxiii
	LIST OF APPENDICES	xxiv
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	4
	1.3 Purpose of the Research	4
	1.4 Objective of the Research	5
	1.5 Scope of the Research	5
2	LITERATURE REVIEW	7
	2.1 Austenitic Ductile Iron Alloys	7
	2.2 Solidification of Ni-Resist Alloy – Austenitic Matrix	
	Structure	11

	2.3 Solidification Stages	21
	2.3.1 Solidification Stages – Nucleation of Austenite	
	Dendrite	21
	2.3.2 Solidification Stages – Nucleation of Graphite	26
	2.4 Effect of Solidification Stages on Cast Iron Matrix	36
	2.4.1 Segregation	36
	2.5 Thermal Analysis	40
	2.5.1 Solidification Cooling Curve and its Differential	
	Thermal Analysis	40
	2.6 Properties of DNR alloys	49
	2.7 Inoculation	49
	2.8 Corrosion	52
	2.9 Summary	55
3	EXPERIMENTAL METHODOLOGY	58
	3.1 Introduction	58
	3.2 Pattern and Mould Fabrication	62
	3.3 Melting	66
	3.3.1 Base Iron Preparation	66
	3.3.2 Alloying	67
	3.3.3 Treatment	69
	3.4 Thermal Analysis	70
	3.5 Microstructure Characterization	72
	3.6 X-Ray Diffraction (XRD) analysis	74
	3.7 Tensile Test	74
	3.8 Hardness Test	76
	3.9 Corrosion Test	76
	3.10 Elevated Temperature Oxidation Test	78
4	RESULTS AND DISCUSSION	79
	4.0 Introduction	79
	4.1 Preliminary Experiment to Established the Procedure	
	for the Development of Conventional Ductile Iron by In-	

3

Mould Treatment Technique	79
4.2 The Effect of Mn Addition on the Strength of DNR	91
4.2.1 Effect of Mn Addition on Eutectic Temperature	99
4.2.1.1 Thermal Analysis of Solidifying DNR	100
4.2.2 Effect of Mn Addition on the Austenite Dendrite	
Size	103
4.3 Effect of FeSi on Carbide Formation	107
4.4 Effect of Mn Addition and Inoculation on the	
Properties of Modified DNR	117
4.4.1 Tensile Test – Room Temperature	117
4.4.2 Elevated Temperature Tensile Test	121
4.4.3 Hardness	123
4.4.4 Relationship between Mechanical Properties and	
Microstructure	126
4.4.4.1 Effect of Mn and Inoculation Addition on	
Graphite Nodule Count	135
4.4.4.2 Effect of Mn and Inoculation Addition on	
Nodularity	139
4.4.4.3 Effect of Mn and Inoculation Addition on Nodule	
Size	144
4.4.4.4 Effect of Inoculation on the Mechanical Properties	
of Modified DNR	152
4.4.4.5 Summary Effect of Mn and FeSi additions on	
Properties of Modified DNR	174
4.5 Corrosion	175
4.5.1 Potentiodynamic Test	175
4.5.2 Immersion Test	178
4.6 Oxidation	192
CONCLUSIONS	201

REFERENCES

Appendices 3.1 – 4.6

xxiii - xxxvii

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Effect of alloying elements in Ni-Resist system	11
3.1	Composition of the green sand mould used in the study	63
3.2	In-Mould Treatment gating area specifications for	
	pressurized system	65
3.3	Pig iron average chemical composition	66
3.4	Raw material composition used for based iron melting	67
3.5	FeMn chemical composition	68
3.6	FeCr chemical composition	69
3.7	Chemical composition of MgFeSi nodulant	69
3.8	Chemical composition of FeSi inoculant	70
3.9	Etchant used and preparatory procedures for	
	microstructure examination	73
4.1	Effect of MgFeSi on nodule count and mechanical	
	properties after In-Mould magnesium treatment	87
4.2	Chemical compositions of the sample after the In-Mould	
	magnesium treatment	89
4.3	Elements content (wt. %) of point A, B, C and D	96
4.4	Segregation coefficient, Ks and its comparison	98
4.5	Comparison of temperature point (°C) of thermal arrest	
	after DTA of inoculated 9 wt. % Mn DNR	103
4.6	Effect of inoculation on graphite distribution and shape of	
	9 wt. % Mn DNR	109
4.7	Effect of inoculation on carbide and alloyed iron phases	
	of 9 wt. % Mn DNR reveal by XRD	110
4.8	Effect of inoculation on phases developed after	
	inoculation process revealed by image analyser	111
4.9	Comparison of temperature point (°C) of thermal arrest	
	after DTA of inoculated 9 wt. % Mn modified DNR	113
4.10	Effect of Mn and inoculation content on the average	
	tensile strength at room temperature	118

