ENZYMATIC DEPOLYMERIZATION OF LIGNIN BY LACCASES

Nor Hanimah Hamidi

This is a thesis submitted to the University of Nottingham for the degree of Ph.D in the Faculty of Engineering

November 2013

Department of Chemical and Environmental Engineering
University of Nottingham
Nottingham
NG7 2RD
United Kingdom
ABSTRACT

More than half of platform petrochemicals are aromatic, whereas the only large-scale, naturally-occurring, renewable source of aromatics is lignin. Chemical depolymerization of lignin requires extreme conditions, and results in extensive destruction of the aromatic rings and/or char formation. By contrast, enzymatic lignin depolymerization occurs under mild conditions with retention of the aromatic nuclei. Therefore, laccase from *Agaricus bisporus* (LAB) and from *Trametes versicolor* (LTV) with the mediator, ABTS (2,2'-azino-bis(3 ethyl benzthiazoline-6-sulphonic acid)) were used to depolymerize lignin (sodium lignosulphonate) under mild reaction conditions with the aim to obtain high concentrations of value-added chemicals. The depolymerization in the presence of LTV was higher than LAB, which resulted from the high catalytic activity of LTV. Lignin degradation resulted in formation of complex product mixtures. Therefore the products were fractionated and analyzed by different analytical techniques including GPC (for preliminary screening), HPLC and GCMS (for product characterization and quantification), and NMR (for fingerprint analysis). Products included guaiacol, vanillin, acetovanillone, vanillic acid, homovanillic alcohol, phenol, 4-methylbenzaldehyde, catechol, p-toluic acid, 4-hydroxybenzaldehyde, tyrosol, isovanillin, and 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl) propan-1-one, and the total yield of monomers from lignin was 9.8 % in the presence of LTV. The parameters involved in the depolymerization process were optimized to increase the yield of monomers. The efficiency of laccase mediators was also explored by the use of 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), 1-hydroxybenzotriazole (HBT), N-hydroxyphthalimide (HPI) and violuric acid (VLA) in the depolymerization of sodium lignosulphonate. However, the catalytic depolymerization in the presence of these mediators was lower than ABTS. In order to improve the solubility of the substrate for the depolymerization process, screening of ionic liquids that are compatible with LAB was deployed in order to find laccase-friendly ionic liquids for further use in lignin depolymerization. The study has found [C₄mim][L-tartrate] as the best ionic liquid tested, that increased the activity of LAB by 90 %. In conclusion, enzymatic depolymerization of lignin offers a greener process than the chemical methods, and also provides a more efficient method to obtain monomers of valuable specialty chemicals under mild reaction conditions.
TABLE OF CONTENTS

ACKNOWLEDGEMENT..i
DECLARATIONS .. ii
ABSTRACT .. iv
TABLE OF CONTENTS ... v
LIST OF TABLE .. xi
LIST OF FIGURES ... xiii
LIST OF ABBREVIATIONS .. xvii

Chapter 1 ... 1
AIM AND SCOPE OF THE THESIS ... 1

Chapter 2 .. 4
LITERATURE REVIEW ... 4
2.1 The Need for Lignin Utilization ... 4
2.2 Lignocellulose and lignin ... 5
2.2.1 Lignin Preparation .. 10
2.3 Lignin Depolymerization .. 14
2.4 Enzymatic Depolymerization of Lignin .. 15
2.4.1 Laccase .. 16
2.4.2 Lignin Peroxidase .. 23
2.4.3 Manganese Peroxidase .. 24
2.4.4 Versatile Peroxidase ... 26
2.5 Ionic Liquids .. 27
2.5.1 Ionic Liquids as Solvents for Lignin ... 30
2.5.2 Ionic Liquids as Solvents for Laccase.................................33

