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Abstract 

A dual-piston type two-stroke spark-ignition free-piston engine generator prototype 

has been developed. A comprehensive review on recent published researches and patent 

documents from academia and industrial organisations on free-piston engine generator, 

especially on the applications for series hybrid electric vehicles, was conducted. 

Relevant parameters affecting the operating performance and a number of challenges 

had been identifiedas the common denominator for this technology. Modelling and 

simulations using one-dimensional tools were conducted in parallel with the 

development activities. Three main simulation models for the crankshaft engines were 

developed, validated and optimised before converted into the free-piston engine model. 

This was done by using imposed-piston motion sub-model.. The two-stroke free-piston 

engine model had undergone parametric study for valve timing optimisation. This 

model was validated by using motoring experimental results using the developed free-

piston engine generator prototype. From the experimental results, the free-piston engine 

generator motoring performance was able -to meet the targeted cyclic speed and 

compression pressure for starting. However, the free-piston engine generator operating 

speed was limited to 5Hz and below due to valve delay inherent in the pneumatic 

actuators. The motoring results were used to validate the free-piston engine model 

which showed a good agreement at various starting speeds. Finally, performance and 

parametric investigations were conducted using the final validated and refined free-

piston engine model. From the simulation, it was found that the free-piston engine had 

similar response to air-fuel ratio and ignition position variations compare to crankshaft 

engine with the free-piston engine performance was slightly reduced. Further, the 

reduced frictional losses contributed little to its performance gain. However, the high 

influence of piston motion around TDC on the engine performance, observed in free-

piston engine, could be manipulated to increase its performance significantly.
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Chapter 1. Introduction 

	

1.1	 Background 

The recent report by Energy Technologies Institute (ETI) has highlighted that light 

vehicles contribute around 16% of UK CO 2 emissions [1]. It was proposed that a drastic 

approach for reducing such emissions would be to adopt electric vehicles and phasing 

out internal combustion engines. The less'risky route is by using a combination of 

different fuel types such as bio-fuel and ethanol as well as increasing hybrid vehicle use 

on the road. 

In recent years, free-piston engine generator has increasingly been developed by a 

number of groups worldwide [2-4]. One of the vital motivations of these research effort5 

is arguably the potential of free-piston engine generator to provide a compact and 

efficient power generator for hybrid electric vehicles, free-piston engine generator 

inherit variable compression ratio capability with fewer modifications compared to 

conventional crankshaft engine, hence is suitable for multi-fuel operation [5]. Further, 

its high efficiency and rapid transient response makes it suitable for hybrid electric 

vehicle application [6] Due to these reasons, free-piston engine generator is a suitable 

technology for substituting conventional crankshaft engine in light vehicles 

In this research a free-piston engine generator specifically suited for series hybrid 

Vehicle application was developed with the aim of achieving high thermal efficiency 

and low emissions. 

	

1.2	 The free-piston engine 

A free-piston engine is an engine which operates without the crankshaft or any other 

rotating mechanisms. The engine operates directly via dynamic balancing of the 

longitudinal forces acting on a single moving translator which can be coupled with an 

air compressor, a hydraulic pump or a linear generator.



The free-piston concept has a long history which conceptually begins with the Otto-

Langen atmospheric free-piston engine in 1867 [7, 81. This early prototype of a free-

piston engine was meant for rotary applications which were made possible by the use of 

rack and pinion mechanisms. Among the fundamental problem with this configuration 

was the difficulty to sustain the cyclic operation. Later, this issue was solved by 

integrating a crank-slider mechanism for cyclic operation and a flywheel as energy 

storage device to sustain the cyclic operation. This configuration produced the basic 

form of crankshaft engine for internal combustion (IC) applications. 