4.11	Effect of Mn and inoculants content on the average	
	tensile strength conducted at 765°C of modified DNR	121
4.12	Average hardness analysis of produced modified DNR	
	with different Mn content and inoculants wt. %	124
4.13	Effect of inoculation process on phases revealed by image	
	analyser	130
4.14	Graphite nodule count and nodularity with different wt. $\%$	
	Mn and inoculants addition	137
4.15	Comparison of temperature point (°C) of thermal arrest	
	after DTA	166
4.16	Temperature point (°C) of thermal arrest of DNR without	
	the addition of Mn	173
4.17	Corrosion rate of the samples added with 9-12wt% Mn	
	subjected to inoculation with 0.5 and 1.0wt% FeSi	
	additions	181
4.18	Elements constituent in Figure 4.71 based on SEM/EDS	
	examination	184
4.19	Accumulated elements on corrosion layer after immersion	
	test	185
4.20	Electrochemical series indicated metal displacement	
	which may initiate corrosion mechanism	187
4.21	Seawater pH of immersion test (60 days)	190
4.22	Average oxide thickness after 25 h exposure in air at	
	(765°C)	196
4.23	Quantitative EDS analysis of different positions in oxide	
	layer	200

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Areas that has been research on ductile Ni-resist and its	
21	Schemetic shows commiss of local	3
2.1	Schematic shows conversion of ductile cast iron from	
	commercial cast iron	8
2.2	Classes of ductile cast iron	8
2.3	Typical microstructure of ductile Ni-resist	9
2.4	Time-Temperature-Transformation (TTT) curve diagram	
_	of iron	13
2.5	Equilibrium phase diagram of different Fe-alloy (a) Fe-	
	Fe ₃ C equilibrium phase diagram, (b) Iron-nickel	
	equilibrium phase diagram and (c) Iron-manganese	
	equilibrium phase diagram	14
2.6	Computed phase diagram for Fe-Mn-Ni liquidus	
	projection	15
2.7	Schematic of elements role towards processing DNR	18
2.8	Effect of (a) alloving elements towards entectic	10
	temperature Jivang (2009) and (b) undercooling and	
	carbon equivalent	20
2.9	Schematic of structural transition in directionally	20
	solidified allowed iron	22
2.10	Ontical micrograph of graphita nodulas without a shall	23
2.10	casing in contact with sustanite denduits	24
2 11	Colour etching recurs le the surfaction le division de la serie de	24
2.11	Colour etching reveals the austenite dendritic structure	25
2.12	Metallographic photo shows Dendrite Arm Spacing	
0.10	(DAS) and Secondary Dendrite Arm Spacing (SDAS)	25
2.13	Optical micrograph of (a) nodule and (b) flake graphite	
• • •	structure for comparison (100x)	26
2.14	As-polished microstructure of austenitic ductile iron; (a) 3	
_	mm thickness (b) 10 mm thickness (100x)	28
2.15	Schematic of graphite segregation cooling curve	29