Chapter 3 ...35

MATERIALS & METHODS..35

3.1 Materials ...35

3.1.1 Buffer Preparation ..35

3.1.2 Laccase ...36

3.1.3 Lignin ...36

3.2 Laccase Activity ...36

3.2.1 Laccase from *Trametes versicolor* (LTV)36

3.2.2 Laccase from *Agaricus bisporus* (LAB)37

3.3 Mediated Oxidation with Laccase ...37

3.4 Lignin Derived Compounds as a Substrate41

3.5 Analysis Strategy ...41

3.5.1 Gel Permeation Chromatography ...42

3.5.2 Nuclear Magnetic Resonance ..43

3.5.3 Elemental Analysis ..43

3.5.4 High Performance Liquid Chromatography with UV detector44

3.5.5 Gas Chromatography Mass Spectroscopy45

3.6 Ionic Liquids as Potential Solvents for Lignin Depolymerization46

3.6.1 Ionic Liquids ..46

3.6.2 Assays for Laccase from Agaricus Bisporus Activity in Ionic Liquids47

3.6.3 Ionic Liquid Miscibility in Water ...48

3.7 Determination of Michaelis-Menten Parameters49

3.7.1 Enzyme kinetics by Michaelis-Menten and Lineweaver-Burke Plot 49

3.7.2 Enzyme kinetics via Non-linear Regression Analysis51
5.5 Attempts to Quantify Products by HPLC with UV detector .. 104
 5.5.1 Effect of Incubation Time on Product Formation at 60 °C 107
 5.5.2 Effect of Temperature on Lignin Depolymerization ... 110
5.6 Effect of Incubation Time on Product Formation at 30 °C ... 110
5.7 Lignin Derived Compounds as a Substrate ... 112
 5.7.1 The Oxidation of Vanillin .. 113
 5.7.2 The Oxidation of Acetovanillone .. 116
 5.7.3 The Oxidation of Guaiacol .. 119
 5.7.4 The Oxidation of Vanillic Acid ... 121
 5.7.5 The Oxidation of Homovanillyl Alcohol ... 124
5.8 Discussion ... 127

Chapter 6 .. 130
TOWARDS UNDERSTANDING OF THE LACCASE-MEDIATOR SYSTEM ... 130
6.1 Introduction ... 130
6.2 Laccase Activity in the Presence of TEMPO and HBT .. 131
6.3 Mediation Efficiency towards Lignin Depolymerization .. 133
 6.3.1 TEMPO ... 133
 6.3.2 HBT ... 137
 6.3.3 HPI .. 140
 6.3.4 VLA ... 143
6.4 Discussion ... 146

Chapter 7 .. 150
IONIC LIQUIDS AS POTENTIAL SOLVENTS FOR LIGNIN DEPOLYMERIZATION 150
 7.1 Introduction .. 150
7.2 The Activity of ABTS in the Presence and Absence of [C₄mim][C₂SO₄] 152
7.3 Effect of [C₄mim][lactate] Concentration on LAB activity 154
7.4 Screening of Ionic Liquids ... 155
 7.4.1 Effect of Imidazolium Based Ionic Liquids on LAB Activity 156
 7.4.2 Effect of Quaternary Ammonium Based Ionic Liquid on LAB Activity 160
 7.4.3 Effect of Phosphonium Ionic Liquids on LAB Activity 164
 7.4.4 Effect of Pyridinium Ionic Liquids on LAB Activity 166
 7.4.5 Effect of Piperidinium and Pyrrolidinium Ionic Liquid on LAB Activity 167
7.5 Discussion .. 168

Chapter 8 .. 172
DISCUSSION AND CONCLUDING REMARKS .. 172
 8.1 Summary of Results .. 172
 8.2 Improvement of the Process .. 176
 8.3 Improvement of Analytical Methods ... 181
 8.4 Economic Considerations .. 183
 8.4.1 Production of High Value Chemicals .. 185
 8.5 Consideration for a Large Scale Depolymerization Process 187
 8.6 Concluding Remarks .. 189

