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Abstract 

Human has the ability to learn and decide their action based on experiences when con

fronting a problem. Human decision often involves multi-functionality, where multiple con

trol functions are applied for achieving a single goal. Conventional control often involves 

human in providing commands which mostly depends on the human decision. However, 

these decisions commonly involve single control function where multi-functionality can not 

be provided without human assistance. 

Learning Control helps a machine constructs its own control knowledge autonomously 

through operation experiences. The development of Control Knowledge through Learning 

Control would require a period of training that could involve a number of failures among 

successful attempts. The Control Knowledge obtained is usually limited to single control 

function based on the training environment with less flexibility in varying environment. 

Learning Control Systems with multiple functions could provide a wider range of con

trol options against any environment. In this research, Learning Control System with 

multi-functionality is designed and developed. Here, application of Learning Control with 

multi-functionality provides a more human-like control operation with ability to adapt and 

consider the surrounding environment during control operation. The designs were evaluated 

through experiments and simulations where results confirm the effectiveness of the designed 

system. Through these results, the designs of multi-functions Learning Control may provide 

a safer and reliable control on control devices including complex non-linear control device. 
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Chapter 1 

Introduction 

1.1 Research Background 

Human perform actions in order to complete task or react to surrounding environment. We 

render these actions in functions form. The actions are naturally based on purposes, which 

commonly act as goals. Successes and failures in achieving these goals are recorded in the 

human mind as knowledge, for references during future attempts. This form of learning 

represents human intelligence for being self-sustainable that is important in improving our 

skills for solving surrounding problems. 

Applying such intelligence in machines has been an issue surrounding many researchers. 

Methodologies for self-sustained autonomous machines have been well developed and various 

new methods and ideas are continuously being proposed in order to reduce human interven

tion in managing these machines. Providing actions of machines in form of functions help 

machines to self-evaluate their actions. Human-like functions are one of the focuses of these 

methods and application may provide methods for self-sustained autonomous machines that 

could react and adapt to surrounding environment. 

1.1.1 Multi-Functionality 

Human functions are not limited to individual components where each functions only reacts 

to a single goal. A goal may require multiple human functions to be obtainable. For example, 

in case of hurdle race, two human functions of jumping and running are combined to 

cross the finishing line which acts as a goal. Here, multiple functions are utilized, where 

a professional with only either jumping or running skills are not certain to be capable 

of achieving the finishing line perfectly. The above ability here is described as Multi -
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functionality. Through Multi-Functionality, an action can be learned and decided by 

multiple knowledge of skill, and applied when confronting a problem that cannot be solving 

by a single function. Here, Multi-functionality can be described as a quality of utilizing 

multiple functions for performing a single goal. 

A device with multi-functionality could render an action that considers multiple charac

teristics in surrounding environment through application of knowledge of skills from various 

environments. A device with conventional control method only utilizes control command 

that produces action based on a single function. Method of self-sustained machines could 

only utilize a single function to become sustainable and lack of flexibility in confronting 

foreign characteristics simultaneously. Multiple control option is needed in self-sustained 

machines in order to become autonomous. Multi-Functionality may provide a wide range 

of control option against any environment in self-sustainable machines. 

1.1.1.1 Multi-Functionality against Non-Linearity 

Most control method considers linearity in a device for deciding control option. A device 

with non-linearity will not able to utilize a single control method for the entire system due 

to parameters that would render the system unstable at a certain state. For example, a 

pendulum-cart device has two different states that require different control methods for 

operation. Multiple functions are needed to manage these multiple states. Conventional 

control method such as Cascade PD Control can only provide two functions for swing and 

stabilization control. In case of more functions required, such method could not manage to 

perform successfully. 

Unstable state 
(stabilization Control) 

Free Fall State 

State with harmonic motion 
(Swing Control) 

Figure 1.1: States for control of Cart Pendulum System. 
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Pendulum 
Ca rt Ref + Ref + f-- PD Control for - PD Control for Plant r-

Cart Position Pendulum Angle 

Pendulum State 

Cart State 

Figure 1.2: Cascade PD control of a Cart Pendulum System. 