2.16	Comparison of (a) fast solidified and (b) slow solidified	29
2.17	(a) No carbon diffusion and (b) carbon diffuses on	2)
	graphite spheroids	30
2.18	Etched microstructures; (a) without insulation, (b) 40 %	
	silica, 60 % insulating sand mould and (c) 100 %	
	insulating sand mould (100x)	30
2.19	Microstructure illustrated the image analysis revealed by	
	Mampaey (2002) (a) Overall figure, (b) particles	
	contained chunky graphite. (c) particles with poor	
	nodularity and (d) particles with good nodule	32
2.20	Relative amount of chunky graphite in relation with	
	different CEV	32
2 21	Ontical micrograph of intercellular alloy carbides and	
	nodule granhite	33
2.22	General structure of (a) typical 20 % Ni austenitic ductile	
	iron and (b) structure after heat treatment, showing	
	carbide	33
2 23	Ontical micrograph showing intercellular carbide.	
<i></i>	shrinkage voids and nodule graphite at the end of	
	solidification	34
2 24	Position of electron probe (point G at nodule graphite. A	•
<i>4.4</i> 7	and K at the edge of dendritic structure, and R at the late	
	to freeze region) to measure solute concentration	37
2 25	Distribution of elements content after electron probe	
4.43	measurement at the position of electron probe as shown in	
	Figure 2.24	37
2.26	Dendrite models as starting point for microsegregation	38
2.20	Microstructures of conventional ductile iron (a) primary	20
2.21	austenite dendrite and (b) sutectic austenite dendrite and	
	nodule graphite aggregate which developed in the same	
	micro shrinkage cavity from ductile iron plate	39
2.28	Schematic of cooling curve temperature point proposed	
2.20	by Elliot (1988)	42
2 20	Soberatio of (a) late graphite segregation solidification	- 1
2.27	and (b) early graphite segregation solidification cooling	
	and (b) carry graphice segregation solution coording	43
2 30	Easter cooling rate detected for thinner casting size	44
2.30	Definition of temperature point thermal arrest with 1 st	
4.31	derivation cooling curres	45
2 22	Schematic of cooling ourse temperature point thermal	- T J
4.34	schematic of cooling curve temperature point mermat	45
2 2 2	antest proposed by Chisamera et al.	נד ר⊿
2.33	Schematic of cooling-solidification state curve	4/

-

2.34	Cooling curves that overlapped with 1 st derivative of cooling curve	49
2.35	Solidification curves at different points of the melts	τ υ
	process	51
2.36	Schematic representation of micro-inclusion (a) before	
	and (b) after inoculation	52
2.37	Annoted Pourbaix diagram	53
2.38	Corrosion potential of graphite nodule and modified DNR	
	based on galvanic series	54
3.1	Overall experimental activities flowchart	59
3.2	Alloy development of overall experiment activity	61
3.3	Pattern fabricated according to ASTM A439-83	63
3.4	Y- block casting shape specifications. The dimensions are	
	in mm (ASTM A439 – 83, 2009)	64
3.5	Y- block sample locations for analysis (ASTM A439 -	
	83, 2009)	64
3.6	Schematic diagram of the In-Mould treatment gating	
	system incorporating the reaction chamber for nodulant	65
3.7	Schematic diagram of temperature monitoring during	
	cooling	71
3.8	Schematic of thermal analysis set up for solidification	
	behaviour monitoring	72
3.9	(a) Schematic and (b) image of elevated temperature	
	tensile test set-up	75
3.10	Details of the specimen used for elevated temperature	
	tensile test. The dimensions are in mm	75
3.11	Schematic drawing of immersion test apparatus	77
3.12	Schematic drawing of potentiostat / galvanostat corrosion	
	test apparatus	77
	**	
4.1	Effect of percentage of MgFeSi addition on tensile	
	strength and hardness of ductile iron	80
4.2	Effect of addition of different percentages of MgFeSi on	
	the microstructure of cast iron (a) 0.2 (b) 0.3 (c) 0.4 (d)	
	0.5, (e) 0.6 (f) 0.7 (g) 0.8 (h) 0.9 (i) 1.0 (j) 1.1 and (k) 1.2	
	wt. % MgFeSi (100x)	81
4.3	Evolution of graphite shape due to influence of MgFeSi	
	(a) Flake graphite shape at minimum wt. % MgFeSi	
	addition, (b) mixed of flake and nodule graphite shape at	
	0.6 to 0.8 wt. % MgFeSi addition and (c) nodule graphite	
	shape at 1.0 wt. % MgFeSi onwards	83
4.4	SEM micrograph shows magnified views of quasi-	