9. REFERENCES ... 191

APPENDICES .. 207
 Appendix A.1 GCMS Analysis of Lignin Depolymerization Products (LAB) 207
 Appendix A.2 GCMS Analysis of Lignin Depolymerization Products (LTV) 210
 Appendix A.3 GCMS Analysis of Lignin Depolymerization Products after
 Derivatization (LTV) ... 216
 A.3.2 GCMS standard calibration curve .. 223
Appendix A.4 HPLC Analysis of Lignin Depolymerization Products ... 225
A.4.1 HPLC authentic standard peak area .. 225
A.4.2 HPLC standard calibration curves .. 227
Appendix A.5 Lignin Derived Compounds as a Substrate ... 228
A.5.1 The Oxidation of Vanillin (2) .. 228
A.5.2 The Oxidation of Acetovanillone (3) .. 230
A.5.3 The Oxidation of Guaiacol (1) ... 232
A.5.4 The Oxidation of Vanillic Acid (5) .. 233
A.5.5 The Oxidation of Homovanillyl Alcohol (4) ... 236
Appendix A.6 Laccase Mediator System ... 238
A.6.1 Chromatogram of Aqueous Ethyl Acetate Extract Fraction of the LTV-catalyzed reaction Mediated by TEMPO ... 238
A.6.2 Chromatogram of Aqueous Ethyl Acetate Extract Fraction of the LTV-catalyzed reaction Mediated by HBT .. 240
A.6.3 Chromatogram of Aqueous Ethyl Acetate Extract Fraction of the LTV-catalyzed reaction Mediated by HPI .. 242
A.6.4 Chromatogram of Aqueous Ethyl Acetate Extract Fraction of the LTV-catalyzed reaction Mediated by VLA .. 244
Appendix A.7 List of ionic liquids used in this study ... 247
A.7.1 Imidazolium Based Ionic Liquid ... 247
A.7.2 Quaternary Ammonium Based Ionic Liquid ... 250
A.7.3 Phosphonium Based Ionic Liquid .. 253
A.7.4 Pyridinium based Ionic Liquid ... 255
A.7.5 Piperidinium and Pyrrolidinium based Ionic Liquid .. 256
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of reactions and prices of linginolytic enzymes</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample preparation for elementary analysis</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>The mass balance of product fractions (LAB)</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Elemental composition (LAB)</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Identification of products formed after liquid-liquid extraction (LAB)</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>The identities of the compounds in the aqueous ethyl acetate extract</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>Kinetic parameters for the oxidation of ABTS by different laccases</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>The mass balance of product fractions (LTV)</td>
<td>92</td>
</tr>
<tr>
<td>5.3</td>
<td>Identification of products formed after liquid-liquid extraction (LTV)</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>The comparison of products formed between LAB and LTV</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Elemental composition (LTV)</td>
<td>98</td>
</tr>
<tr>
<td>5.6</td>
<td>Identification of products formed (derivatization)</td>
<td>101</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of products concentration between GCMS and HPLC</td>
<td>107</td>
</tr>
<tr>
<td>5.8</td>
<td>Products formed in the conversion of compounds representative of lignin catalyzed by LTV in the presence of ABTS.</td>
<td>114</td>
</tr>
<tr>
<td>5.9</td>
<td>The percentage of unconverted reactant and undetected product</td>
<td>115</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of different substrate on the oxidation by LTV</td>
<td>133</td>
</tr>
<tr>
<td>6.2</td>
<td>Identification of products formed after the depolymerization of sodium lignosulphonate by LTV and mediated by TEMPO</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Identification of products formed after the depolymerization of sodium lignosulphonate by LTV and mediated by HBT</td>
<td>138</td>
</tr>
<tr>
<td>6.4</td>
<td>Identification of products formed after the depolymerization of sodium lignosulphonate by LTV and mediated by HPI</td>
<td>141</td>
</tr>
<tr>
<td>6.6</td>
<td>Comparison of the products formed after enzymatic treatment of sodium lignosulphonate in the presence of ABTS, TEMPO, HBT, HPI and VLA</td>
<td>147</td>
</tr>
<tr>
<td>6.7</td>
<td>Current market price for selected mediators</td>
<td>148</td>
</tr>
<tr>
<td>7.1</td>
<td>Activity of LAB in the presence of imidazolium based ionic liquids and halides anion</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oil and gas production profiles around the globe in 2008</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Components of lignocellulosic biomass</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Woody plant</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Lignin precursors</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Representation of softwood lignin polymer</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Representation of isolated lignosulphonate polymer</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Representation of an isolated Kraft lignin</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic diagram of the lignin degradation steps</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Reduction of dioxygen (O₂) to water (H₂O) by laccase</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Laccase active site</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic representation of laccase catalyzed redox cycles</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Two types of mushrooms</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Structures of some laccase mediators</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>Schematic representation of laccase catalyzed redox cycles for lignin oxidation in the presence of a mediator</td>
<td>21</td>
</tr>
<tr>
<td>2.15</td>
<td>Oxidation of ABTS in the presence of laccase</td>
<td>22</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematic representation of lignin peroxidase (LiP) catalyzed redox cycles for veratryl alcohol (VA) oxidation</td>
<td>24</td>
</tr>
<tr>
<td>2.17</td>
<td>Schematic representation of manganese peroxidase (MnP) catalyzed redox cycles for Mn²⁺</td>
<td>25</td>
