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Abstract

A dual-piston type two-stroke spark-ignition free-piston engine generator prototype
has been developed. A comprehensive review on recent published researches and patent
documents from academia and industrial organisations on free-piston engine generator,
especially on the applications for series hybrid electric vehicles, was conducted.
Relevant parameters affecting the operating performance and a number of challenges
had been identified as the common denominator for this technology. Modelling and
simulations using one-dimensional tools were conducted in parallel with the
development activities. Three main simulation models for the crankshaft engines were
developed, validated and optimised before converted into the free-piston engine model.
ThlS was done by using 1mposed-plston motlon sub model. The two-stroke free-piston
engme model had undergone parametric study for valve timing optimisation. This .
model was validated by using motoring experimental results using the developed free-
piston engine generator prototype. From the experimental results, the free-piston engine
generator motoring performance was able to meet the targeted cyciic speed and
compression pressure for starting. However, the free-piston engine generator operating |
speed was limited to SHz and below due to valve delay inherent_ in the pneumatic
actuators. The motoring results were used to validate the free-piston engine model
which showed a good agreement at various starting speeds. Finally, performance and
parametric investigations were conducted using the final validated and refined free-

- piston engihe model. From the simulation, it was found that the free-piston engine had
similar response to air-fuel ratio and ignition position variations compare to crankshaft
engine with the free-piston engine performance was sllghtly reduced. Further, the v
reduced frictional losses contributed little to its performance gain. However the hi gh
1nﬂuence of piston motion around TDC on the englne performance observed in free-

piston engine, could be mampulated to mcrease its performance significantly.
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Chapter 1. Introduction

1.1° Background

The recent report by Energy Technologies Institute (ETI) has highlighted that light
vehicles contribute around 16% of UK CO, emissions [1]. It was proposed that a drastic
approach for reducing such emissions would be to adopt electric vehicles.and phasing
out internal combustion engines. The less risky route is by using a combination of
different fuel types such as bio-fuel and ethanol as well as increasing hybrid vehicle use
on the road.

In recent years, free-piston engine generator has increasingly been developed by a
number of groups worldwide [2-4]. One of the vital motivations of these research efforts
1s ‘arguably the potential of tree-piston engine generator to provide a compact and
efficient power generator for hybrid electric vehicles. free-piston engine generator
inherit variable compression ratio capability with fewer modifications compared to
conv’envtioqral crankjs_haft erigine, hence is suitable for multi-fuel operation [5]. Further,
its high efﬁciencyand rapid transient response makes it suitable for hybrid electric
Vehiqle;applic_ation [6]. Dﬁe to»theée reasons, free-piston engine generator is a suitable
technology. for substituting conventional crankshaft engine in light vehicles. .

In this research a free-piston engine generator specifically suited for series hybrid
vehicle application was developed with the aim of achieving high thermal efficiency

and low emissions.
1.2°  The free-piston engine

A free-piston engine is an engine which operates without the crankshaft or any other
rotating mechanisms. The engine operates directly via dynamic balancing of the
longitudinal forces acting on a single moving translator which can be coupled with an

air compressor, a hydraulic pump or a linear generator.



The free-piston concept has a long history which conceptually begins with the Otto-
Langen atmospheric free-piston engine in 1867 [7, 8]. This early prototype of a free-
piston engine was meant for rotary applications which were made possible by the use of
rack and pinion mechanisms. Among the fundamental problem with this configuration
was the difficulty to sustain the cyclic operation. Later, this issue was solved by
integrating a crank-slider mechanism for cyclic operation and a flywheel as energy
storage device to sustain the cyclic operation. This configuration produced the basic
form of crankshaft engine for internal combustion (IC) applications.

With increasing concern on global warming and sustainability, crankshaft IC engine
technology has been under intense scrutiny due to its relatively low efficiency and poor
exhaust gas emissions. The modern IC engine efficiency for hybrid vehicle applicatién
has been reported as 30-37% for SI and 40% for CI [9]. Therefore, an alternative prime
mover is seek, especially one that can give higher efficiency and low emission for the
application of hybrid electric vehicle; i.e. the free-piston engine generator.

The appeal of the free-piston engine lies in its promising advantages, such as high
power to weight ratio, multi-fuel capability, and low manufacturing cost and low
maintenance due to less components plus its mechanical simplicity [5, 10-12]. This
technology when coupled with a linear generator and energy storage system can fulfil
the essential requirements of the electric vehicle or auxiliary power unit [13].

