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ABSTRACT 

Renewable energy or biofuel from lignocellulosic biomass is an alternative way to 

replace the depleting fossil fuels. The production cost can be reduced by increasing the 

concentration of biomass particles. However, lignocellulosic biomass is a suspension 

of natural fibers, and processing at high solid concentration is a challenging task 

because it will affect the mixing quality between enzyme and cellulose particles and 

the generation of sugars. Thus, understanding factors that affect the rheology of 

biomass suspension is crucial in order to maximize the production at a minimum 

cost. Our aim is to develop a solution strategy for the modeling and simulation of 

high solid concentration of biomass suspension during enzymatic hydrolysis. Also, 

we intend to develop a multi-scale model for enzymatic hydrolysis that captures 

the reaction kinetics of cellulose chains in PBE form, cellulose rod orientation and 

interaction, as well as hydrodynamics and plasticity of the biomass mixture. We 

extended and improved the established kinetic model proposed by Griggs et al. [Griggs 

et al., 2012a]. We built the reduced order models by ignoring significantly small 

terms and determined the approximate solutions by employing asymptotic analysis 

method. Liquid crystal theory was adopted to study the cellulose fibers. The complete 

model was solved using DAE-QMOM technique in finite-element  software package, 

COMSOL. Essentially, we made a clear connection between microscopic, mesoscopic, 

and macroscopic properties of biomass slurries undergoing enzymatic hydrolysis. The 

results show that the quality of mixing within a reactor is crucial in optimizing the 

hydrolysis product. Also, the biomass suspension shows non-Newtonian behaviors 

such as shear thinning, yield stress, and normal stress difference, which is in agreement 
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with experimental results. The extended model improved the predictive capabilities, 

hence increased our understanding on the behavior of biomass suspension.
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CHAPTER 1

INTRODUCTION 

1.1 BACKGROUND 

In recent years, energy crises and environmental pollution have become vital sus-

tainable problems to the human society. Rapid industrialization has increased the 

demand for oil; however, the energy supply from fossil fuels worldwide is limited and 

will eventually be depleted. Due to burning of fossil fuels, pollutant emissions have 

increased. To reduce pollution caused by fossil fuel burnings, one solution is to use 

renewable energy as an alternative to replace fossil fuels. Renewable energy fields use 

ethanol, where ethanol is produced from various lignocellulosic biomass, such as palm 

trees [Hosseini and Wahid, 2012], [Basiron, 20071, corn stover [Griggs et al., 2012a], 

[Selig et al., 2008], wood, agricultural products, waste, and grasses. Generally, hg-

nocellulosic biomass is composed of lignin, hemiceflulose and cellulose [Abnisa et al., 

2011]. 

The production of ethanol from lignocellulosic biomass consists of three funda-

mental processes; pretreatment, enzymatic hydrolysis, and fermentation [Limayem 

and Ricke, 2012]. Pretreatment modifies the structure of biomass to make the cellu-

lose more exposed to enzymes for sugar conversion [Himmel et al., 2007]. Enzymatic 

hydrolysis breaks cellulose chains into sugar such as cellobiose and glucose, whereas 

fermentation converts sugar into ethanol [Griggs et al., 2012a], [Griggs et al., 2012b], 

[Bansal et al., 20091. As a matter of fact, cellulose molecules are locked-in by the 

lignin-hemicellulose network; therefore, the hydrolysis step is the most crucial part of 
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biomass to ethanol conversion process, in which this project is focused most specifi-

cally on. The production cost of cellulosic hydrolysis can be reduced by increasing the 

concentration of biomass particles. However, lignocellulosic biomass is a suspension 

of natural fibers, and processing at high solid concentration is a challenging task be-

cause it will affect the mixing quality between enzyme and cellulose particles, as well 

as hydrolysis yield. Thus, understanding factors that affect the rheology of biomass 

suspension is crucial in order to maximize the production of ethanol at minimum 

cost. 

Lignocellulosic biomass suspension mainly consists of natural fibers. There are 

various types of shapes, sizes, and material properties of lignocellulosic fibers. Ac-

cording to Roche et. al, fibers in pretreated corn stover have a size of (1-2,000 sum) 

and the aspect ratio is reported to be in the range of 1-20 [Roche et al., 2009a]. 