Non-linearity also exists in our common devices such as vehicles. Non-linear Control in 

machines is complex and hard without an expert human knowledge in the control system. 

Aerial hovering vehicles such as helicopters require multiple functions for managing multiple 

states using the Thrust and Cyclic. 

Figure 1.3: Example of aerial hovering vehicle with non-linearity. (Parrot inc.) 

Manipulation of angular orientation with thrust can provide position transition but 

requires skills in multi-functionality. Human multi-functionality provides expert control of 

machines with non-linearity. Providing multi-functionality in a non-linear control system 

could provide a safe and reliable control as good as an expert human. 

Human multi-functionality provides expert control of machines with non-linearity due 

to utilization of multiple knowledge of skill when managing the machines. Through skills 

of angular orientation and hovering thrust manipulation, expert human pilots are able to 

perform radical movement of such machines in precision, for example, during position tran

sition of the vehicles. They may react to surrounding environment while still maintaining 

stability of the machine that is easily affected by unstable states. Therefore, providing qual

ity of multi-functionality as well as human-like functions in a non-linear automatic control 

system could provide a safe and reliable control replacing an expert human. 
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Initial Position. x 
0 Target Position. x T 

Figure 1.4: Control operation during position transition of aerial hovering vehicles. 

1.1.1.2 Embedding Human Knowledge for Multi-Functionality 

Embedding human like functions in a system through application of Intelligent Control 

that provides detailed decision during control operation in a certain environment. Vari

ous method concerning intelligent control system may help provides control alternative to 

an expert skills in controlling a device. Intelligent Control System provides autonomous 

development of control knowledge together with autonomous development of control strat

egy on a device. Control Knowledge and Control Strategy are developed depending on a 

human control decision together with the environment feedback. The developed Control 

Knowledge and Control Strategy may perform as well as an expert human controlling the 

machine, reducing the command burden on the human. However, the embedded human 

functions in the control knowledge are usually constrained to a single function. 

Control Operation ~;e::·~ ~ 

.~-------------- - ~ -. ~ l 
:, [ Autonomous reconfiguration of : Decision ,-Hum; n- ••• 

control strategy ______ _ 
1 Controllnformation 
I r-------._~------------------------------~~__, 
: Autonomous development of control 
1 knowledge 
I I 
1 Intelligent Control System 1 

L-----------------------------1 
Figure 1.5: Structure of functions in an Intelligent Control System. 
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Learning is one of the qualities for developing control knowledge in Intelligent Control 

System. Control knowledge may be developed through learning method such as trial and 

error processes. Machine Learning provides option in generating development of control 

knowledge in an intelligent control system. Control knowledge may be developing through 

experiences by method in Machine Learning such as Reinforcement Learning. Develop

ment of control knowledge helps an Intelligent Control System remain self-sustained and 

adaptable to changes in surrounding environment. Therefore, new functions may be learned 

through the learning process giving quality of multi-functionality to the Intelligent Control 

System. 

1.1.2 Learning Control 

Learning is generally defined as the process of acquiring new knowledge. The process of 

acquiring new knowledge needs one to represent the knowledge in some form, as learning is 

constructing or modifying representations of what is being experienced [4]. The represen

tations meaning varies depending on the knowledge it represents which can be in a form of 

algorithm, simulation models, control procedures and such. 

The term of Machine Learning is derived by the ability of a machine on acqmrmg 

knowledge from experiences or a set of data. Mitchell [1] defines learning as performance 

improvements at some tasks through experience. Mitchell defines it precisely as, 

A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E. 

To have a well-defined learning problem, three features concerning class of tasks, the 

measure of performance to be improved, and the source of experience must be defined. 

Thus, Machine Learning aims to have a computational mechanism that can learn to improve 

knowledge through operational experience. 