</tr>
<tr>
<td>2.18</td>
<td>Schematic representation of versatile peroxidase (VP) catalyzed redox cycles for Mn²⁺</td>
<td>26</td>
</tr>
<tr>
<td>2.19</td>
<td>Some commonly used ionic liquid systems</td>
<td>29</td>
</tr>
<tr>
<td>2.20</td>
<td>SEM images</td>
<td>31</td>
</tr>
<tr>
<td>2.21</td>
<td>The depolymerization of lignin to smaller lignin subunits</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Scheme for the fractionation method of lignin depolymerization products</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of the analysis strategy</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Single phase and biphasic system of ionic liquids and water mixture</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Determination of Michaelis-Menten parameters</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 4.1 The oxidation of ABTS by LAB..55
Figure 4.2 Effect of ABTS concentration on the oxidation by LAB..57
Figure 4.3 Effect of temperature on LAB activity.. ..58
Figure 4.4 The colour intensity of lignin product fractions..60
Figure 4.5 Depolymerization of sodium lignosulphonate by LAB (analyzed by GPC). 64
Figure 4.6 The 1H-NMR spectrum of aqueous ethyl acetate extracts.......................66
Figure 4.7 1H-NMR spectra for comparison of functional groups..........................68
Figure 4.8 The 1H-NMR spectra after treatment of sodium lignosulphonate with different LAB concentrations...70
Figure 4.9 Comparison between ABTS intensity before and after the treatment with LAB..72
Figure 4.11 Chemical structures of lignin depolymerization products (LAB).76
Figure 4.12 The GCMS chromatograms of products (LAB)....................................77
Figure 4.13 Solubility of dried aqueous fraction in different solvent......................80
Figure 4.14 HPLC chromatograms of four fractions after LAB treatment................81
Figure 4.15 Effect of incubation time on the production of chemicals84
Figure 5.1 Effect of ABTS concentration on reaction rate of different laccase...........88
Figure 5.2 The effect of temperature on LTV activity..90
Figure 5.3 Chemical structures of lignin depolymerization products (LTV).............95
Figure 5.4 The GCMS chromatograms of products (LTV).....................................97
Figure 5.5 The GCMS chromatograms of products that have been extracted in ethyl acetate after derivatization. ...100
Figure 5.6 Chemical structures of the lignin depolymerization (after derivatization)...102
Figure 5.7 The production of aliphatic compounds from lignin.............................104
Figure 5.8 HPLC chromatograms of the products formed(LTV)..............................105
Figure 5.9 Concentration of lignin depolymerization products formed at 60 °C........106
Figure 5.10 Effect of incubation time on products formation..................................108
Figure 5.11 Thermal stability of LTV at 30 to 60°C..109
Figure 5.12 Comparison of lignin depolymerization products formed at 60 °C and 30 °C...110
Figure 5.13 The effect of incubation time on the product yield..............................111
Figure 5.14 Oxidation of vanillin ... 113
Figure 5.15 The 1H-NMR spectrum of the products formed after enzymatic treatment of vanillin by LTV ... 116
Figure 5.16 Oxidation of acetovanillone .. 117
Figure 5.17 The 1H-NMR spectrum of the products formed after enzymatic treatment of acetovanillone by LTV ... 118
Figure 5.18 Oxidation of guaiacol ... 119
Figure 5.19 Conversion of guaiacol by LTV in the presence of ABTS 120
Figure 5.20 The 1H-NMR spectrum of the products formed after enzymatic treatment of guaiacol by LTV ... 121
Figure 5.21 The conversion of vanillic acid .. 122
Figure 5.22 The 1H-NMR spectrum of the products formed after enzymatic treatment of vanillic acid by LTV ... 123
Figure 5.23 Conversion of homovanillyl alcohol by LTV in the presence of ABTS ... 125
Figure 5.24 The conversion of homovanillyl alcohol 125
Figure 5.25 The 1H-NMR spectrum of the products formed after enzymatic treatment of homovanillyl alcohol by LTV ... 126
Figure 6.1 The oxidation of p-anisilic alcohol by laccase from Trametes villosa 131
Figure 6.2 Synthetic mediators used in this study .. 131
Figure 6.3 Comparison of the rate of oxidation between ABTS, TEMPO and HBT by LTV ... 132
Figure 6.4 Mechanism of TEMPO oxidation by laccase 134
Figure 6.5 The effect of incubation time on the depolymerization of sodium lignosulphonate mediated by TEMPO ... 135
Figure 6.6 Mechanism of HBT oxidation by laccase 137
Figure 6.7 The effect of incubation time on the depolymerization of sodium lignosulphonate mediated by HBT ... 139
Figure 6.8 Mechanism of HPI oxidation by laccase 140
Figure 6.9 The chemical structure of 1,2-benzedicarboxylic acid (HPI-P1) and 2-cyanobenzoic acid (HPI-P2) ... 142
Figure 6.10 The effect of incubation time on the depolymerization of sodium lignosulphonate mediated by HPI ... 142
Figure 6.11 Mechanism of VLA oxidation by laccase .. 144
Figure 6.12 The effect of incubation time on the depolymerization of sodium lignosulphonate mediated by VLA ... 145
Figure 7.1 Cations and anions used in this study .. 151
Figure 7.2 The absorbance changes during the oxidation of ABTS by LAB 152
Figure 7.3 Time courses for ABTS oxidation in ionic liquid 153
Figure 7.4 Effect of [C4mim] [lactate] concentration on the oxidation of ABTS 155
Figure 8.1 Comparison of the products formed after enzymatic treatment of sodium lignosulphonate in the presence of LAB and LTV (with different mediator, namely ABTS, TEMPO, HBT, HPI and VLA) ... 175
Figure 8.2 Schematic flow diagram of the activity of glucose: quinone oxidoreductase .. 176
Figure 8.3 Evolution of LTV activity .. 177
Figure 8.4 Redox catalysis of veratryl alcohol and ABTS 178
Figure 8.5 A partial view of the structure of suberin .. 180
Figure 8.6 Thioacidolysis method .. 182
Figure 8.7 The market value of lignin and its potential products 184
Figure 8.8 Potential lignin applications ... 185
Figure 8.9 Process flow sheet .. 187
LIST OF ABBREVIATIONS