There are three types of regimes for biomass suspension. Firstly, for regime with low 

concentration of fibers, it is known as dilute regime, in which a fiber is free to rotate 

without having any contact with other fibers. Secondly, when hydrodynamic inter-

action is dominant over a few physical contacts between fiber, the regime is called 

semi-dilute regime. The last category is for the concentrated suspensions where fibers 

cannot rotate freely and the fibers interact by both hydrodynamic and direct contact 

forces. 

In Malaysia, palm oil becomes the main source of biomass to produce renewable 

energy. Palm oil industry is very important in Malaysia as the country has maintained 

its position as the world's leading palm oil producing country [Hainisan et al., 2009]. 

Their main products of palm oil are foods, oleochernicals, biofuels, and renewable 

energy source. Ongoing research and development of palm biomass by governmental 

institutions and universities improves process efficiencies [Môhd Basyaruddiri et al., 

2012], [Aziz et al., 2002], [Hii et al., 20121, [You and Baharin, 20061. For enzymatic hy-

drolysis process of palm oil biomass in Malaysia, cellulase (celluclast 1.5 L, Novozymes 
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A/S, Denmark) and cellobiase (Novozyme 188, Novozymes A/S, Denmark) enzymes 

were tested experimentally [Iberahim et al., 20131. 

Empirical models based on experimental outcomes have been applied frequently 

to study the enzymatic hydrolysis of cellulose, as surveyed in [Bansal et al., 2009]. 

These models often offer only limited insight into the fundamental mechanisms of 

enzymatic hydrolysis. On the other hand, a kinetic model for enzymatic hydrolysis 

offers several advantages. It can provide a deeper understanding, improve predictive 

capabilities, and in the end provide more directed and rational approaches for process 

design and optimization [Griggs et al., 2012a]. 

Initial studies in kinetic models of enzymatic hydrolysis of cellulose indicated that 

Michaelis-Menten-type kinetics can be used to take account of random and endwise 

attack of the substrate by three types of enzymes [Okazaki and Moo-Young, 19781. 

Since then, the study of kinetic models for this process has undergone several inno-

vations. In 1983, Fan and Lee [Fan and Lee, 1983] added several key factors in their 

kinetic model, i.e. the structure of cellulose and the nature of enzyme system. Then 

in 2012, Griggs et al. [Griggs et al., 2012a] adapted Population Balance Equation 

(PBE), where the model structure leads to a Partial Differential Equation forming a 

system of integral-differential equations. In their work, biomass particles are repre-

sented as monodispersed cylindrical shaped particles comprised of cellulose chains of 

varied length. 

1.2 PROBLEM STATEMENT 

Lignocellulosic ethanol production is cost sensitive to operation energy and enzyme 

prices. Most kinetic models have incorporated several major factors such as mixed 

type of enzymes, pore size distribution, high solid operation, cellulose structure and 

a distribution of chain lengths. However, these studies have not demonstrated a 

sufficiently meaningful scale to evaluate the hydrolysis system. Studies on enzymatic 
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hydrolysis of cellulose that have been reported to date focused on a single scale i.e. at 

the microscopic level only. The problem is that as the studies employed a single scale 

model, the effect of fluid behavior, transport process and the interaction between 

solid particles in the suspension environment are not captured. 

As stressed by [Yeoh et al., 2013], many different physical characteristics can be 

observed at different length scales. At the microscale, it is essential to understand 

the behavior of particles due to breakage of chains. At the mesoscale, the interaction 

between particles may become significant, resulting in local structural changes. At 

the macroscale, the hydrodynamic behavior of the background fluid influences the 

system. To the best of our knowledge, no kinetic model for enzymatic hydrolysis of 

cellulose, so far, has been published from a multi-scale point of view. 

A combination of several features at different scales is essential in order to obtain 

a better understanding of the complex system. For this purpose, research is needed 

to investigate how to integrate the hydrolysis model from micro-scale to macro-scale 

in a seamless fashion. This is the intention of this study, which is to design a multi-

scale model for enzymatic hydrolysis of cellulose. The use of multi-scale approach will 

add value to the model and will also increase the understanding of the fundamental 

scientific phenomena and processes in order to optimize the production of ethanol. 