1.1.2.1 Reinforcement Learning 

Reinforcement Learning is known as trial and error style learning process that learns to 

map situations and actions by maximizing a numerical reward signals [4]. All Reinforce

ment Learning agents may have explicit goals. Using its experience, the agents improve 

its performance over time. Aspect of their environments can be sense and actions are 
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changeable to influence their environment. Reinforcement Learning acquires action rules 

for adapting with the surrounding environment. Reinforcement Learning operates through 

interactions and acquires knowledge by categorizing actions using rewards, optimizing the 

best possible action required in order to complete a task [3]. 

Reinforcement Learning normally consist four main sub-elements in its system [4]. A 

Policy to determine behaviour, a Reward Function to determine reward, a Value Function 

to emulate knowledge and sometimes a Model Environment to mimics the property of the 

environment. The relation between these elements can be seen in Figure 1.6. 

/ 

Value Function 

( I I 
action, at 

~ Policy Environment -

1' reward, rt I 

state, St 

Figure 1.6: Interaction between policy, reward function and value function. 

A Policy defines the agent behaviour. Policy perceives state mapping of the agent 

environment to actions to be taken when is those states. A Policy might be a simple function 

or a lookup table but sometimes involves extensive computation such as search process. 

Policy is the core component of a Reinforcement Learning agent since it alone determines 

the behaviour of the agent. A Reward Function defines the goal for the agent. Reward 

Function maps each perceived state to a single number which known as reward, indicating 

the desirability of the state. The purpose of Reinforcement Learning is to maximize these 

rewards in an operation. In other words, Reward Function defines the good and bad of an 

action for the system to operate. Reward Function is needed to alter the policy. Generally, 

actions with low reward will less likely to be selected by the policy repeatedly. 

While Reward Function indicates good and bad action immediately, a Value Function 

acts as knowledge of the good and bad action experienced in a long term operation. The 

Value Function represents the value of states and indicates the desirability of the state 

reoccurrences in a long term operation. A state may have low rewards but high in value 

since it is regularly followed by other state that can yield high rewards. Therefore, a 
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method of converging the value of state-action pairs Q(st, at) into an average is called the 

Q-Learning algorithm as 

Reinforcement Learning may provide the ability of learning for a control system, for 

example, on a mobile robot. Programming all possible tasks for the robot can be hard 

and difficult, simplified by applying a learning ability for the mobile robot. In some cases, 

a control system would have problems with wear and tear in the control object hardware 

that can cause unprecedented misconfiguration during long term operation. Provided an 

ability to learn, the control system may adapt to the condition of its control object on any 

uncertainty and unforeseen changes by continuous self-calibration. 

Learning control refers to the process on developing control strategy in a particular 

control system by trial and error [6]. This is a branch of Reinforcement Learning in control 

application where agent learns by analysing good and bad influences those results from its 

own action during control operation. Learning control resembles the way that humans and 

animals learn to construct their knowledge of movement strategy based on interaction with 

the environment. 

1.1.2.2 Absence of Multi-Functionality in Reinforcement Learning 

Through Learning Control, control knowledge of a control function can be created through 

the training by Reinforcement Learning. However, conventional Reinforcement Learning 

method does not provide application of more than one control function within a Learning 

Control System. Execution of more control function within a Learning Control System 

would require application of multiple learning processes within a control system. Meth

ods concerning application of learning processes in Learning Control vary depending on 

application of the control device and the purpose of the system. 

Multi-agent Reinforcement Learning is one of the method concerning application of mul

tiple learning process within a Learning Control System. Application of multiple agents in 

Reinforcement Learning utilizes learning process for multiple agents, where these agents in

teract between each other in developing the desired control knowledge [49]. State transitions 

in the case of multi-agent Reinforcement Learning are the results of the joint action that 

was performed by the agents within the system. Rewards are evaluated through the joint 

action, and the control knowledge is updated through a joint policy. In this case, the goal 
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can be determined through adaptation of the dynamic behaviour between these agents [27]. 

In case of controls, through multi-agent Reinforcement Learning, dynamic behaviour of the 

agents performs an action that requires the agents to adapt through an environment but 

the functionality of these agents is limited [28]. Such behaviour, may have exploration task, 

where the agents has a function of maintaining a group of moving targets within the sensor 

range [50] [51]. In overall, multi-agent Reinforcement Learning only focuses on application 

of multiple agents by Reinforcement Learning for utilization of a primary function. 