	spherical austenite envelopes	85
4.5	Effect of percentage of MgFeSi additions on magnesium	
	recovery and nodule count	88
4.6	EDS spectra of magnesium presented in treated iron	90
4.7	Effect of percentage of Mn addition on tensile strength of	
	DNR	91
4.8	XRD analysis revealed the structure developed with	
	increasing Mn addition (a)1 to 8 wt. % and (b) 9 to 12 wt.	
	%)	93
4.9	Microstructure of 8 wt. % Mn addition with carbide	
	formation along the grain boundary; a) cast sample	
	microstructure etch with picral b) microstructure analysed	
	by image analyser and c) SEM micrograph	94
4.10	Position of electron probe: A - graphite spheroids, B -	
	dendritic structure, C - edge of dendritic structure, D -	
	point location of LTF	96
4.11	Effect of micro segregation on element distribution	97
4.12	An elements mapping showing micro segregation	
	behaviour	98
4.13	Effect of Mn wt. % on solidification cooling curves and	
	its DTA. (a) Determination of thermal arrest of TAL,	
	TES, TEU, TER, TEE and (b) comparison of temperature	
	points for addition of Mn from 0 to 12 wt.%	101
4.14	SEM micrograph of austenite dendrite (A) and graphite	
	aggregates (B) observed in the iron matrix	104
4.15	SEM micrograph shows the effect of Mn wt. % on	
	dendrite structure formation (a) 9, (b) 10, (c) 11 and (d)	105
4.16	12 wt. %	105
4.16	Effect of solidification cooling rate on average DAS size	100
4 17	Min wt. %	100
4.17	Effect of solidification cooling rate on average SDAS size	106
1 10	Mill WL 70 Effect of percentage of inequilation addition on tensile	100
4.10	strength of modified DNP	107
4 10	Effect of inoculation on modified DNR added with 9 wt	107
4.19	% Mn structure and its graphite distribution (a) without	
	inoculants (b) 0.5 wt % and (c) 1.0 wt % inoculants	
	Image was polished without etched	108
4 20	Effect of FeSi on solidification cooling curve the	100
	inoculated modified DNR (9 wt % Mn) (a) decreased of	
	TEU-TER zone on the cooling curve (b) TEU-TER	
	difference as inoculant FeSi was added from 0.5 to	
	1 Out	113

4.21	Schematic drawing of dendritic solidification influence by (a) thermal condition and (b) shorter dendrite	
	minimizes the occurrence of shrinkage	114
4.22	SEM micrograph shows the effect of inoculant addition	
	on dendrite formation for 9 wt. % Mn (a) non-inoculated,	
	(b) 0.5 wt. % and (c) 1.0 wt. % inoculants	115
4.23	Effect of cooling rate on the average (a) DAS (b) SDAS	
	of inoculated and non-inoculated 9 wt. % Mn addition	
	modified DNR	116
4.24	Effect of Mn and inoculation additions on the mechanical	
	properties of modified DNR (a) tensile strength (b) yield	
	strength, and (c) elongation	119
4.25	The tensile test of sample fractured surface of modified	
	DNR with the addition of 9 wt% Mn and inoculated at 0.5	
	wt% inoculants	120
4.26	Effect of Mn and inoculant additions on the mechanical	
	properties of modified DNR at the temperature of 765°C	
	tensile strength	122
4.27	The elevated temperature (765°C) tensile test sample	
	fractured surface of modified DNR with the addition of	
	wt% Mn and inoculated at wt% FeSi which is more	
	visible compare to room temperature condition as shown	
	in Figure 4.25	123
4.28	Effect of Mn/wt. % on micro hardness (a) 0, (b) 0.5, (c)	
	1.0 wt. % inoculants	125
4.29	Relationship between the room temperature tensile	
	properties (a) and elongation (b) and hardness of the	
	modified DNR	127
4.30	Relationship between the elevated tensile properties (a)	
	and elongation (b) and hardness of the modified DNR	128
4.31	XRD diffraction pattern phase analysis of the effect of 9,	
	10, 11 and 12 wt. % Mn additions on phase formation in	
	non-inoculated modified DNR	130
4.32	Effect of Mn wt. % and inoculants wt. % on carbide	
	formation on modified DNR	131
4.33	Effect of carbide phase on the mechanical properties of	
	modified DNR with 1.0 wt. % inoculants	131
4.34	Effect of Mn wt. % on XRD diffraction pattern phase	
	analysis of 9, 10, 11 and 12 wt. % Mn additions on	
	modified DNR at 0.5 wt. % inoculants	132
4.35	Effect of Mn wt. % on XRD diffraction pattern phase	
	analysis of 9, 10, 11 and 12 wt. % Mn additions on	
	modified DNR at 1.0 wt. % inoculants	133