With increasing concern on global warming and sustainability, crankshaft IC engine 

technology has been under intense scrutiny due to its relatively low efficiency and poor 

exhaust gas emissions. The modem IC engine efficiency for hybrid vehicle application 

has been reported as 30-37% for SI and 40% for Cl [9]. Therefore, an alternative prime 

mover is seek, especially one that can give higher efficiency and low emission for the 

application of hybrid electric vehicle; i.e. the free-piston engine generator. 

The appeal of the free-piston engine lies in its promising advantages, such as high 

power to weight ratio, multi-fuel capability, and low manufacturing cost and low 

maintenance due to less components plus its mechanical simplicity [5, 10-12]. This 

technology when coupled with a linear generator and energy storage system can fulfil 

the essential requirements of the electric vehicle or auxiliary power unit [13]. 

Further, the absence of the crankshaft and flywheels may result in higher thermal 

efficiency and capable of operating with varying compression ratios. It has been 

reported that the indicated thermal efficiency could be is as high as 56% in rapid 

compression expansion machine experiments [14]. 

Previous successful operation of a free-piston engine coupled with a hydraulic pump 

and air compressors have been reported [5]. However, the free-piston engine coupled 

with a linear generator is still hindered with problems such as misfire, unstable 

operation, piston motion control challenges and complexity in the control system design 

[15-18]. Although the published work on free-piston engine generators is extensive, 

very few report successfully running prototypes. These are the main motivations for 

embarking on this research work. 

1.3	 Aims and objectives 

The aim of the research is to develop and test a dual-piston type free-piston engine 

generator prototype. In order to achieve this aim, the following specific objectives of 

the research were set:
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1. To develop a one-dimensional model of a two-stroke spark ignition free-piston 

engine generator. 

2. To optimise operational parameters of the simulation model. 

3. To build a dual-piston type free-piston engine generator prototype and its 

experimental test rig. 

4. To evaluate free-piston engine generator prototype motoring performance during 

starting. 

5. To conduct parametric and performance investigation of the free-piston engine 

generator through validated simulation model. 

1.4	 Methodology and thesis outline 

The content of the thesis was organised according to the methodology of the research 

and comprised of the following chapters: 

Chapter. 2 introduces the free-piston engine generator fundamental principles and 

then presents literature review on the parameters and challenges in the area as reported, 

by major research groups worldwide. In addition, patented concepts and technologies 

by key automotive companies were described. These patents review illustrate key 

design aspect and technological mitigation on some of the challenges highlighted by 

free-piston engine researchers. From the review, a number of challenges have been 

identified as the common denominator for this technology amongst academic and 

industrial researchers. 

Chapter 3 describes the-development of four main simulation models using one-

dimensional simulation tools. All models were a single cylinder engines. Both four-

stroke crankshaft engine models had been validated while the two-stroke crankshaft 

engine model was optimised for performance through parametric investigations. The 

final optimised two-stroke crankshaft engine model was converted into .the two-stroke 

free-piston engine model by using the imposed-piston motion (1PM) sub-model. The 

free-piston engine model was optimised for maximum performance and the findings are 

discussed. 

Chapter 4 presents the development of the prototype and test rig of the free-piston 

engine generator. The design and components selection are outlined and relevant 

procedures and data acquisition sequences established prior to experimental 

investigation are described. 

Chapter 5 presents experimental investigations conducted on the prototype for 

motoring performance during starting, pneumatic valve actuators and in-cylinder



pressure assessments. The motoring results were used for validating the free-piston 

engine simulation model developed in Chapter 3. 

Chapter 6 presents the dynamic modelling and simulations in MATLAB Simulink to 

improve the piston motion profiles in the imposed piston motion IPM sub-model. The 

final dual-piston type free-piston engine generator model was developed from the single 

cylinder free-piston engine model in Chapter 3. Parametric study and performance 

investigations were conducted on the final models of the free-piston engine generator 

and crankshaft engine. 

Finally, Chapter 7 summarised the significant findings and research contributions 

together with proposed improvements and future research. 