The challenge is to develop a cellulosic hydrolysis model that will give a holistic view 

on different aspects. 

1.3 OBJECTIVES 

This thesis is concerned with the study of mathematical modeling and simulation of 

biofiiel production from lignocelliilosic biomass. The aims of this study are: 

1. To capture the most important chemical and physical phenomenon in the com-

plex system of enzymatic hydrolysis of biomass. 
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2. To analyze a mechanistic model proposed by Griggs et al. [Griggs et al., 2012a] 

and improve the predictive capabilities to obtain a better understanding and 

ultimately provides more directed and rational approaches for process design 

and optimization. 

3. To couple the microstructure kinetic equations with hydrodynamics so that we 

can model the plastic phase of the material all the way into the viscous liquid 

phase. 

4. To examine the effect of advection as well as the diffusion process as a drift 

phenomena on cellulose particles in a one- and two-dimensional domains. 

5. To develop a multi-scale model for enzymatic hydrolysis of cellulose that cap-

tures the reaction kinetiés of cellulose chains in PBE form, cellulose rod orien-

tation and interaction, hydrodynamics and plasticity of the biomass mixture. 

6. To elucidate the relationship of the three scales and manifest the impact of 

cellulosic enzymatic hydrolysis on the rheological property of the mixture. 

7. To develop a solution strategy for the modeling and simulation of high solid 

concentration of biomass suspension during enzymatic hydrolysis. 

1.4 RESEARCH FRAMEWORK, DESIGN, AND SCOPE 

The first step of our work is to grasp and study the established kinetic model proposed 

by Griggs et al.[Griggs et al., 2012a] for enzymatic hydrolysis of cellulose. The PBE 

system derived by Griggs et al. [Griggs et al., 2012a] does not admit an analytical 

solution due to its comp1exity. To solve the system of equations, we may have to 

resort to numerical methods, which can incur significant computational cost. Our 

strategy here was to search for reduced order models by ignoring significantly small 

terms in the governing system of equations. Therefore, we reduce the number of 
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parameters in the Griggs' model by using nondimensionalization technique and per-

forming mathematical analysis to the system. Then, we develop separate models for 

individual action of enzymes. Next, we explore and describe the approximate solu-

tion for each of the separated models by employing asymptotic analysis for dynamical 

systems to reduce the complex model to a set of simple equations. In addition, we 

carry out a sensitivity analysis to study the effect of several parameters on the overall 

performance. 

The separated models are combined into a full model and the model is solved 

numerically using DAE-QMOM approach. DAE-QMOM technique [Gimbun et al., 

2009] consists of differential equations for the moments and the system of nonlinear 

equations resulting from the quadrature approximation as a differential algebraic 

equation system. Then, we compare the solutions from the DAE-QMOM method 

with the results from Griggs [Griggs et al., 2012a]. 

The second stage of this work involves the coupling of PBE and advection-diffusion 

term in order to model the spatial evolution of the system. We simulate the effect of 

diffusion and advection on the fragmentation of cellulose chains during enzymatic hy-

drolysis. Further, we couple the PBE-advection-diffusion model with Navier-Stokes 

equation. In this extended version, we simulate the mixing between biomass suspen-

sion and cellulase enzymes in a cylindrical stirred tank mechanically agitated by a 

stirrer. The influence of mixing speed of the stirred tank and different locations of 

enzyme injection point in the mixer on hydrolysis yield are investigated. 

Finally, we develop a multi-scale model that combines three scales: the macro-

scopic flow field, the mesoscopic particle orientation and the microscopic reactive 

kinetics. We investigate the flow of a viscoelastic biomass slurry with different vol-

ume fractions and fiber aspect ratios of cellulose particles using COMSOL software 

package.
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1.5 THESIS OUTLINE 

This dissertation consists of eight chapters and covers the enzymatic hydrolysis of 

cellulose. Chapter 1 describes the introduction and discusses the background about 

lignocellulosic biomass and ethanol as a fuel, as well as reviews the current state 

of knowledge. Chapter 2 provides an overview of the kinetic model for enzymatic 

hydrolysis of cellulose. The theoretical and mathematical developments required to 

describe the hydrolysis of insoluble cellulose chains by Griggs et al. [Griggs et al., 

2012a] are discussed. Their model is the fundamental base of our study. Furthermore, 

the idea of splitting the model is also discussed. Asymptotic solutions of the kinetic 

model are described in Chapter 3. The mathematical analysis of the independent 

action of EG 1 and CBH 1 is presented. At this point, it is shon how the inathematical 

model can be reduced to a simple form. The solution of population balance equations 

(PBE) using numerical technique DAE-QMOM is given in Chapter 4. 