4.36	Microstructure and image analyser image shows the effect of 9 (a to b), 10 (c to d), 11 (e to f) and 12 wt. %	
	Mn (g to h) on carbide content at 0 wt. % inoculation.	
	Figure (1) reveals the existence of graphite and carbide with DAS and SDAS structure	100
4.37	Optical (left) and SEM micrographs (right) show the	133
1.0 /	effect of Mn wt. % addition on graphite distribution for	
	non-inoculated sample (0 wt. %); (a) 9, (b) 10, (c) 11 and	
	(d) 12 wt. % Mn (100x)	136
4.38	Effect of nodule count on mechanical properties of	
	modified DNR added with Mn and 10 wt% Ni	138
4.39	Effect of Mn wt. % addition and inoculants wt. % on	
4.40	graphite nodularity of the modified DNR	139
4.40	Illustration of different circularity on graphite nodule from SEM micrograph	140
4.41	Schematic illustration of circularity ratio of graphite	
	nodule morphology	140
4.42	Effect of inoculation wt. % addition on Circular Shape	
	Ratio (CSF) for (a) 9, (b) 10, (c) 11 and (d) 12 wt. % Mn	141
4.43	Effect of inoculants wt. % addition on graphite nodule	
	size for (a) 9, (b) 10, (c) 11 and (d) 12 wt. % Mn	145
4.44	SEM micrograph shows the quasi-spherical austenite and	
	fractured austenite envelopes. The circled region is	
4.45	magnified and is shown in Figure 4.46	147
4.45	SEM micrograph shows magnified image of quasi-	
1 16	spherical austenite envelopes	147
4.40	SEM micrograph shows small protuberances of graphite	
4 47	Microstructure chemister of many the second states	148
T.T/	unit complite nodule incide a single dendite amin (0.) (
	with without incoulation)	140
4 48	SFM micrograph shows the graphite podulo size	149
	difference after solidification (9 Mn w/ % without	
	inoculation)	150
4.49	SEM micrograph shows large graphite nodule that	150
	incorporated in austenite shell. Circled region is	
	magnified and shown in Figure 4.50	150
4.50	Magnified SEM micrograph shows the different in size of	100
	graphite nodule after solidification. The arrows indicate	
	the movement away from the central dendrite and close to	
	solid-liquid interface	151
4.51	SEM micrograph shows (a) pearlitic matrix: no carbon	
	diffusion; (b) ferritic matrix: carbon diffuse to the	

	graphite (Tartera et al., 2009), (c) and (d) austenitic	
	matrix sample as-cast: no carbon diffusion around	
	graphite	152
4.52	Relationship between the room temperature tensile	
	properties and hardness of the modified DNR	153
4.53	Effect of nodule count on mechanical properties of the	
	modified DNR	154
4.54	Effect of carbide phase on mechanical properties of	
	modified DNR	156
4.55	SEM micrograph shows the effect of Mn wt. % addition	
	on the average length of DNR dendrite (a) 9, (b) 10, (c)	
	11 and (d) 12 wt. % Mn and 0.5 wt. % inoculant additions	157
4.56	Effect of solidification cooling rate on average DAS and	
	SDAS size with Mn wt. % and 0.5 wt. % inoculant	
	additions	158
4.57	SEM micrograph shows the effect of inoculant addition	
	on dendrite formation for 9 wt. % Mn (a) without	
	inoculants (b) 0.5 wt. % and (c) 1.0 wt. % inoculants	159
4.58	Effect of TER – TEU during solidification stage on the	
	average DAS and SDAS size for 9 wt. % Mn	160
4.59	Relationship between the mechanical properties and	
1109	cooling rate of the modified DNR	162
4 60	Relationship between the tensile properties. DAS, and	
	SDAS of the modified DNR	163
4 61	Effect of Mn and inoculation addition on solidification	100
	cooling curve (a) 9 Mn-10 Ni (b) 10 Mn-10 Ni (c) 11	
	Mn-10 Ni and (d) 12 Mn-10 Ni wt. %	165
4.62	Effect of Mn wt. % and inoculation/wt. % on (a) TAL. (b)	
	TES. (c) TEU. (d) TER and (e) TEE	168
4.63	Effect of Mn wt. % and inoculation wt. % on TER – TEU	170
4.64	Effect of Mn wt. % and inoculant wt. % on the freezing	
	range of the DNR	172
4.65	Solidification cooling curve of (a) 12 wt. % Mn. 1.0 wt.	
	% inoculant addition follows the trend of late graphite	
	segregation solidification in (b) conventional ductile cast	
	iron	172
4.66	Effect of Mn content and inoculation/wt. % on corrosion	
	of the samples: (a) 0, (b) 0.5 and (c) 1.0 wt. $\%$ inoculation	176
4.67	Tafel plot of the effect of Mn addition and inoculation on	
	corrosion rate of modified DNR	178
4.68	Immersion test result shows (a) mass loss. (b) corrosion	
	rate of modified DNR without inoculation and (c) the	
	effect of inoculation on corrosion rate of modified DNR	