1.5	 Contribution to existing research 

A substantial number of publications on free-piston engine generator technology 

revolve around the numerical modelling and simulations. A small number of running 

prototypes have been reported and no significant effort towards commercialisation has 

occurred. 

This work contributes to existing research by developing running prototype of a free-

piston engine generator. The engine is a two-stroke dual-piston type with poppet valves 

to control the gas exchange process which has the potential of major operational 

benefits. 

The simulation tool used for this research has been used for a direct comparison 

between crankshafts versus free-piston engine models The free-piston model results 

have been validated against an actual running prototype during its starting operation 

over a wide range of engine speeds Further, the simulation has shown the positive 

impact of piston motion around TDC on the free-piston engine performance 
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Chapter 2. Free-piston engine development and challenges 

This chapter is dedicated to the literature study of recent designs and concepts for 

free-piston engine generators amongst industrial organisations and key areas focused by 

researchers. By studying recent patent documents and publications, an insight into 

research effort onfree-piston engines is obtained. Further, these publications provide a 

useful iñdicátion as to what these developers see as the main technical challenges for 

this technology. 

Several numerical investigations are studied and reported efficiency and performance 

are highlighted. Further, parameters affecting jerformance and operation of such 

engine are discussed. This review aims to correlate various crucial reports on free-

piston engine generator in order to identify gaps in the area and to assist prototype 

development. 

Parts of the work presented in this chapter were presented by Hanipah, et al. [19]. 

2.1	 Free-piston engine generator fundamental principles 

A free-piston engine works on the principle of dynamic forces which produces linear 

reciprocation motion. Such an engine is said to be dynamically constrained as opposed 

to a kinematically constrained-crank-slider engine [11]. Dynamically constrained 

means the piston stop positions (TDC and BDC) are not constant and its motion profile 

is not governed by any mechanical component as in the crankshaft engine. 

In the crankshaft engine, the piston stop positions are consistent and can be 

represented by a kinematic relationship between crankshaft radius, connecting rod 

length and crank angle. Further, due to the absence of the crank-slider mechanism, the 

fundamental principle of operation of this engine requires a new approach. 

The basic configuration of a free-piston engine is shown in Figure 2. 1, which is a 

single piston configuration. Primarily, for cyclic operation to be possible, a free-piston 

engine requires a bounce device to ensure the piston returns to initial top-dead-centre 

position for the next engine cycle.
5



Combustion Chamber	 Bounce Chamber 

Main Piston	 Secondary Piston 

Figure 2.1: Basic configuration of a single piston free-piston engine [11] 

This cyclic operation can be achieved in the following forms: 

• second combustion chamber [17, 201 
• compressed air storage [21] 
• hydraulic fluid storage [22] 

Since neither a flywheel nor a crankshaft is available to provide inertial energy for 

continuous operation. Farmer [23] described a 'cushion' cylinder which may be utilised 

as an energy storage device. In conventional crankshaft engines, the angular momentum 

of the crankshaft mechanism and the flywheel aides starting. Different techniques have 

to be devised for starting a free-piston engine and generally, for a free-piston engine, the 

starting mechanism can be provided using: 

• wound springs [23] 
• compressed air [23] 
• hydraulic fluid [22] 
• linearmotor[17] 

In terms of the engine cycle, a free-piston engine naturally operates as a two-stroke 

cycle although complex four-stroke cycle versions are possible [24, 25]. The two-stroke 

version is simpler and thus more widely adopted since combustion occurs at every 

stroke to provide expansion energy required for reciprocation thereby increasing its 

power density. 

2.1.1	 Configurations 

Generally, free-piston engine design can be categorised into three main 

configurations as shown in Figure 2.2 reported by Aichlmayr [11] and Mikalsen and 

Roskilly [5].
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Combustion Chamber 

Load and Rebound Device 

Synchronizing Linkage

ombustion Chamber 

Lr	 IllllLL; I -
'Load and Rebound Devices 

Combustion Chamber.