Chapter 5 discusses the solution of PBE-advection-diffusion model. We take into 

account the fact that particles move through space due to diffusion and advection. 

Chapter 6 focuses on the coupling of the PBE.-advection-diffusion model with hydro-

dynamics. Chapter 7 explains a kinetic theory for cellulosic biomass mixtures and 

a reduced order model for a multi-scale model. Developing multiple scales is an ef-

fort to describe the hydrolysis process more comprehensively. Finally, conclusion and 

suggestions for future work are presented in Chapter 8. 
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CHAPTER 2 

KINETIC MODEL FOR ENZYMATIC HYDROLYSIS OF 

CELLULOSE 

2.1 INTRODUCTION 

The conversion of lignoceliulosic biomass to ethanol involves a large number of phys-

ical and chemical transformations that happen in several separate processing steps 

i.e. pretreatment, enzymatic hydrolysis, and fermentation. The enzymatic hydrolysis 

step is the most important part of the process, and is the focus of this project. The 

chemical properties of biomass material are complex, and the reaction kinetics for 

the degradation of biomass are not well understood. 

Kinetic theory is a way to describe the time evolution of probability distribu-

tions of various elementary objects in a system. The scheme is formulated as partial 

differential equations called kinetic equations for the probability distributions. Ki-

netic equations have been used in describing polymeric fluid flows [Edwards and Doi, 

1986], [Bird et al., 19871, [Larson, 19881, active biological systems [Joanny et al., 

2013], [Marchetti et al., 2012], and solid materials. Meanwhile, the kinetics equa-

tions of enzymatic cellulose hydrolysis in creating ethanol in green energy has been 

extensively studied, and many kinetic models have been proposed. 

Some of the kinetic models of enzymatic hydrolysis of cellulose take into account 

several contributing factors such as mixed- type of enzymes to enhance the rate of 

reaction [Fujii and Shimizu, 1986]; [Beltrame et al., 1984]; [Griggs et al., 2012a]; [Fan 

and Lee, 19831; {Zhou et al., 20101; [Okazaki and Moo-Young, 1978], pore size distri-
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bution to predict the biomass fraction accessible to degradation [Luterbacher et al., 

20131, high solids operation to increase the product concentration [Hodge et al., 2009], 

the structure of cellulose [Fan and Lee, 19831; [Griggs et al., 2012a], the distribution 

of chain lengths [Griggs et al., 2012a]; [Suga et al., 1975], and the negative role of 

lignin [Zheng et al., 20091. Most of these works are successful, at least partially, in 

tracing the complicated cellulose-cellulase system quantitatively. However, most of 

the kinetic models do not take into account all important features simultaneously. 

Griggs et al. [Griggs et al., 2012a] tackled the major factors mentioned in the pre-

vious paragraph. Griggs's model incorporates two distinct types of enzyme, which are 

endoglucanase (endoglucanase I, EG 1 ) and exoglucanase (cellobiohydrolase I, CBH1). 

The population-balance equations (PBE) technique is used to describe the changes in 

cellulose chain length distribution. PBE employs continuous distribution that tracks 

the evolution of the spectrum of chain lengths. For the cellulose substrate struc-

ture, Griggs et al. assumed that there are enzyme-accessible chains and inaccessible 

interior chains. 