Further, the absence of the crankshaft and ﬂywheéls may result in higher thermal
efficiency and capable of operating with varying compression ratios. It has been
reported that the indi(:ated'thermal"'efﬁc_iericy could be is as high as 56% in rapid
compression expansion machine experiments [14].

Previous successful operation of a free-piston engine coupled with a hydraulic pump.
and air compressors have been reported [S]. However, the free-piston engine coupled
~with a linear generator is still hindered with problems such as rﬁisﬁr_e, unstable
operation, piston motion control challenges and complexity in the control system design
[15-18]. Although the published work on free-piston engine generators is extens‘ive,
very few report successfully running prototypes. These are the main motivations for

embarking on this research work.

1.3 Aims and objectives

The aim of the research is to develop and test a dual-piston type free-piston engine
generator prototype. In order to achieve this aim, the following specific objectives of

the research were set:



1. To develop a one-dimensional model of a two-stroke spark ignition free-piston
engine generator.

2. To optimise operational parameters of the simulation model.

3. To build a dual-piston type free-piston engine generator prototype and its
experimental test rig.

4. To evaluate free-piston engine generator prototype motoring performance during
starting.

5. To conduct parametric and performance investigation of the free-piston enginev

generator through validated simulation model.

1.4 Methodology and thesis outline

The content of the thesis was organised according to the methodology of the research
and comprised of the following chapters:

Chapter 2 introduces the free-piston engine generator fundamental principles and
then presents literature review on the paraméters and challenges in the area as fepofted ,
by major research groups worldwide. In addition, patented concepts and technologies.
by key automotive companies were described. These patents review illustrate key
design aspect and technological mitigation on some of the challengés highlighted by.
free-piston engine researchers. From the review, a number of challenges have been
identified as the common denominator for this technology amongst academic and
industrial researchers.

Chapter 3 describes the-development of four main simulation models using one-
dimensional simulation tools. All models were a single cylinder engines. Both four-
stroke crankshaft engine models had been validated while the two-stroke crankshaft
engine model was optimised for. performance through parametric investigations: The
final optimised two-stroke crankshaft engine model was converted into the two-stroke
free-piston engine model by using the imposed-piston motion (IPM) sub-model. The
free-piston engine model was optimised for maximum performance and the findings are
discussed.

- Chapter 4 presents the development of the prototype and test rig of the free-piston
engine generator. The design and components selection are outlined and relevant
procedures and data acquisition sequences established prior to experimental
investigation are described.

Chapter 5 presents experimental investigations conducted on the prototype for

motoring performance during starting, pneumatic valve actuators and in-cylinder
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pressure assessments. The motoring results were used for validating the free-piston
engine simulation model developed in Chapter 3. |

Chapter 6 presents the dynamic modelling and simulations in MATLAB Simulink to
improve the piston motion profiles in the imposed piston motion IPM sub-model. The
final dual-piston type free-piston engine generator model was developed from the single
cylinder free-piston engine model in Chapter 3. Parametric study and performance
investigations were conducted on the final models of the free-piston engine generator
and crankshaft engine. |

Fmally, Chapter 7 summar1sed the significant findings and research contributions

together w1th proposed 1mprovements and future research.

1.5 _Contribution to existing research

A substant1al number of publications on free-piston engme generator technology
| revolve around the numerical modelling and simulations. A small number of running
lprototypes have been reported and no significant effort towards commercialisation has
occurred. |
This work contributes to existing research by developing running prototype of a free-
piston engine generator. The engine is a two-stroke dual-piston type with poppet valves
to control the gas exchange process which has the potential of major operational. o
»beneﬁts B _ | - | o | o
_ The simulation tool used for this research has been used for a direct comparlson
between’ crankshafts versus free-piston engine models The free-plston model results -
have been validated’ agamst an actual running prototype durmg its startmg operation |
over a W1de range of engine speeds Further the simulation has shown the posrtive

: 1mpact of piston motion around TDC ¢ on the free- piston engine performance



Chapter 2. Free-piston engine development and challenges

This chapter is dedicated to the literature study of recent designs and concepts for
free-piston engine generators amongst industrial organisations and key areas focused by
researchers. By studying recent patent documents and publications, an insight into -
research effort on free-piston engines is obtained. Further, these publications provide a
useful indication as to ‘what these developers see as the main technical challenges for
this technology.

Several numerical investigations are studied and reported efficiency and performance
are highlighted. Further, parameters affécting performance and operation of such
engine are discussed. This review aims to correlate various crucial reports on free-
piston engine génerator in order to identify gaps in the area and to assist prototype
development.