Hierarchical Reinforcement Learning applies a learning process for improving the relia

bility of Reinforcement Learning application in real-world problem. Conventional Reinforce

ment learning methods provides solution in providing adaptable control knowledge in form 

of value functions. However, the bigger the size of state-space variables, the performance of 

Reinforcement Learning reduces and would require a large scale of computational effort for 

the update of the control knowledge. Hierarchical Reinforcement Learning accelerates the 

reliability of the learning process, where state variables are independent from one another, 

ignoring irrelevant aspects when solving a sub-task [42]. Hierarchical Reinforcement Learn

ing provides a form of decision management in a system, where sub-task will be surveyed by 

parent task, providing only relevant action depending on the sub-task performance. In this 

case, value function of the parent task is separated into value functions of sub-task, where 

learning process occur ignoring irrelevant sub-task during a precise operation. The value 

functions of sub-task are then converged into performing a value function of parent task [43]. 

The main purpose of such method is mainly to increase reliability of the learning process 

in a certain function that requires monitoring of multiple states in a more accelerated pace. 

Applying Learning Control System with a number of Control Functions could provide a 

wider range of control option against any environment. The Control System should be able 

to develop and apply the required Control Function according to necessity and could provide 

a more versatile control operation. Current Reinforcement Learning does not emphasize 

multi-functionality in a control system. Therefore, a method of applying a number of 

control knowledge with decision management that can provide cooperation between each 

provided control function is deemed necessary for a quality of multi-functionality in control 

system. 
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1.2 Research Objective & Contents 

Through multi-functionality and Learning Control, an idea of a control system that is capa

ble of utilizing any functions while being self-sustainable is possible. Researches concerning 

Multi-functionality in Learning Control are unfolded in this dissertation. This dissertation 

provides control design that makes use Learning Control in providing multi-functionality in 

a Control System. 

1.2.1 Research Objective 

The objective of this research is to design and develop methods of applying Learning Con

trol that provides multiple control function in control command autonomously during a 

control operation. Through this research, a control system that is self-sustainable, reliable 

and adaptable to its surrounding environment motivates the development of methods in 

achieving Multi-functional Learning Control System. Characteristics of such system can be 

divided into three qualities. 

Firstly, the system is believed to be able to provide safe and reliable control operation 

in any environment through development of the control knowledge according to successes 

and failure during control attempts. Experience from past control attempts can be referred 

to while safer future attempts are being planned. Consecutive attempt continues the devel

opment of the control knowledge that renders the system upon becoming an expert system 

with expert control knowledge. 

Secondly, the system is believe to be able to reduce dependency on human intervention 

by self-sustaining system development during control operation in a certain environment. 

Control Decision can mostly be provided by the system based on the control knowledge 

developed, reducing the need of human commands. Thus, reduces the requirement on skills 

on the human operators while maintains the expertise in executing the control operation. 

Thirdly, the system is believed to be able to provide decision management in a Learning 

Control System, that could considers multiple functions during execution. Here, the sys

tem may provide wide range of control options during control operation while considering 

changes in surrounding environment. 

The above characteristics provide ideas in designing systems that reflects the motivation 

of this research. Design of systems that consists above characteristics is unfolded in this 

dissertation in three chapters. 
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1.2.2 Research Content 

Here, three phases of development were organized to fulfil the objective of applying multi

functionality in a control system. First, for applying multi-functionality in a non-linear 

system, a Substitute Target based Learning Control System with Multiple Control Func

tion was design. Secondly, for applying human like multi-functionality in a control sys

tem, Learning Control System with multiple control function by multiple source of con

trol knowledge was designed. Finally, for applying human like decision management with 

multi-functionality, Learning Control System with multiple control function by Compound 

Function was designed. 

In this chapter, the background of the research is explained, concerning motivation in 

application of multi-functionality in controls by Learning Control System. Later, back

ground research concerning Learning Control System is introduced, which emphasizes lack 

of focuses in application of Learning Control concerning multi-functionality. This leads to 

the objective of this research which explains the needs and potential of a Learning Control 

System that emphasizes on multi-functionality. 