In this chapter, we will discuss the theoretical and mathematical developments 

needed to describe the hydrolysis of insoluble cellulose chains by Griggs et al. [Griggs 

et al., 2012a]. Their model will be the fundamental base of our study. An understand-

ing of this model provides a deeper understanding, improves predictive capabilities, 

and ultimately provides more directed and rational approaches for process design 

and optimization. This is the first step of our study in capturing the most important 

chemical and physical phenomenon in enzymatic hydrolysis of biomass. Later, in the 

next chapter, we will explore the mathematical structure of the system and analyze 

their properties to predict the behavior of the system. We will apply techniques from 

mathematical analysis and computation to gain insight into the complex problem, 

which is notably lacking in their paper.



2.2 MODEL FORMULATION 

Cellulose depolymerization 

Cellulose is an insoluble polymer, composed of repeating units of glucose linked by 0 - 

(1, 4) —glycosidic bonds with varying degrees of polymerization [Igarashi et al., 20091. 

Naturally-occurring cellulosic particles have a wide distribution of chain lengths. The 

availability of cellulose accessible for enzyme hydrolysis can depend on the chain 

length [Kleman-Leyer et al., 19961. The measur€ of enzyme-accessible cellulose de-

viates from the total cellulose in a ieaction mixture because of the arrangement of 

cellulose chains in the cellulose particles. 

Griggs et at treated the cellulosic substrates as"populations' of various chain 

lengths and denoted P(x) as an insoluble cellulose chain comprisiiig of x anhydroglu-

cose units. Here, x is treated as a continuous variable for the sake of simplicity. 

Suppose p(x, t) is the population distribution of enzyme-accessible cellulose chains 

(concentration of the unthreaded surface exposed cellulose) of length x at time t in 

a unit volume, then p(x, t)dx is the number of cellulose chain in the length range 

(x, x + dx) per unit volume at time t. 

With the distribution function p(x, t), one can define the nth moment of the 

distribution function as follows:

F 
P (t) =	 x'p(x,t)dx.	 (2.2.1) 

The zeroth moment (Q) (t) = j '° p(x, t)dx, gives the total number of cellulose chains 

at time t in a unit volume. The first moment, (') (t) = f00° xp(x, t)dx is the total 

number of monomeric glucans comprising the cellulose chains at time t. The number-

averaged chain length is denoted by XN	 (I)/(0). The mass-averaged chain length 

is the ratio of the second to first moments XM (2) /(l), where the number density 

is proportional to the mass of the cellulose chain by assuming the monomeric glucan 

unit has a constant mass. With this definition; the polydispersity is the ratio of mass-
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CHAPTER 1

INTRODUCTION 

1.1 BACKGROUND 

In recent years, energy crises and environmental pollution have become vital sus-

tainable problems to the human society. Rapid industrialization has increased the 

demand for oil; however, the energy supply from fossil fuels worldwide is limited and 

will eventually be depleted. Due to burning of fossil fuels, pollutant emissions have 

increased. To reduce pollution caused by fossil fuel burnings, one solution is to use 

renewable energy as an alternative to replace fossil fuels. Renewable energy fields use 

ethanol, where ethanol is produced from various lignocellulosic biomass, such as palm 

trees [Hosseini and Wahid, 2012], [Basiron, 20071, corn stover [Griggs et al., 2012a], 

[Selig et al., 2008], wood, agricultural products, waste, and grasses. Generally, hg-

nocellulosic biomass is composed of lignin, hemiceflulose and cellulose [Abnisa et al., 

2011]. 

The production of ethanol from lignocellulosic biomass consists of three funda-

mental processes; pretreatment, enzymatic hydrolysis, and fermentation [Limayem 

and Ricke, 2012]. Pretreatment modifies the structure of biomass to make the cellu-

lose more exposed to enzymes for sugar conversion [Himmel et al., 2007]. Enzymatic 

hydrolysis breaks cellulose chains into sugar such as cellobiose and glucose, whereas 

fermentation converts sugar into ethanol [Griggs et al., 2012a], [Griggs et al., 2012b], 

[Bansal et al., 20091. As a matter of fact, cellulose molecules are locked-in by the 

lignin-hemicellulose network; therefore, the hydrolysis step is the most crucial part of 

1



biomass to ethanol conversion process, in which this project is focused most specifi-

cally on. The production cost of cellulosic hydrolysis can be reduced by increasing the 

concentration of biomass particles. However, lignocellulosic biomass is a suspension 

of natural fibers, and processing at high solid concentration is a challenging task be-

cause it will affect the mixing quality between enzyme and cellulose particles, as well 

as hydrolysis yield. Thus, understanding factors that affect the rheology of biomass 

suspension is crucial in order to maximize the production of ethanol at minimum 

cost. 