Parts of the work presented in this chapter were présented by Hanipabh, et al. [19].

2.1 Free-piston engine generator fundamental principles

A free-piston engine works on the principle of dynamic forces which produces linear
reciprocation motion. Such an engine is said to be dynamically constrained as opposed
to a kinematically constrained-crank-slider engine [11]. Dynamically constrained-
means the piston stop positions (TDC and BDC) are not constant and its motion profile
is not governed by any mechanical component as in the crankshaft engine.

In the crankshaft engine, the pi_ston’stdp positions are consistent and can be
represented by a kinematic felationship between crankshaft radius, connecting rod
length and crank angle. Further, due to the absence of the crank-slider mechanism, the
fundamental principle of operation of this engine requires a new approach.

The basic configuration of a free-piston engine is shown in Figure 2.1, whichis a
.single piston configuration. Primarily, for cyclic operation to be possible, a free-piston
engine requires a bounce device to ensure the piston returns to initial top-dead-centre

position for the next engine cycle.



Combustion Chamber Bounce Chamber

Main Piston Secondary Piston
Figure 2.1: Basic configuration of a single piston free-piston engine [11]
This cyclic operation can be achieved in the following forms:

e second combustion chamber [17, 20]
e compressed air storage [21]
o hydrauhc fluid storage [22]

Since ne1ther a flywheel nor a crankshaft is available to provide inertial energy for
continuous operation. Farmer [23] described a ‘cushion’ cylinder which may be ut1l1secl
as an.energy storage device. In conventional crankshaft engines, the angular molnentum’-
of the crankshaft mechanism and the flywheel aides starting. Different techniques have
to be devised for starting a free-piston engine and generally, for a free-piston engine, the
starting mechanism can be provided using:

wound springs [23]
compressed air [23]
hydraulic fluid [22]
linear motor [17] -

In terms of the engme cycle, a free-p1ston engine naturally operates as a two-stroke
cycle although complex four-stroke cycle versions are pOSS1ble [24, 25] The two stroke
version is simpler and thus more widely adopted since combustlon occurs at every
stroke to provide expansion energy requ1red for rec1procat10n thereby increasing its

power density.

2.1.1° - Configurations

~ Generally, free-piston engine design can be categorised into three main
conﬁgurations as shown in Figure 2.2 reported by Aichlmayr [11] and Mikalsen and
Roskilly [5]. '



Combustion Chamber

(a) Single Piston.

Load and Rebound Device

Synchronizing Linkage

(b) Opposed Piston.

“Load and Rebound Devices

/Combustion Chambers

(c) Dual Piston.

\'L'oad ‘

Figure 22 Three main coqﬁgurations for free-piston engine [11]. .

2.1.1.1  Single Piston

Single piston typé free-piston engine is the basic design which is comprised of single
piston, single combustion chamber, a load and a rebound device. This design is mainly
émployed.for air compressor and hydraulic pump applications [5]. Thus, the load and
rebound device in such application can be integrated. The main advantage of this design

is its simplicity and easier to control but the design is not méchanically balanced [11].

2.1.1.2°  Opposed Piston

An opposed piston type free-piston engine comprises of two o_pposing single piston
design linked together with a synchronising linkage. A éommbh combustion chamber is
placed-in the middle while each individual piston can have its own load and rebound
device. It has been reported in compressor [23], gasiﬁér [26] and hydraulic applications
[27]. The main advantage of this design is; it is inherently balance when symmetrically
designed, with equal masses of pistons and synchronising linkage added [5, 11].
However, the overall design is more complex and bulky than single or dual piston type.
Further, the synchroniser linkage pose additional frictional losses and mechanically

constrained the piston, hence it is not exactly ‘free-piston’ design.
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out internal combustion engines. The less risky route is by using a combination of
different fuel types such as bio-fuel and ethanol as well as increasing hybrid vehicle use
on the road.

In recent years, free-piston engine generator has increasingly been developed by a
number of groups worldwide [2-4]. One of the vital motivations of these research efforts
1s ‘arguably the potential of tree-piston engine generator to provide a compact and
efficient power generator for hybrid electric vehicles. free-piston engine generator
inherit variable compression ratio capability with fewer modifications compared to
conv’envtioqral crankjs_haft erigine, hence is suitable for multi-fuel operation [5]. Further,
its high efﬁciencyand rapid transient response makes it suitable for hybrid electric
Vehiqle;applic_ation [6]. Dﬁe to»theée reasons, free-piston engine generator is a suitable
technology. for substituting conventional crankshaft engine in light vehicles. .