In chapter 2, a design of Learning Control System with multiple control function that 

applies substitute target for multi-functionality is introduced and applied on and cart

pendulum control system. The designed System focuses on providing multi-functionality in 

the pendulum swing up control that may considers surrounding constraints for achieving 

the inverted states. The system applies Learning Control in producing substitute targets 

for the cart position transition which swings the pendulum simultaneously. The substitute 

targets act as intermediate targets that help the system considers optimal cart movements 

to provide swinging motion on the pendulum that propels it towards the inverted states 

under the influence of environmental constraints. 

In chapter 3, a design of Learning Control System with multiple control functions by 

multiple source of control knowledge is introduced and applies on control systems of cart

pendulum and aerial hovering vehicle. The design focuses in applying multi-functionality 

through application of multiple source of control knowledge. It was applied on rapid position 

controls of aerial hovering vehicle that was simulated through cart-pendulum controls. The 

design was improved for control of aerial hovering vehicle among constraints that was applied 

on simulation of aerial hovering vehicle. The designed utilizes multiple sources of control 

knowledge for providing controls of angular orientations on the aerial hovering vehicle. 

In chapter 4, a design of Learning Control System with Multiple Control function by 
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Compound Function is introduced and applies on control system of a mobile robot. The 

design focuses in applying multi-functionality through application of multiple source of 

control knowledge that merges through utilization of Compound Function. It was applied 

for position transition and obstacle avoidance control of the mobile robot that was simulated 

and later applied on a real world operation. The design utilizes Compound Function for 

creation of Compound Knowledge that consists of compounded control information from 

the sources. 

Finally, the designs in this research are concluded together with suggestion of further 

research. 
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Chapter 2 

Multiple-Functions Learning 
Control by Substitute Target 

Designing Learning Control with a quality of multi-functionality requires recognition of 

continuing states during controls operation. Like human recognizing positions for the next 

step during walking, the positions of those steps reacts as substitute targets where the main 

target is the desired location of the human. The substitute targets provide options of ma

noeuvre, where certain action, in case of walking, can be operated flexibly along constraints 

during the manoeuver. Therefore, one of the designs concerning Learning Control with 

multiple functions involves application of substitute target in the Learning Control System. 

2.1 Substitute Target 

Conventional Reinforcement Learning involves application of state-action pair for providing 

control knowledge of a certain control operation. Optimum action is learned based on the 

states of the control object through the success and failure attempted during the control 

operation. Comparing such application to human, human decide a target or goal before 

applying an action. For example, in case of walking, a target for steps is determined before 

the action of walking is applied. A wrong position would render the walking operation 

colliding with constraints, or heading in the wrong direction. Targets make configuration 

easier, since target is a part of state elements, such as steps to location of human. Most 

controls of actuators apply targets as reference for feedback during control operation as 

well. Multiple target states provide multiple choices of actions for achieving goal and such 

supporting target states is defined here by substitute targets. 

Substitute target is necessary for flexibility in providing system respond to the change of 
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situation in environment. Controls by substitute target provide flexible action in which im

portant for having an adaptable Learning Control System for such application on machines 

with non-linearity. In this case, substitute target provides enhancements of action through 

continuity in applying those targets. For example as shown in figure 2.1, generating anini

tial action a1 and continues with action a2 during a control operation provides continuous 

action, or an action with increasing magnitude. Such function may provide precision of a 

higher magnitude action and reduces the risk of rampaging actions. 

:· .. 
: ·· .. 
: ·· .. 

~:~~·i;:~ ·~~~on ········ ... 
. .... 

·· ····· .... ········ . 
. .. ····' 
;.·· 

(a) Action with higher magnitude is required under limited possible action. 

: · ... . .. ·. 

(b) Substitute targets provide enhancement of actions. 

Figure 2.1: Substitute target provides continuity of action by providing an intermediate 
state. 