	at the end of the immersion period (1440hrs)	179
4.69	Typical corrosion products formed on the surface of	
	corroded specimen after 60 days. Marked area was	
	magnified in Figure 4.70 (9 Mn wt.%)	182
4.70	Surface of the corrosion layer marked A in Figure 4.69	
	for SEM analysis	182
4.71	EDS analysis of the corrosion layer marked as (a) point 1,	
	(b) point 2 and (c) point 3 in Figure 4.70	183
4.72	XRD pattern of modified DNR corrosion layer after	
	immersion test	184
4.73	Increasing thickness of passive film of modified DNR (a)	
	9, (b) 10, (c) 11 and (d) 12 wt. % after 60 days immersion	185
4.74	Modified DNR corroded surface suffered from bimetallic/	
	galvanic corrosion	186
4.75	Schematic diagram of bimetallic/ galvanic corrosion	186
4.76	Surface appearances of the corroded modified DNR after	
	immersion tests; (a) 9, (b) 10, (c) 11 and (d) 12 wt. % Mn.	
	Increasing Mn addition has increase carbide phase,	
	Mn ₂₃ C ₆ visibility (white structure)	188
4.77	Manganese cycling at a corroded surface providing the	
	cathodic reaction in corrosion process	191
4.78	The schematic of cross section of oxide depth penetration	193
4.79	Effect of Mn and inoculation on mass gain of modified	•
	DNR	194
4.80	SEM micrographs of the alloyed iron oxidized for 25 h at	
	765°C (a) cross section of oxide layer formed on the	
	surface of the oxidized specimen, (b) highlighted area of	
	the region shown in Figure 4.80(a)	195
4.81	XRD pattern of oxide layer formed on the modified DNR	
	heated at 765°C for 25 hours	196
4.82	Spalled 'skin' on the (a) outer layer exposed the 2 nd inner	
	layer and (b) trapped graphite nodules in the oxide layer	198
4.83	EDS analysis of different positions in oxide layer	199

LIST OF ABBREVIATIONS

:

T - T - T	-	Time – Temperature – Transformation
ADI	•	Austempered Ductile Iron
ASTM	-	American Standard for Testing Material
FeMn	-	Ferro Manganese
FeCr	-	Ferro Chrome
FeSi	-	Ferro Silicon
NiFeMg	-	Nickel Ferro Magnesium
NiFe	-	Nickel Ferro
DNR	-	Ductile Ni-Resist
FCC	\$	Face Centred Cubic
BCC	-	Body Centred Cubic
TAL	•	Temperature of the Liquidus Arrest
TES	-	Temperature of Eutectic Nucleation
TEU	-	Temperature of Eutectic Undercooling
TER	-	Temperature of Eutectic Recalescence
TEE	-	Temperature of the End of Eutectic Solidification
DTA	-	Differential Thermal Analysis
LTF	-	Last To Freeze
DAS	-	Dendrite Arm Spacing
SDAS	a	Secondary Dendrite Arm Spacing
TC	-	Total Carbon
CEV	-	Carbon Equivalent
CAE	-	Calculation of Liquidus Value
SEM	-	Scanning Electron Microscopy
MgFeSi	-	Magnesium Ferro Silicon

NiFeMg	-	Nickel Ferro Magnesium
NiFe	-	Nickel Ferro
EDX	-	Energy Dispersive X – Ray Spectroscopy
XRD	-	X – Ray Diffraction
ОМ	-	Optical Microscope
GDS	-	Glow Discharge Spectroscopy
kW	-	kilo Watt
HCl	-	Hydrochloric
КОН	-	Kalium Hydroxide
NaOH	-	Natrium Hydroxide
HMV	-	Hardness Micro Vickers
HV	-	Hardness Vickers
SCE	-	Saturated Calomel

LIST OF SYMBOLS

γ	•	Austenite iron
α	=	Ferrite iron
9	-	Ferrite iron
T_{liq}	-	Liquidus temperature
Tund	-	Undercooling temperature
T _{eut}	•	Eutectic temperature
T _{end}	-	End of solidification temperature
dT / dt	-	1 st derivation
T_L	-	Austenite liquidus temperature
T_E		Equilibrium point of graphite eutectic temperature
T _C	-	Equilibrium point of carbide eutectic temperature
V		Volume
Р	-	Density
C_p	æ	Heat capacity
Q_L	. =	Heat of solidification
Т	-	Time
Н	-	convection heat transfer coefficient
A	-	Area
Т	-	Temperature
D	-	Diffusion rate of carbon in austenite
R	-	Nodule size of graphite
S	-	Distance
X	-	Molar fraction
Ks	-	Segregation coefficient

LIST OF APPENDICES

APPENDIX NO.