In this research a free-piston engine generator specifically suited for series hybrid
vehicle application was developed with the aim of achieving high thermal efficiency

and low emissions.
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A free-piston engine is an engine which operates without the crankshaft or any other
rotating mechanisms. The engine operates directly via dynamic balancing of the
longitudinal forces acting on a single moving translator which can be coupled with an

air compressor, a hydraulic pump or a linear generator.



The free-piston concept has a long history which conceptually begins with the Otto-
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piston engine was meant for rotary applications which were made possible by the use of
rack and pinion mechanisms. Among the fundamental problem with this configuration
was the difficulty to sustain the cyclic operation. Later, this issue was solved by
integrating a crank-slider mechanism for cyclic operation and a flywheel as energy
storage device to sustain the cyclic operation. This configuration produced the basic
form of crankshaft engine for internal combustion (IC) applications.

With increasing concern on global warming and sustainability, crankshaft IC engine
technology has been under intense scrutiny due to its relatively low efficiency and poor
exhaust gas emissions. The modern IC engine efficiency for hybrid vehicle applicatién
has been reported as 30-37% for SI and 40% for CI [9]. Therefore, an alternative prime
mover is seek, especially one that can give higher efficiency and low emission for the
application of hybrid electric vehicle; i.e. the free-piston engine generator.

The appeal of the free-piston engine lies in its promising advantages, such as high
power to weight ratio, multi-fuel capability, and low manufacturing cost and low
maintenance due to less components plus its mechanical simplicity [5, 10-12]. This
technology when coupled with a linear generator and energy storage system can fulfil
the essential requirements of the electric vehicle or auxiliary power unit [13].

Further, the absence of the crankshaft and ﬂywheéls may result in higher thermal
efficiency and capable of operating with varying compression ratios. It has been
reported that the indi(:ated'thermal"'efﬁc_iericy could be is as high as 56% in rapid
compression expansion machine experiments [14].

Previous successful operation of a free-piston engine coupled with a hydraulic pump.
and air compressors have been reported [S]. However, the free-piston engine coupled
~with a linear generator is still hindered with problems such as rﬁisﬁr_e, unstable
operation, piston motion control challenges and complexity in the control system design
[15-18]. Although the published work on free-piston engine generators is extens‘ive,
very few report successfully running prototypes. These are the main motivations for

embarking on this research work.

1.3 Aims and objectives

The aim of the research is to develop and test a dual-piston type free-piston engine
generator prototype. In order to achieve this aim, the following specific objectives of

the research were set:



1. To develop a one-dimensional model of a two-stroke spark ignition free-piston
engine generator.

2. To optimise operational parameters of the simulation model.

3. To build a dual-piston type free-piston engine generator prototype and its
experimental test rig.

4. To evaluate free-piston engine generator prototype motoring performance during
starting.

5. To conduct parametric and performance investigation of the free-piston enginev

generator through validated simulation model.

1.4 Methodology and thesis outline

The content of the thesis was organised according to the methodology of the research
and comprised of the following chapters:

Chapter 2 introduces the free-piston engine generator fundamental principles and
then presents literature review on the paraméters and challenges in the area as fepofted ,
by major research groups worldwide. In addition, patented concepts and technologies.
by key automotive companies were described. These patents review illustrate key
design aspect and technological mitigation on some of the challengés highlighted by.
free-piston engine researchers. From the review, a number of challenges have been
identified as the common denominator for this technology amongst academic and
industrial researchers.

Chapter 3 describes the-development of four main simulation models using one-
dimensional simulation tools. All models were a single cylinder engines. Both four-
stroke crankshaft engine models had been validated while the two-stroke crankshaft
engine model was optimised for. performance through parametric investigations: The
final optimised two-stroke crankshaft engine model was converted into the two-stroke
free-piston engine model by using the imposed-piston motion (IPM) sub-model. The
free-piston engine model was optimised for maximum performance and the findings are
discussed.

- Chapter 4 presents the development of the prototype and test rig of the free-piston
engine generator. The design and components selection are outlined and relevant
procedures and data acquisition sequences established prior to experimental
investigation are described.

Chapter 5 presents experimental investigations conducted on the prototype for

motoring performance during starting, pneumatic valve actuators and in-cylinder
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Chapter 3. One-dimensional modelling and simulation

Towards the development of a free-piston engine generator, the need for a simulation
model is inevitable. The model should be able to assist the design and development

‘while capabl.e of pushing the boundaries in predi_cting the performance of the prototype
Withqut jeopardising the systems’ hardware.