Lignocellulosic biomass suspension mainly consists of natural fibers. There are 

various types of shapes, sizes, and material properties of lignocellulosic fibers. Ac-

cording to Roche et. al, fibers in pretreated corn stover have a size of (1-2,000 sum) 

and the aspect ratio is reported to be in the range of 1-20 [Roche et al., 2009a]. 

There are three types of regimes for biomass suspension. Firstly, for regime with low 

concentration of fibers, it is known as dilute regime, in which a fiber is free to rotate 

without having any contact with other fibers. Secondly, when hydrodynamic inter-

action is dominant over a few physical contacts between fiber, the regime is called 

semi-dilute regime. The last category is for the concentrated suspensions where fibers 

cannot rotate freely and the fibers interact by both hydrodynamic and direct contact 

forces. 

In Malaysia, palm oil becomes the main source of biomass to produce renewable 

energy. Palm oil industry is very important in Malaysia as the country has maintained 

its position as the world's leading palm oil producing country [Hainisan et al., 2009]. 

Their main products of palm oil are foods, oleochernicals, biofuels, and renewable 

energy source. Ongoing research and development of palm biomass by governmental 

institutions and universities improves process efficiencies [Môhd Basyaruddiri et al., 

2012], [Aziz et al., 2002], [Hii et al., 20121, [You and Baharin, 20061. For enzymatic hy-

drolysis process of palm oil biomass in Malaysia, cellulase (celluclast 1.5 L, Novozymes 

2



A/S, Denmark) and cellobiase (Novozyme 188, Novozymes A/S, Denmark) enzymes 

were tested experimentally [Iberahim et al., 20131. 

Empirical models based on experimental outcomes have been applied frequently 

to study the enzymatic hydrolysis of cellulose, as surveyed in [Bansal et al., 2009]. 

These models often offer only limited insight into the fundamental mechanisms of 

enzymatic hydrolysis. On the other hand, a kinetic model for enzymatic hydrolysis 

offers several advantages. It can provide a deeper understanding, improve predictive 

capabilities, and in the end provide more directed and rational approaches for process 

design and optimization [Griggs et al., 2012a]. 

Initial studies in kinetic models of enzymatic hydrolysis of cellulose indicated that 

Michaelis-Menten-type kinetics can be used to take account of random and endwise 

attack of the substrate by three types of enzymes [Okazaki and Moo-Young, 19781. 

Since then, the study of kinetic models for this process has undergone several inno-

vations. In 1983, Fan and Lee [Fan and Lee, 1983] added several key factors in their 

kinetic model, i.e. the structure of cellulose and the nature of enzyme system. Then 

in 2012, Griggs et al. [Griggs et al., 2012a] adapted Population Balance Equation 

(PBE), where the model structure leads to a Partial Differential Equation forming a 

system of integral-differential equations. In their work, biomass particles are repre-

sented as monodispersed cylindrical shaped particles comprised of cellulose chains of 

varied length. 

1.2 PROBLEM STATEMENT 

Lignocellulosic ethanol production is cost sensitive to operation energy and enzyme 

prices. Most kinetic models have incorporated several major factors such as mixed 

type of enzymes, pore size distribution, high solid operation, cellulose structure and 

a distribution of chain lengths. However, these studies have not demonstrated a 

sufficiently meaningful scale to evaluate the hydrolysis system. Studies on enzymatic 
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CHAPTER 3 

MATHEMATICAL ANALYSIS OF A KINETIC MODEL FOR 

ENZYMATIC CELLULOSE HYDROLYSIS 

3.1 INTRODUCTION 

Biofuel production such as ethanol from lignocellulosic biomass consists of three fun-

damental processes: pretreatment, enzymatic hydrolysis, and fermentation. Enzy-

matic hydrolysis uses two types of enzymes simultaneously: endoglucanase I (EG1) 

and cellobiohydrolase I (CBH1 ), to break cellulose chains into sugar in the form of 

cellobiose or glucose. For cellulose chains of length x, the population balance equa-

tion (PBE) governs the behavior of the particle size distribution (PSD), denoted as 

&J). We studied an established kinetic model proposed by Griggs et al. [Griggs 

et al., 2012a] for enzymatic hydrolysis of cellulose using the PBE described in Chapter 

2.