TITLE

PAGE

3.1	Calculation to determining alloying composition	XXV
4.1	Effect of Mn and inoculation-content on tensile –	,
	strain graph; (a) 0, (b) 0.5 and (c) 1.0 wt. %	
	inoculation at room temperature	xxvii
4.2	Image analyzer analysis on modified DNR	xxix
4.3	Calculation of corrosion rate based on Tafel plot	
	and immersion test, and comparison of corrosion	
	rate by Tafel plot and immersion test	xxxiii
4.4	Corresponding SEM EDS of corrosion elemental	
	maps (a) mixed elements, (b) (b) oxygen, (c)	
	magnesium, (d) silicon, (e) sulfur, (f) chlorine,	
	(g)iron, (h) manganese, (i) chromium, (j) nickel,	XXXV
	(k) calcium and (l) carbon	
4.5	Corresponding SEM EDS of oxidised at 765°C	
	for 25 (a) mixed elements, (b) carbon, (c)	
	oxygen, (d)silicon, (e) manganese, (f) iron, (g)	
	nickel and (h) chromium	xxxvii
4.6	Publications	xxxix

CHAPTER 1

INTRODUCTION

1.1 Background

In the new global economy, austenitic ductile iron material has become a central issue as it offers better casting flowability, high strength-cost ratio, good machinability, austenite structure at all temperatures and relatively good mechanical properties. These exceptional properties enable austenitic ductile iron or known as Ductile Ni-Resist (DNR) to be employed in oil and gas, automotive, and power plant applications (Forrest, 1983, Fallon, 1993 and Morrison, 1998). Nowadays, DNR has experienced a significant consideration in related industries due to its strength in corrosive and oxidize environment which is almost similar to austenitic steel (Fatahalla *et al.*, 2009).

However, despite its processing advantages, DNR suffers from several major drawbacks. Nickel (Ni) is comparably expensive material and faced economical limitation due to the high price for alloying DNR. Its price fluctuated around RM140 -160 per kg. Generally the as-cast austenite microstructure of DNR occurs due to the influence of nickel contained in the composition that acts as austenite matrix promoter. At minimum of 18 wt %, Ni suppresses austenite transformation (γ) to ferrite (α) in conventional ductile iron. In order to minimise the processing cost, research is required to reduce the use of Ni wt %.

However, far too little attention has been paid on alternative elements other than nickel. Other researchers (Forrest (1983), Fallon (1993) and Morrison (1998)) reported the potential of manganese (Mn) and copper (Cu) as alternatives for the DNR alloying elements. Previous studies on Mn and Copper as alternative alloying elements that formed austenite structure with Fe has shown different effect. Cu although formed austenite structure but at the same time has deleterious effect on nodule graphite of DNR. As a result, the contribution of Cu to promote austenite structure of DNR dismissed (Morrison, 1998).

At present, Mn was used solely for alloying purposes to improve DNR impact toughness property instead of austenitic matrix stabilizer and does not contribute to the reduction use of Ni. Mn usage was limited at 2.40 wt.% at maximum (ASTM 439-83, 2009).

The effect of inoculation on the austenitic matrix of DNR was also found not being studied by researchers. The area of research that have been investigated by other researchers is shown in Figure 1.1.

The aim of this research was to evaluate the effect of the higher Mn percentage addition and inoculation by late treatment technique on the solidification cooling curves, microstructure, and mechanical properties of modified DNR. This parameter was examined due to research gap existed as shown in Figure 1.1. Examination was also held to evaluate the effect of high Mn wt % alloyed parameters on corrosion behaviour by seawater and isothermal oxidation behaviour of modified DNR by furnace atmosphere-air. This research simulates environment conditions suitable for corrosive environment such as marine application and elevated temperature application at up to 765°C, such as furnace parts, exhaust lines, and valve guides. This set-up examined because there is no report published to

explain the corrosion and oxidation behaviour of modified DNR in literature. Particular attention wholly directed to the mechanical properties of the iron alloys in relation to the solidification and microstructural inhomogeneities in the casting, necessitated by the fact that the alloying elements' percentage of modified DNR is large.