Time, length, weight, volume and concentration:

- **h** hours
- **min** minutes
- **s** seconds
- **n** nanometres
- **µm** micrometres
- **g** gram
- **mg** milligram
- **µl** microliters
- **ml** milliliters
- **L** litres
- **mM** milimolar
- **M** molar

General abbreviations:

- **A** Absorbance
- **ACN** Acetonitrile
- **ABTS** 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- **BSTFA** bistrimethylsilyltrifluoroacetamide
- **°C** degree celcius
- **DCM** dichloromethane
- **DMSO-d₆** deuterated dimethyl sulfoxide
- **EA** elementary analysis
- **EI** electron ionization
- **ET** electron transfer
- **EPR** electron paramagnetic resonance
- **GC** gas chromatography
- **GCMS** gas chromatography mass spectoscopy
- **GPC** gel permeation chromatography
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAT</td>
<td>hydrogen atom transfer</td>
</tr>
<tr>
<td>HBT</td>
<td>hydroxybenzotriazole</td>
</tr>
<tr>
<td>HPI</td>
<td>N-hydroxypthalimide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>K_m</td>
<td>value of substrate concentration at $1/2 V_{max}$</td>
</tr>
<tr>
<td>L</td>
<td>light path length</td>
</tr>
<tr>
<td>LiP</td>
<td>lignin peroxidase</td>
</tr>
<tr>
<td>LAB</td>
<td>laccase from Agaricus bisporus</td>
</tr>
<tr>
<td>LTV</td>
<td>laccase from Trametes versicolor</td>
</tr>
<tr>
<td>LMS</td>
<td>laccase mediator system</td>
</tr>
<tr>
<td>mV</td>
<td>millivolts</td>
</tr>
<tr>
<td>MnP</td>
<td>manganese peroxidase</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>mol</td>
<td>moles</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>[P]</td>
<td>product concentration</td>
</tr>
<tr>
<td>rpm</td>
<td>round per minute</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEC</td>
<td>size exclusion chromatography</td>
</tr>
<tr>
<td>SEM</td>
<td>screening electron microscope</td>
</tr>
<tr>
<td>[S]</td>
<td>substrate concentration</td>
</tr>
<tr>
<td>[S·]</td>
<td>initial substrate concentration</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TMCS</td>
<td>trimethylchlorosilane</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-tetramethylpiperidin-1-yloxy</td>
</tr>
<tr>
<td>uv</td>
<td>ultra violet</td>
</tr>
<tr>
<td>v_o</td>
<td>initial rate of reaction</td>
</tr>
</tbody>
</table>

