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ABSTRACT 

For engineering reasons, ductile Ni-resist alloys are widely used in oil and 

gas, automotive industries and elevated temperature purposes. Ductile Ni-resist 

offers an advantage because this alloy has an austenitic structure at all temperatures. 

However, ductile Ni-resist alloy faces economical limitation due to the high price of 

nickel for alloying of ductile Ni-resist. Therefore, the present study aims to explore 

the possibility to reduce nickel consumption by substituting nickel with manganese 

to generate austenitic structure of ductile Ni-resist. Austenitic structure was formed 

by adding a nickel with much higher manganese percentage consumption as 

compared to standard usage. The control of carbide formation due to increasing 

Mnlwt. % was conducted using inoculation method. The effect on solidification was 

evaluated using cooling curve thermal analysis, complemented by microscopic 

observation and mechanical properties. It was observed that both Mn/wt. % and 

inoculation affect the austenitic structure and solidification cooling curve. 

Solidification cooling curve was lowered with increasing Mn/wt. %.It was also 

observed that graphite microstructure can be modified by both Mn/wt. % and 

inoculation. The morphology and graphite distribution was affected by increasing 

Mri/wt. % and inoculation. An isolated region due to segregation known as 'Last To 

Freeze' was the last area to solidify. Tensile strength and elongation at room 

temperature dropped by 21.5% (12Mn-lONi wt %) and 20.0% respectively as 

compared to D2 standard alloys. Tensile strength at elevated temperature showed 

that this alloy can withstand up to 150 MPa, dropped by 6.15% (12Mn-lONi wt. %) 

compared to D2 standard alloy. Corrosion test proved that corrosion rate is 

comparable to unmodified ductile Ni-resist. Three dense oxide layers were formed 

on the alloy surface at elevated temperature. A good agreement was observed 

between the result of the solidification cooling curve, microstructure and mechanical 

properties.
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ABSTRAK 

Aloi Nikel-rintang mulur digunakan secara meluas bagi kepertuan 

kejuruteraan seperti industri minyak dan gas, automotif dan persekitaran bersuhu 

tinggi.Kelebihan mi disebabkan oleh kewujudan austenit pada semua suhu. 

Walaubagaimanapun, aloi mi mempunyai kekangan dari sudut ekonomi kerana harga 

nikel yang mahal untuk tujuan pengaloian. Oleh itu, kajian mi dilakukan untuk 

mengkaji kesan penggunaan mangan bagi mengurangkan komposisi nikel untuk 

menghasilkan struktur austenite dalam aloi Nikel-rintang mulur. Pembentukan 

karbida disebabkan oleh peningkátan peratusan mangan dikawal dengan kaedah 

penyuntikan. Kesan terhadap pemejalan dinilai melalui analisa terma lengkung 

penyejukan, dan disokong oleh pemerhatian mikrostruktur dan kekuatan mekanikal. 

Kajian menunjukkan peratusan penambahan mangan dan kaedah penyuntikan 

memberi kesan kepada struktur austenit dan lengkung penyejukan pemejalan. 

Lengkung penyejukan pemejalan menurun dengan penambahan peratusan mangan. 

Pemerhatian juga menunjukkan mikrostruktur grafit, morfologi dan taburannya boleh 

diolah dan dipengaruhi oleh peratus penambahan mangan dan penyuntikan. Wujud 

suatu kawasan terpinggir akibat dari proses pengasingan yang dikenali sebagai 

'kawasan terakhir memejal' yang merupakan kawasan yang terakhir memejal. 

Kekuatan tegasan dan pemanjangan pada suhu bilik masing-masing merosot 21.5% 

(12Mn-lONi wt. %) dan 20.0%. Kekuatan bahan pada suhu tinggi adalah 150 MPa, 

merosot sebanyak 6.15% (12Mn-lONi wt. %) berbanding aloi kelas D2. Ujian 

kakisan membuktikan aloi setanding dengan aloi Nikel-rintang mulur yang tidak 

diubahsuai. Tiga lapisan berlainan oksida tumpat terbentuk pada permukaan aloi. 