Figure 1.1 Areas that has been research on ductile Ni-resist and its alloys

CHAPTER 1

INTRODUCTION

1.1 Background

In the new global economy, austenitic ductile iron material has become a central issue as it offers better casting flowability, high strength-cost ratio, good machinability, austenite structure at all temperatures and relatively good mechanical properties. These exceptional properties enable austenitic ductile iron or known as Ductile Ni-Resist (DNR) to be employed in oil and gas, automotive, and power plant applications (Forrest, 1983, Fallon, 1993 and Morrison, 1998). Nowadays, DNR has experienced a significant consideration in related industries due to its strength in corrosive and oxidize environment which is almost similar to austenitic steel (Fatahalla *et al.*, 2009).

However, despite its processing advantages, DNR suffers from several major drawbacks. Nickel (Ni) is comparably expensive material and faced economical limitation due to the high price for alloying DNR. Its price fluctuated around RM140 -160 per kg. Generally the as-cast austenite microstructure of DNR occurs due to the influence of nickel contained in the composition that acts as austenite matrix promoter. At minimum of 18 wt %, Ni suppresses austenite transformation (γ) to ferrite (α) in conventional ductile iron. In order to minimise the processing cost, research is required to reduce the use of Ni wt %.

However, far too little attention has been paid on alternative elements other than nickel. Other researchers (Forrest (1983), Fallon (1993) and Morrison (1998)) reported the potential of manganese (Mn) and copper (Cu) as alternatives for the DNR alloying elements. Previous studies on Mn and Copper as alternative alloying elements that formed austenite structure with Fe has shown different effect. Cu although formed austenite structure but at the same time has deleterious effect on nodule graphite of DNR. As a result, the contribution of Cu to promote austenite structure of DNR dismissed (Morrison, 1998).

At present, Mn was used solely for alloying purposes to improve DNR impact toughness property instead of austenitic matrix stabilizer and does not contribute to the reduction use of Ni. Mn usage was limited at 2.40 wt.% at maximum (ASTM 439-83, 2009).

The effect of inoculation on the austenitic matrix of DNR was also found not being studied by researchers. The area of research that have been investigated by other researchers is shown in Figure 1.1.

The aim of this research was to evaluate the effect of the higher Mn percentage addition and inoculation by late treatment technique on the solidification cooling curves, microstructure, and mechanical properties of modified DNR. This parameter was examined due to research gap existed as shown in Figure 1.1. Examination was also held to evaluate the effect of high Mn wt % alloyed parameters on corrosion behaviour by seawater and isothermal oxidation behaviour of modified DNR by furnace atmosphere-air. This research simulates environment conditions suitable for corrosive environment such as marine application and elevated temperature application at up to 765°C, such as furnace parts, exhaust lines, and valve guides. This set-up examined because there is no report published to

explain the corrosion and oxidation behaviour of modified DNR in literature. Particular attention wholly directed to the mechanical properties of the iron alloys in relation to the solidification and microstructural inhomogeneities in the casting, necessitated by the fact that the alloying elements' percentage of modified DNR is large.

Figure 1.1 Areas that has been research on ductile Ni-resist and its alloys

CHAPTER 3

EXPERIMENTAL METHODOLOGY

3.1 Introduction

This chapter details the experiments conducted to achieve the stipulated objectives.

The experimental work is divided into three phases as shown in Figure 3.1. In the 1st phase, the preliminary experiment involved the development of cast iron as the base for the DNR experiments. Nodularisation and inoculation processes were then carried out by adding 0.1-1.0% MgFeSi and 0.5-1.0% FeSi respectively. The 2nd phase of the research was to establish the effect of Mn addition, MgFeSi and FeSi on the mechanical properties and microstructure of the DNR. Thermal analysis was also conducted to observe the behavior of the molten metal during solidification. The alloy development based on pig iron is shown in Figure 3.2. In the 3rd phase of the research, analysis were conducted to determine the mechanical properties, microstructure of DNR using optical microscopy, Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD) and image analyzer. A series of mechanical properties testing involving tensile (room and elevated temperature), hardness (macro and micro), corrosion and high temperature oxidation were studied in depth to support the analysis.

Figure 3.1 Overall experimental activities flowchart (continue)

Figure 3.1 Overall experimental activities flowchart