xviii
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>rate of reaction</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>VLA</td>
<td>violuric acid</td>
</tr>
<tr>
<td>V_{max}</td>
<td>maximum velocity</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/w</td>
<td>weight per weight</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>ε</td>
<td>extinction coefficient</td>
</tr>
</tbody>
</table>
Chapter 1

AIM AND SCOPE OF THE THESIS

The aim and scope of the thesis is to explore the depolymerization of sodium lignosulphonate to value-added chemicals by an enzymatic process. In this study, commercial laccase was used since the isolation of laccase from lignin-degrading microorganisms such as white rot fungi are generally slow growing and may be difficult to cultivate at scale. In addition, laccase is produced on a large scale due to the widespread applications in biotechnology including in paper manufacturing, detergent formulations, bioremediation, biotransformation, lignocellulose processing, etc. (Yaver et al., 2001). Therefore, a commercially available laccase was preferred. There are several factors that contribute towards the efficiency of the enzymatic conversion of lignin by laccase, which is complex from the chemical and biological points of view. A process was developed to study the effect of laccase from Agaricus bisporus (LAB) on the degradation of sodium lignosulphonate in the presence of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator. After the enzymatic depolymerization by laccase, a complex mixture of the products was formed, that is extremely difficult to analyze. Therefore, a fractionation method was implemented to simplify the analysis process and a combination of analytical methods was deployed to identify the products.

Several studies have implemented size exclusion chromatography (SEC) to study the molecular weight distribution of the products (Majcherczyk and Huttermann, 1997; Nugroho et al., 2010; Shleev et al., 2006). Gel permeation chromatography (GPC) is a type of SEC that separates on the basis of size. Bourbonnais et al. (1995) have
demonstrated the use of GPC to analyze the oxidation of Kraft lignin by laccase from *Trametes versicolor*. From their observation, the process produced molecular weight averages between 7800 to 10500 g mol\(^{-1}\) after several days of treatment. In this project, the aim would be to produce compounds that have a molecular weight below 1000 g mol\(^{-1}\). Therefore, GPC was adopted as a part of the preliminary screening of the product distribution after fractionation.

Other than GPC, proton nuclear magnetic resonance (\(^1\)H-NMR) was implemented to provide chemical information about the products. In \(^1\)H-NMR, a chemical shift is associated with the occurrence of various types of chemical resonance present in the sample. Therefore, this technique was used as a fingerprint analysis of the products. NMR analysis has become one of the important milestones for lignin chemistry. However, it has to be noted that the characterization of lignin depolymerization products is difficult due to the complex mixture of products and overlapping signals.

Therefore, gas chromatography mass spectroscopy (GCMS) was also employed to characterize the products. Pecina *et al.* (1986) demonstrated the use of GCMS for the analysis of lignin degradation products. In their work, a method of derivatization was implemented to increase the volatility as well as the detectability of the products. However, derivatization is not always necessary for GCMS unless the compound of interest cannot be detected. In addition, quantification by GCMS was carried out by measuring the peak area of individual components and comparing with authentic standards. Besides GCMS, high performance liquid chromatography (HPLC) has been used for quantification in several studies (Pecina *et al.*, 1986; Bourbonnais and Paice, 1990; Bourbonnais *et al.*, 1997; Vigneault *et al.*, 2007). Thus, an attempt was made to develop an analytical method by using reversed-phase high performance liquid chromatography (RP-HPLC) for the quantification of lignin depolymerization products in conjunction with GCMS analysis. In this study, the identification of the products by GCMS revealed five compounds formed after the enzymatic depolymerization by LAB. However, the yield was only 7.8 % of the total lignin used.
Therefore, the next aim was to further increase the product yield by using laccase from a different source, to influence the efficiency of product formation from the breakdown of sodium lignosulphonate. Therefore, laccase from *Trametes versicolor* (LTV) was studied. The optimum reaction condition in the presence of LTV was explored, with respect to the reaction time, temperature and also the stability of LTV during the course of the reaction.