Substitute targets may also provides rearrangements of control manoeuvre for adapting 

with constrained environment. During operation in a constrained environment, interference 

by constraint state would jeopardize the control operation, where rearrangement of controls 

manoeuvre are necessary. Figure 2.2 referred to a case, where substitute target provides 

rearrangement of actions, creating more substitute targets that provides a safer manoeuver 

for the control device. When one of the substitute targets are in a constraint state, a 

new substitute targets can be arrange to provide alternative for the required action. The 

arrangement of those substitute targets may vary depending on possible combinations that 
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(b) Rearrangement of substitutes target helps avoid the constraint states. 

Figure 2.2: Substitute target can be rearranged to satisfy the need for successful control 
manoeuvre along constraint states. 

provide the required action for fulfilling the goal. 

Utilizing substitute target provides flexibility in producing actions in control operations 

through Learning Control. Safer and more reliable control operation is possible through 

the application of substitute target in a Learning Control System. 

2.2 Utilization of Substitute Target 

Utilization of substitute targets may provides a safe and reliable control option for machines 

with non-linearity. Here, a control system that utilizes substitute target was designed 

to provide multi-functionality on machines with non-linearity for safe and reliable control 

operation. Substitute target was applied on a Learning Control System for cart-pendulum 

device, shown in figure 2.3. Application of such device requires three basic system functions 

in the designed system; the control function, learning function and recognition function. 

In the Learning Control System designed, control function configures the control output 

for applying forces to the cart based on the targets instructed either from a policy of rein

forcement learning or PD control. Learning function updates the knowledge of substitute 
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Figure 2.3: System structure for substitute target application. 

target based on the reaction of the pendulum when applying the force to the cart. The 

recognition function determines the necessary control action depending on the states of the 

pendulum and the cart, in order to instruct the next required process. Interaction between 

each functions provide application of substitute target in controlling the cart for applying 

swing motion on the pendulum towards the desired goal state. 

2.2.1 Control Function for Substitute Target System 

Control function provides control options for the system to apply on the cart. The controls 

within the function consists two methods; Swing Control and Stabilization Control. Swing 

control generates forces for increasing the pendulum swing angle when the pendulum is in 

downward state. The stabilization control generates forces for decreasing the pendulum 

swing angle when the pendulum is near to inverted state. 

During swing control, control output u provide forces to move the cart for increasing the 

swing angle of the pendulum. The cart moves to either right or left based on the pendulum 

angle () and pendulum angular velocity w for intensifying the pendulum swing, increasing 

the pendulum angle e. The initial state of the pendulum was assigned on the downward 

position where the pendulum angle()= 11'[rad] as shown in figure 2.4a. The pendulum angle 

() will increase as the cart moves consecutively until approaching the inverted state. The 

Learning Control for substitute target was applied on the pendulum swing control. The 

swing up control arranges targets for cart movement and apply force u according to those 

targets. 
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(a) Control output u increases the pendu
lum angle (} during swing control. 

e =O[rad] 
I 

(b) Control output u decreases the pendu
lum angle(} during inverted state. 

Figure 2.4: Swing and stabilization control of the cart-pendulum system. 

The stabilization control occurs when the pendulum approaches the inverted state. Dur

ing stabilization control, the pendulum swing will be attenuated towards the inverted state 

as shown in Figure 2.4b. The cart will move to either left of right reducing the pendulum 

angle() to()= 1r[rad]. Here, the occurrence of pendulum stabilization control and inverted 

state will be the goal for the learning control. The stabilization control was conducted and 

designed based on PD control. 

Applying Learning Control by substitute target into a pendulum control system requires 

three major sections for controlling the cart movement in the Control Function. These 

sections are (i) swing up control section, (ii) inverted control section and (iii) initialization 

control section, that provides control command u for the cart. 