111 

Load

(a) Single Piston. 

(b) Opposed Piston. 

(c) Dual Piston. 

Figure 2.2: Three main configurations for free-piston engine [11]. 

	

2.1.1.1	 single Piston 

Single piston type free-piston engine is the basic design which is comprised of single 

piston, single combustion chamber, a load and a rebound device. This design is mainly 

employed for air compressor and hydraulic pump applications [5]. Thus, the load and 

rebound device in such application can be integrated. The main advantage of this design 

is its simplicity and easier to control but the design is not mechanically balanced [11]. 

	

2.1.1.2	 Opposed Piston 

An opposed piston type free-piston engine comprises of two opposing single piston 

design linked together with a synchronising linkage. A common combustion chamber is 

placed in the middle while each individual piston can have its own load and rebound 

device. It has been reported in compressor [23], gasifier [26] and hydraulic applications 

[27]. The main advantage of this design is; it is inherently balance when symmetrically 

designed, with equal masses of pistons and synchronising linkage added [5, 11]. 

However, the overall design is more complex and bulky than single or dual piston type. 

Further, the synchroniser linkage pose additional frictional losses and mechanically 

constrained the piston, hence it is not exactly 'free-piston' design. 
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Chapter 1. Introduction 

	

1.1	 Background 

The recent report by Energy Technologies Institute (ETI) has highlighted that light 

vehicles contribute around 16% of UK CO 2 emissions [1]. It was proposed that a drastic 

approach for reducing such emissions would be to adopt electric vehicles and phasing 

out internal combustion engines. The less'risky route is by using a combination of 

different fuel types such as bio-fuel and ethanol as well as increasing hybrid vehicle use 

on the road. 

In recent years, free-piston engine generator has increasingly been developed by a 

number of groups worldwide [2-4]. One of the vital motivations of these research effort5 

is arguably the potential of free-piston engine generator to provide a compact and 

efficient power generator for hybrid electric vehicles, free-piston engine generator 

inherit variable compression ratio capability with fewer modifications compared to 

conventional crankshaft engine, hence is suitable for multi-fuel operation [5]. Further, 

its high efficiency and rapid transient response makes it suitable for hybrid electric 

vehicle application [6] Due to these reasons, free-piston engine generator is a suitable 

technology for substituting conventional crankshaft engine in light vehicles 

In this research a free-piston engine generator specifically suited for series hybrid 

Vehicle application was developed with the aim of achieving high thermal efficiency 

and low emissions. 

	

1.2	 The free-piston engine 

A free-piston engine is an engine which operates without the crankshaft or any other 

rotating mechanisms. The engine operates directly via dynamic balancing of the 

longitudinal forces acting on a single moving translator which can be coupled with an 

air compressor, a hydraulic pump or a linear generator.



The free-piston concept has a long history which conceptually begins with the Otto-

Langen atmospheric free-piston engine in 1867 [7, 81. This early prototype of a free-

piston engine was meant for rotary applications which were made possible by the use of 

rack and pinion mechanisms. Among the fundamental problem with this configuration 

was the difficulty to sustain the cyclic operation. Later, this issue was solved by 

integrating a crank-slider mechanism for cyclic operation and a flywheel as energy 

storage device to sustain the cyclic operation. This configuration produced the basic 

form of crankshaft engine for internal combustion (IC) applications. 

With increasing concern on global warming and sustainability, crankshaft IC engine 

technology has been under intense scrutiny due to its relatively low efficiency and poor 

exhaust gas emissions. The modem IC engine efficiency for hybrid vehicle application 

has been reported as 30-37% for SI and 40% for Cl [9]. Therefore, an alternative prime 

mover is seek, especially one that can give higher efficiency and low emission for the 

application of hybrid electric vehicle; i.e. the free-piston engine generator. 