Even though ABTS is known as the best mediator for laccase (Morozova *et al*., 2007; Bourbonnais and Paice, 1992), there are more than 100 possible mediators which have been classified into two types, namely natural and synthetic mediators (Canas and Camarero, 2010). Since the synthetic mediators have been proven to be the most effective mediators by several authors (d’Acunzo *et al*., 2002; Fabbrini *et al*., 2002), a study on the effect of five synthetic mediators on lignin depolymerization was implemented. Despite the addition of mediators into the reaction however, there is a major drawback since they are expensive (Li *et al*., 1999; Couto *et al*., 2005). Therefore, the process for lignin depolymerization by LTV was designed to use the least amount of mediator as possible.

Laccase has a variety of applications. In some cases however, the processes are inefficient because the substrate is insoluble in water. Therefore, it would be desirable to identify enzyme-friendly solvents that can be used to solubilize the substrates. Ionic liquids are a relatively new type of non-aqueous solvent which often perform better in biocatalytic processes than conventional solvents (Cull *et al*., 2000). Most importantly, there are millions of ionic liquids, offering a variety of chemical and physical properties. This allows the structure of the ionic liquids to be fine tuned to match the specific requirements of the desired process. Therefore, 106 ionic liquids were tested for their effect on laccase from *Agaricus bisporus* (LAB) using a new high throughput screening method (Rehmann *et al*., 2012). 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) was used as the substrate, and the Michaelis-Menten kinetic parameters were determined.
Chapter 2

LITERATURE REVIEW

2.1 The Need for Lignin Utilization

Petroleum feedstocks are used in industry to produce a variety of products including fine chemicals, etc. (Bender, 2000; Demirbas, 2005). As reported by the Association for the Study of Peak Oil and gas (ASPO), the production of petroleum will decline gradually every year starting from 2010 (Fig. 2.1). The decreasing supply of this feedstock has forced the need to find new alternatives to meet the high demands of value-added chemicals in various applications.

In a sense, the fossil fuels are a one-time gift that lifted us up from subsistence agriculture and eventually should lead us to a future based on renewable resources - Kenneth Deffeyes (2001).

Therefore, an alternative approach was explored based on the potential of lignin as a renewable feedstock for the production of valuable aromatic chemicals that are usually derived from petroleum. According to Gargulak and Lebo (2000), there is an estimated 50 million tonnes of lignin available per year from pulping processes worldwide and only 2% is in use for commercial applications (Gargulak and Lebo, 2000).
2.2 Lignocellulose and lignin

The past decade has seen the rapid development of lignocellulosic biomass as a sustainable source of sugars for biotransformation into biofuels and valuable chemicals (Li et al., 2008; Himmel et al., 2007) especially in the fibre, paper, membrane, polymer and paint industries (Swatloski et al., 2002). Lignocellulosic materials consist mainly of complex structures of the carbohydrates, cellulose (35-50%) and hemicelluloses (20–35%), and lignin (5–30%), a polyphenolic structure (Lnyd et al., 2002; Zavrel et al., 2009; Fig. 2.2).

Cellulose and hemicelluloses are easy to hydrolyze to their subunits (e.g. glucose, fructose, galactose, mannose, xylose). The transformations of cellulosics and hemicellulosics to the monomer units are a relatively simple process. Numerous studies have attempted to obtain the conversion of cellulose to other products such as bioethanol as a promising alternative energy source to replace crude oil that is likely to suffer limited availability (Demirbas, 2005; Sun and Cheng, 2002). In 2009, Buckeye Technologies, Inc in association with Myriant and University of Florida have announced the development of a new generation bioethanol plant from cellulose which was believed...
to be a step forward towards new source of fuel from renewable feedstock (Buckeye Technologies Inc., 2009).