- This ‘chapter describes one-dimensional modelling and simulation for the single
cylinder gasoline spark ignition two-stroke free-piston engine using Ricardo WAVE.
Two-stroke free-piston engine model was developed from validated four-stroke
crankshaft engine model as explained in Section 3.3. The simulation results were used
for prototype development in Chapter 4 and free-piston engine model validation in
Chapter 5. The optimised single cylinder free-piston engine model in this chapter .
formed a basic model for dual-piston free-piston engine generator model in Chapter 6

for final performance investigations.

3.1 Theoretical review

One-dimensional (1D) modelling of an internal combustion eriginer is one step
beyond standard engine thermodynamic analyses. The coding comprises fundamental
thermodynamics"equations and empirical relationships which ére able to simulate the
overall engine behaviour sufficiently to provide preliminary performance and emissions
characterisﬁcs of an engine under development.

A 1D modelling and simulation tool is used for engine development by major
automotive companies to assist prototype development due to its capability to produce
realistic results quickly. Further, it requires less overhead cost and computational cost
without the need for three-dimensional computer aided design (CAD) design of the
engine. Therefore, 1D tool was selected to assist the prototype development for the
aforementioned advantages.

WAVE is a computer-aided engineering software package developed by Ricardo

which allows the analysis of the dynamics of pressure waves, mass flows, and energy
36



losses in ducts, plenums, and manifolds of the engine. It provides a time-dependent
solution of fluid dynamics and thermodynamics 1D equations. The software has
complex sub-models to simulate friction, heat transfer, scavenging, combustion, knock

and exhaust emissions.

3.1.1 Engine Parameters
The terms and definitions used in this section is a combination of information obtained
from Heywdod [8], Blair [100] and Pulkrabek [40] for crankshaft engines.

| T_h’é definitions for combustion chamber and cylinder geometry are shown in Figure
3.1. The diaﬁéter of the cylinder is the bore (B). The stroke (S) is defined as the
distance ﬁavelled by the piston from '(bottom dead center) BDC to (top dead center)
TDC and the volume within the stroke is known as the swept volume (V;). For a free-
pisfon engine, fhe nominal stroke (Syom) Will be defined as the stroke length is not
constant. When the pistoh is at TDC, the remaining space between the top of the piston
and the cylinder head is known as the clearance volume (V;.), which is contained within

the clearance distance (o).

Clearance
Distance=c¢
5 TDC
Stroke =S
BDC

- Figure 3.1: Cylinder geometry definitions for an engine with-a flat top piston
(without the bowl)

Further parameters and definitions are given by following equations:
e Swept volume, V;:
(B2S)
4

For a known clearance volume (V) above the piston at TDC:

v, = [m’] 3.1

e Geometric Compression Ratio, (CR); is defined as:

Y
(CR)G=(;C)

[-] 32
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3.2 Modelling approach and sub-models

Modelling and simulation in Ricardo WAVE programs suite is conducted using three
sub-programs as shown in Figure 3.2. WaveBuild is the main pre-processor program
used for initial setup of the simulation. The geometrical properties of the model and its
boundary conditions are defined in this sub-program using its graphical user interface
which is then converted into input format appropriate for the solver. WAVE is the
solver used in this research to solve all the 1D fluid dynamics and thermodynamics
time- dependent equations. Fmally, the results are viewed and interpreted using
WavePost post-processor in the form of 2D or 3D graphs, pictures, text- reportmg or

other media.

WaveBuild i \ WavePost

Figure 3.2:. Three primary sub-programs in Ricardo WAVE programs suite
employed.in this research.

The first step in building an dccurate model is to gather the geometric data. The
engine can'be broken down into the main subsystems, i.e. intake runner, intake valve
inlet, 'cylinder; exhaust valve inlet, exhaust runner. The dimensions and characteristics
related to the en’gine required are bore, stroke, connecting rod length, compression ratio,
valves dlameter valves lift and valve timings. Engine operating parameters initial
conditions must be defined and identified as engine operating speed, fuel type, air/fuel
ratio and ambient conditions (i.e. temperature and pressure). _

The model was built in the WaveBuild tool with the variables shown in Figure 3.3.
In this basic model, the intake and exhaust sides are directly exposed to the ambient
conditions. The throttle valve, intake and exhaust manifold dimensions were added

during the optimisation phase of the simulation as presented in Section 3.3.2.
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