Terdapat pertalian berpadanan di antara keputusan lengkung penyejukan pemejalan, 

mikrostruktur dan sifat mekanikal.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In the new global economy, austenitic ductile iron material has become a 

central issue as it offers better casting flowability, high strength-cost ratio, good 

machinability, austenite structure at all temperatures and relatively good mechanical 

properties. These exceptional properties enable austenitic ductile iron or known as 

Ductile Ni-Resist (DNR) to be employed in oil and gas, automotive, and power plant 

applications (Forrest, 1983, Fallon, 1993 and Morrison, 1998). Nowadays, DNR has 

experienced a significant consideration in related industries due to its strength in 

corrosive and oxidize environment which is almost similar to austenitic steel 

(Fatahalla et aL, 2009). 

However, despite its processing advantages, DNR suffers from several major 

drawbacks. Nickel (Ni) is comparably expensive material and faced economical 

limitation due to the high price for alloying DNR. Its price fluctuated around RM140 

-160 per kg. Generally the as-cast austenite microstructure of DNR occurs due to the 

influence of nickel contained in the composition that acts as austenite matrix



promoter. At minimum of 18 wt %, Ni suppresses austenite transformation (y) to 

ferrite (a) in conventional ductile iron. In order to minimise the processing cost, 

research is required to reduce the use of Ni wt %. 

However, far too little attention has been paid on alternative elements other 

than nickel. Other researchers (Forrest (1983), Fallon (1993) and Morrison (1998)) 

reported the potential of manganese (Mn) and copper (Cu) as alternatives for the 

DNR alloying elements. Previous studies on Mn and Copper as alternative alloying 

elements that formed austenite structure with Fe has shown different effect. Cu 

although formed austenite structure but at the same time has deleterious effect on 

nodule graphite of DNR. As a result, the contribution of Cu to promote austenite 

structure of DNR dismissed (Morrison, 1998). 

At present, Mn was used solely for alloying purposes to improve DNR impact 

toughness property instead of austenitic matrix stabilizer and does not contribute to 

the reduction use of Ni. Mn usage was limited at 2.40 wt.% at maximum (ASTM 

439-83,2009). 

The effect of inoculation on the austenitic matrix of DNR was also found not 

being studied by researchers. The area of research that have been investigated by 

other researchers is shown in Figure 1.1. 

The aim of this research was to evaluate the effect of the higher Mn 

percentage addition and inoculation by late treatment technique on the solidification 

cooling curves, microstructure, and mechanical properties of modified DNR. This 

parameter was examined due to research gap existed as shown in Figure 1.1. 

Examination was also held to evaluate the effect of high Mn wt % alloyed 

parameters on corrosion behaviour by seawater and isothermal oxidation behaviour 

of modified DNR by furnace atmosphere-air. This research simulates environment 

conditions suitable for corrosive environment such as marine application and 

elevated temperature application at up to 765°C, such as furnace parts, exhaust lines, 

and valve guides. This set-up examined because there is no report published to



3 

explain the corrosion and oxidation behaviour of modified DNR in literature. 

Particular attention wholly directed to the mechanical properties of the iron alloys in 

relation to the solidification and microstructural inhomogeneities in the casting, 

necessitated by the fact that the alloying elements' percentage of modified DNR is 

large.
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Figure 1.1	 Areas that has been research on ductile Ni-resist and its alloys 
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CHAPTER 3 

EXPERIMENTAL METHODOLOGY 

3.1 Introduction 

This chapter details the experiments conducted to achieve the stipulated 

objectives. 

The experimental work is divided into three phases as shown in Figure 3.1. in 

the 1s phase, the preliminary experiment involved the development of cast iron as 

the base for the DNR experiments. Nodularisation and inoculation processes were 

then carried out by adding 0.1-1.0% MgFeSi and 0.5-1.0% FeSi respectively. The 2' 

phase of the research was to establish the effect of Mn addition, MgFeSi and FeSi on 

the mechanical properties and microstructure of the DNR. Thermal analysis was also 

conducted to observe the behavior of the molten metal during solidification. The 

alloy development based on pig iron is shown in Figure 3.2. In the 3T1 phase of the 

research, analysis were conducted to determine the mechanical properties, 

microstructure of DNR using optical microscopy, Scanning Electron Microscope 

(SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDX), X-Ray 

Diffraction (XRD) and image analyzer. A series of mechanical properties testing 

involving tensile (room and elevated temperature), hardness (macro and micro), 

COlTOSjOfl and high temperature oxidation were studied in depth to support the 
analysis.
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Figure 3.1	 Overall experimental activities flowchart (continue) 
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