On the other hand, lignin is a polyphenolic material composed of phenylpropane units (Rogers et al., 2002). Lignin is practically impossible to dissolve in water in its native form due to the irregular three dimensional cross-linked networks that bind the whole wood structure together to make a strong and resistant plant wood (Kilpelainen et al., 2007). It may also play an important role in defence against pathogen attack and mechanical wounding (Hawkins et al., 1997). The toughness of a plant depends on the percentage of lignin in the cell wall structure. For example, hardwood plants (Fig. 2.3a) contain more lignin compared to softwood plants (Fig. 2.3b) (Antai and Crawford, 1981).

The first serious discussion and analyses of lignin emerged in 1838 in a study by Anselme Payen (Frenh, 2000). He treated wood with nitric acid to remove part of the wood substances and left behind fibrous materials which he called ‘cellulose’. He realized that the part that had been removed from the wood materials was rich in carbon content compared to the cellulose. He called the carbon-rich substance as an ‘encrusting material’ (French, 2000).
Over the past 100 years, research into lignin has developed and enlarged beginning with work by Schulze in 1865 who first introduced the term ‘lignin’ (Lu and Ralph, 2010). Three years later, Erdmann in 1868 concluded that the non-cellulosic constituent in wood substances was aromatic. Further investigation of lignin was then demonstrated by Benedikt and Bamberger in 1890 in which they found that methoxyl groups were present in wood tissue but such tissues were lacking in cellulose materials (Brunow, 2001). Further research was done by Klason who came up with the idea in 1897 that lignin was chemically related to coniferyl alcohol (Sjöström, 1993).

Lignin is the second most abundant polymer in nature after cellulose (Annele, 1994; Leonowicz et al., 1999; Li et al., 2008; Zavrel et al., 2009; Kilpelainen et al., 2007; Adler, 1977). It is classified into three major groups which are softwood lignin, hardwood lignin and grass lignin based on the chemical structure of the monomer units (Adler, 1977) which build to form an aromatic, 3-dimensional and amorphous structure (Brown, 1985). Lignin is built from three precursors which are p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol as shown in Figure 2.4 and these precursors are incorporated in lignin as p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S), respectively (Grabber et al., 1997).
Figure 2.4 Lignin precursors (a) p-coumaryl alcohol (H); (b) coniferyl alcohol (G); (c) sinapyl alcohol (S); (d) model for numeration of a carbon skeleton which consist of the aromatic nucleus and 3-carbon side chain represented by γ, β and α (taken from Buswell and Odier, 1987).

These precursors then form different types of subunits of lignin macromolecules where the most abundant subunit is the guaiacylglycerol-β-aryl ether (β-O-4) substructure (40-60 %) followed by biphenyl and dibenzodioxocin, 5-5 (18 – 25 %), phenylcoumaran, β-5 (9 – 12 %), 1,2-diaryl propane, β-1 (7 – 10 %), phenylpropane α-aryl ether, α-O-4 (6 – 8 %), diaryl ether, 4-O-5 (4 - 8 %) and β-β linked structures (Adler, 1977; Higuchi, 1990; Sakakibara, 1983; Fig. 2.5) etc. A large and growing body of literature has shown that there are no single repeating bonds between the subunits, but a random distribution of at least ten types of bonds (Argyropoulos and Menachen, 1997). The β-aryl ether (β-O-4) bond was the most common bond found in lignin molecule as shown in Fig. 2.5 (Buswell and Odier, 1987). The bonds in lignin are complicated and non hydrolysable, and are much more difficult to break down compared to cellulose and hemicelluloses that are just made from a simple structures and linked with β-1, 4-glucosidic bonds (Kuhad et al., 1997).

Lignin has a high molecular weight which makes it a tough structure and prevents its uptake into the microbial cells (Eriksson et al., 1990). Due to this fact, biological degradation of native lignin must occur through the activity of extracellular enzymes (Adler, 1977; Argyropoulos and Menachen, 1997; Kuhad et al., 1997; Eriksson et al., 1990) from lignin degrading microorganisms such as white rot fungi (Hatakka, 1994; Leonowicz et al., 1999). White rot fungi have a unique ability to produce ligninolytic enzymes to degrade lignin. Wood-rotting fungi are divided into three groups which are