The appeal of the free-piston engine lies in its promising advantages, such as high 

power to weight ratio, multi-fuel capability, and low manufacturing cost and low 

maintenance due to less components plus its mechanical simplicity [5, 10-12]. This 

technology when coupled with a linear generator and energy storage system can fulfil 

the essential requirements of the electric vehicle or auxiliary power unit [13]. 

Further, the absence of the crankshaft and flywheels may result in higher thermal 

efficiency and capable of operating with varying compression ratios. It has been 

reported that the indicated thermal efficiency could be is as high as 56% in rapid 

compression expansion machine experiments [14]. 

Previous successful operation of a free-piston engine coupled with a hydraulic pump 

and air compressors have been reported [5]. However, the free-piston engine coupled 

with a linear generator is still hindered with problems such as misfire, unstable 

operation, piston motion control challenges and complexity in the control system design 

[15-18]. Although the published work on free-piston engine generators is extensive, 

very few report successfully running prototypes. These are the main motivations for 

embarking on this research work. 

1.3	 Aims and objectives 

The aim of the research is to develop and test a dual-piston type free-piston engine 

generator prototype. In order to achieve this aim, the following specific objectives of 

the research were set:
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1. To develop a one-dimensional model of a two-stroke spark ignition free-piston 

engine generator. 

2. To optimise operational parameters of the simulation model. 

3. To build a dual-piston type free-piston engine generator prototype and its 

experimental test rig. 

4. To evaluate free-piston engine generator prototype motoring performance during 

starting. 

5. To conduct parametric and performance investigation of the free-piston engine 

generator through validated simulation model. 

1.4	 Methodology and thesis outline 

The content of the thesis was organised according to the methodology of the research 

and comprised of the following chapters: 

Chapter. 2 introduces the free-piston engine generator fundamental principles and 

then presents literature review on the parameters and challenges in the area as reported, 

by major research groups worldwide. In addition, patented concepts and technologies 

by key automotive companies were described. These patents review illustrate key 

design aspect and technological mitigation on some of the challenges highlighted by 

free-piston engine researchers. From the review, a number of challenges have been 

identified as the common denominator for this technology amongst academic and 

industrial researchers. 

Chapter 3 describes the-development of four main simulation models using one-

dimensional simulation tools. All models were a single cylinder engines. Both four-

stroke crankshaft engine models had been validated while the two-stroke crankshaft 

engine model was optimised for performance through parametric investigations. The 

final optimised two-stroke crankshaft engine model was converted into .the two-stroke 

free-piston engine model by using the imposed-piston motion (1PM) sub-model. The 

free-piston engine model was optimised for maximum performance and the findings are 

discussed. 

Chapter 4 presents the development of the prototype and test rig of the free-piston 

engine generator. The design and components selection are outlined and relevant 

procedures and data acquisition sequences established prior to experimental 

investigation are described. 

Chapter 5 presents experimental investigations conducted on the prototype for 

motoring performance during starting, pneumatic valve actuators and in-cylinder



Chapter 3. One-dimensional modelling and simulation 

Towards the development of a free-piston engine generator, the need for a simulation 

model is inevitable. The model should be able to assist the design and development 

while capable of pushing the boundaries in predicting the performance of the prototype 

without jeopardising the systems' hardware. 

This chapter describes one-dimensional modelling and simulation for the single 

cylinder gasoline spark ignition two-stroke free-piston engine using Ricardo WAVE. 

Two-stroke free-piston engine model was developed from validated four-stroke 

crankshaft engine model as explained in Section 3.3. The simulation results were used 

for prototype development in Chapter 4 and free-piston engine model validation in 

Chapter 5. The optimised single cylinder free-piston engine model in this chapter 

formed a basic model for dual-piston free-piston engine generator model in Chapter 6 

for final performance investigations. 