The swing up control section provides control command for the pendulum during the 

pendulum downwards position. The control command is based on targets on the cart 

position axis, x. Substitute target displacement ~x is selected from the substitute target 

knowledge, Q(s, ~x) which defined by value function Q for substitute target displacement 

D.x based on states. Substitute target xr was arranged during the pendulum downwards 

position based on the substitute target displacement ~x provided by the substitute target 

knowledge, Q(s, ~x). Substitute target xr was arranged based on the selected substitute 

target displacement ~x to the current cart position Xnow as 
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XT = Xnow + D.x. (2.1) 

The inverted control section applies control using substitute target xr arranged as in 

equation 2.1. This control section provides control when the pendulum approaches the 

inverted state as shown in Figure 2.4b based on the movement shown in Figure 2.5. However, 

substitute target displacement D.x was arranged through PD control after the pendulum 

reached the inverted state. 

I 

~ 
I 
I 
I 

XTo XT2 

Initial Position Final Target 
Position 

Llx2 

XTI 

Substitute Target 
Position 

Figure 2.5: The swing control of the pendulum based on substitute target. 

The initialization section provides control commands for moving the cart towards the 

initial position. This occurs after the pendulum achieved the inverted state or after any 

constraints encounter. This section controls using substitute target xr, arranged based on 

a substitute target displacement D.x generated through PD control similar to the inverted 

control section. 

2.2.2 Recognition Function for Substitute Target System 

The recognition function assigns states of the control device into sets of state clusters. 

Certain range in state parameters is divided and separated into clusters for easy recognition. 

Here, pendulum cart position x, pendulum angle(), and pendulum angular velocity w were 
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Intense swing speed 
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~------------~------~----~~~---L----~5 8 
[rad] 

Figure 2.6: State clusters created from pendulum angle and pendulum angular velocity. 

assigned in cluster of states as shown in figure 2.6. The recognition function applies duties 

to other functions based on these state clusters. It provides commands for control function 

for selecting suitable control sections for generating outputs. The state cluster provides 

determination of rewards based on the current state of the device through the Learning 

Function. Information on constraints provided by the constraints knowledge was included 

in these clusters for recognition of constraints by the system. 

For both controls, restrictions for controlling the pendulum and the cart exist in form of 

constraints. The control constraints were divided into two; the cart movement constraints 

and the pendulum rotation constraints. 

The cart movement constraints are restrictions to the horizontal movements of the cart 

as shown in Figure 2. 7a. The cart movements are limited due to these constraints. The 

pendulum rotation constraints are restrictions to the rotary movements of the pendulum 

as shown in Figure 2. 7b. The pendulum rotation is restricted to a certain angle at a 

certain cart position due to these constraints. Due to the pendulum rotary movement being 

independence, the system must configure the pendulum rotary movement against these 

constraints using the cart movement indirectly. 
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Constraint 

Constraint 

(a) Constraints restricting the movement 
of the cart. 

(b) Constraints restricting the rotary move
ment of the pendulum. 

Figure 2.7: Constraints of the cart and the pendulum. 

2.2.3 Learning Function for Substitute Target System 

The Learning Function provides updates to the substitute target knowledge Q(s, ~x) based 

on the state clusters assigned in recognition function. The update occurs during the down

wards state of the pendulum, before the control function selects the substitute target dis

placement ~x for the cart movement controls. Reward defines the goal in reinforcement 

learning based on state clusters that determines reward r at a precise moment based on the 

state clusters shown in table 2.5. 

Table 2.1: Reward settings for assigned state clusters. 

State Cluster I Reward, r 

Near Control Objective State +r 
Over speed and Exceed Control Objective State -r 
Increasing Pendulum Swing Angle +r ( M /rr) 
Decreasing Pendulum Swing Angle ·0 
Constraints Encounter -r 

. . . . . 
*!:!.() 1s th p ndulum angu lar dt plac m nt from t h m• t •a l po .. 1t 1on . 

In order to provide a substitute target based learning agent into a control system, the 

Q-Learning algorithm introduced in 1.1 was modified for applying a value function that is 

based on these substitute targets. The target state is the expecting state St+l as reaction 

to action at. The value function does not defines target state St+l as action at; instead the 

target state displacement ~st+1 from the current state St will defines the action required to 

achieve the target state St+l· Here, the distance towards the future state will replaces the 

action part of the conventional Q-learning into equation 1.1. 