A number of analytical solutions for a general case of PBE were derived [Patil and 

Andrews, 1998], [McCoy and Madras, 2001], [Sterling and McCoy, 2001], [J McCoy 

and Madras, 20031 using Laplace transform on particle size. In the early work of 

Ziff and McGrady [Ziff and MeGrady, 1985], an analytical solution was found by 

probabilistic (statistical) argument. The PBE system derived by Griggs et al. [Griggs 

et al., 2012a] does not admit an analytic solution due to its complexity. To solve the 

system of equations, we may, have to resort to numerical methods, which can incur 

significant computational cost. Our strategy here was to search for reduced order 

models by ignoring significantly small terms in the governing system of equations. 
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We employed asymptotic analysis for dynamical systems to reduce the complex 

model to a set of simple equations. The resulting approximate solutions for a simple 

model may not fully capture all the details of the complex system. However, they 

usually capture some important characteristics and provide insights into potential 

dynamical and chemical mechanisms and their dependence on certain parameters. 

This chapter will present the mathematical analysis for the independent action of 

EG1 or CBH 1 from the kinetic model that has been formulated as Model I and Model 

II, respectively, in Chapter 2. The goal is to ensure that the mathematical results 

are consistent with the physical requirements. 

3.2 DIRAC DELTA FUNCTION 

Before we go deep into the mathematical analysis of the kinetic model, first we review 

the concept of Dirac Delta function as it is used in the model analysis. Any function, 

5 (x ) , is said to be a delta function if it satisfies three conditions [Mickens, 2004]: (i) 

fff 5(x) dx = 1, (ii) ö (x) = 0, for x 0, and (iii) 5(x)f(x) dx 1(0). Generally, 

for arbitrary real a and b,

If(xo) 
b	 I 

fS(x—xo)f(x)dx=

(o

if XO belongs to the open interval (a, b) 

if x0 a or x0 = band a < b 

otherwise.

(3.2.1) 

We can view this function as a limit of Gaussian, 8(x) 1im 0 	 e_x2/22. The

basic properties of the delta fund ion are as follows [Mickens, 2004]: 

1. The delta function is even, i.e., 

5(x), or 100 S—x)f(x) dx = J 5 (x) f(x) dx.	 (3.2.2) 

2. f°°S(ax)f(x)dx -	 .1(0)

29



3. f°°, (x - a)f(x) dx = f(a). 

4 
f_	 _1)ff(Th)(0), where it is assumed that the required deriva- 5(')(x)f(x) dx = ( 

tive of f(x) exist. 

3.3 MODEL I (INDEPENDENT ACTION OF EG1) 

In this section, we will focus on studying how random-chain scission by EG 1 changes 

a population of cellulose chains that has been formulated in (2.4.66): 

I 
4&,i-) = O 0O47ffGEEGtO f°° (y, r) dy - 0.002 0Etoxp(x, r) 

di--

)&1r(1) t0 
loss 

=rto , dA 
WT_  

Let to 1 	 hence 

I'
= 	 r) dy - 0.00 (0)(0) xJ3(x, T) 

	

EEC	 E 

	

di-	 p(0)(0) 

( 1 Pi (X) (1)	 1 
- - 

(1) 

	

-	 nlpss	 1	 f,^i. 

	

TT_	 - 2nirpRRL	 p(0) (0)'

(3.3.3) 

(3.3.4) 

The dimensionless parameter groups are listed in Table 3.1. The reduction in the 

number of parameters makes theoretical manipulations easier, as the equations are 

less cluttered. By omitting the 'hat' for notational simplicity, we obtained: 

Table 3.1 Dimensionless 
groups of parameters 

Parameter Group 
- EG 

a - p(°)(0) 
b - -

(1) 

j_ p(°)(0) 
- 2n-irpRL
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