3.1	 Theoretical review 

One-dimensional (1D) modelling of an internal combustion engine is one step 

beyond standard engine thermodynamic analyses The coding comprises fundamental 

thermodynamics equations and empirical relationships which are able to simulate the 

overall engine behaviour sufficiently to provide preliminary performance and emissions 

characteristics of an engine under development. 

A 1D modelling and simulation tool is used for engine development by major 

automotive companies to assist prototype development due to its capability to produce 

realistic results quickly. Further, it requires less overhead cost and computational cost 

without the need for three-dimensional computer aided design (CAD) design of the 

engine. Therefore, 1D tool was selected to assist the prototype development for the 

aforementioned advantages. 

WAVE is a computer-aided engineering software package developed by Ricardo 

which allows the analysis of the dynamics of pressure waves, mass flows, and energy 
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losses in ducts, plenums, and manifolds of the engine. It provides a time-dependent 

solution of fluid dynamics and thermodynamics 1D equations. The software has 

complex sub-models to simulate friction, heat transfer, scavenging, combustion, knock 

and exhaust emissions. 

3.1.1	 Engine Parameters 

The terms and definitions used in this section is a combination of information obtained 

from Heywood [8], Blair [100] and Pulkrabek [40] for crankshaft engines. 

The definitions for combustion chamber and cylinder geometry are shown in Figure 

3.1. The diameter of the cylinder is the bore (B). The stroke (5) is defined as the 

distance travelled by the piston from (bottom dead center) BDC to (top dead center) 

TDC and the volume within the stroke is known as the swept volume (lT). For a free-

piston engine, the nominal stroke (S 01,,) will be defined as the stroke length is not 

constant. When the piston is at TDC, the remaining space between the top of the piston 

and the cylinder head is known as the clearance volume (Va), which is contained within 

the clearance distance (c).

- Clearance 
Distance = C 

TDC 
Bore = B 

-	 Stroke = S 

I	 . 

Figure 3.1: Cylinder- geometry definitions for an enginewith a flat top piston 
(without .the bowl) 

Further parameters and definitions are given by following equations: 

• Swept volume, V: 

(irB2S) 
vs=	 [m3}	 3.1 

For a known clearance volume (l') above the piston at TDC: 

• Geometric Compression Ratio, (CR) G is defined as: 

(CR) G = 
(V5 +V)	

[-]	 3.2 
vC
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3.2	 Modelling approach and sub-models 

Modelling and simulation in Ricardo WAVE programs suite is conducted using three 

sub-programs as shown in Figure 3.2. WaveBuild is the main pre-processor program 

used for initial setup of the simulation. The geometrical properties of the model and its 

boundary conditions are defined in this sub-program using its graphical user interface 

which is then converted into input format appropriate for the solver. WAVE is the 

solver used in this research to solve all the 1D fluid dynamics and thermodynamics 

time-dependent equations. Finally, the results are viewed and interpreted using 

WavePost post-processor in the form of 2D or 3D graphs, pictures, text-reporting or 

other media. 

Pre-processor	 Solvet
	 Post-processor 

IWawPnld 	 WAVE

	 I 	 M. 

Figure 3.2: Three primary sub-programs in Ricardo WAVE programs suite 
employed-in this research. 

The first step in building an accurate model is to gather the geometric data. The 

engine can-be.-broken down into the main subsystems, i.e. intake runner, intake valve 

inlet, cylinder, exhaust valve inlet, exhaust runner. The dimensions and characteristics 

related to the engine required are bore, stroke, connecting rod length, compression ratio, 

valves diameter, valves lift and valve timings. Engine operating parameters initial 

conditions must be defined and identified as engine operating speed, fuel type, air/fuel 

ratio and ambient conditions (i.e. temperature and pressure). 

The model was built in the WaveBuild tool with the variables shown in Figure 3.3. 

In this basic model, the intake and exhaust sides are directly exposed to the ambient 

conditions. The throttle valve, intake and exhaust manifold dimensions were added 

during the optimisation phase of the simulation as presented in Section 3.3.2. 
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