19 



state, St action, Ot 
Policy 1--------:i> 

(a) Conventional reinforcement learning applies an action from a state 
action value function. 

state, St target, St+l 
Controller 

action, Gt 

(b) Policy selects a target from a state-target value function that determines 
action. 

Figure 2.8: State and action relation for substitute target based Q-learning. 

Goal reward Settings 
Execution of cart movement control command. 
(Stabilization Control) 

Reward Settings 

Knowledge update 
Execution of cart movement control 
command. (Swing Control) 

Figure 2.9: Control processes assigned according to pendulum angle. 

(2.2) 

Figure 2.8 explains the differences between the conventional Q-learning introduce in 

chapter 1. The relation of the state and action in conventional Q-learning utilizes state

action value function. Here, the action at is defined by a controller based on target state 

displacement D.st+l decided by the policy from state-target value function. 
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2.3 Experiments & Results 

The effectiveness of the Learning Control System that utilizes substitute targets was con

firmed through a series of simulations and a real machine test. The simulations were con

ducted to confirm the flexibility of the system to multi-functionality in conducted the swing 

up-control while avoiding the surrounding obstacles. The simulations started with confir

mation of the effectiveness of the learning process, continues with confirmation of adapt

ability with direct constraints and indirect constraints. Results provided through these 

simulations should confirm the effectiveness of the Learning Control System in applying 

multi-functionality in such cases. 

2.3.1 Experiments Settings 

Due to application on the cart-pendulum device, a study on the parameters of the control 

device was done prior to constructing the simulations. The details according parameters 

involved in cart-pendulum device were analysed and prepared according to the diagram 

shown in figure 2.10. 

2.3.1.1 Inverted Pendulum Model 

e 

Figure 2.10: Diagram of the cart-pendulum parameters. 

The mathematical model of the cart-pendulum device is derived to be applied in the 

simulation. Applying Newton's Second Law at the centre of gravity of the pendulum, the 

horizontal, X and vertical, Y components, are represented by 
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Table 2.2: Parameters description for cart-pendulum device. 

Cart mass M [kg] 
Cart position x [m] 
Horizontal force on cart u [kgms -:t] 
Pendulum mass m [kg] 
Pendulum length l [m] 
Center of gravity to pivot length L [m] 
Gravitational acceleration g [ms- 2] 

Angular displacement 0 [rad] 
Pendulum friction coefficient c 

Cart friction coefficient d 
Moment of inertia of the pendulum I [kgm2] 

d2 
Y- mg = m dt2 (LcosO) (2.3) 

d2 
X = m dt2 (x + L sin 0) (2.4) 

Both equations provides the torque equation, 

I ij + cO = Y L sin 0 - XL cos 0 (2.5) 

Applying Newton's Second Law to the above equation yields 

u-X=Mx+dx (2.6) 

By substituting equations 2.3 and 2.4 into equations 2.5 and 2.6, the non-linear mathe

matical model of the cart-pendulum system can be derived as 

.. 1 . 
0 = 

2 
[Lm(g sin 0 - x cos 0) - cO] 

I+L m 
(2.7) 

x = 1 
[u- Lm(OcosO- 02 sinO)- dx] 

M+m 
(2.8) 

The pendulum state of inverted position corresponds to an unstable equilibrium point 

(0, B) = (0, 0). In the neighbourhood of this equilibrium point, both 0 and iJ are very small. 

Therefore, small angles of 0 and 0: sin(O) ~ 0, cos(O) ~ 1 and (0)20 ~ 0. Thus, equation 

2. 7 and 2.8 can be rewritten as 
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.. 1 . 
() = I+ £2m [Lm(g8- x) - c8] (2.9) 

1 .. 
x = M [u - Lm() - dx] 

+m 
(2.10) 

For the above two equations to be in a valid state matrix, x and ij must be functions 

of lower order terms. x and ij is substituted in equation 2.9 and 2.10, the state model is 

obtained as 

[~ 
1 0 

0 l [ 0 l -kb -(Lm) 2 gb Lmcb b 
s= I+Pm I+fm s+ 0 u 

0 0 
Lmka Lmga -Lma 
M+m -ca M+m 

(2.11) 

[ 1 0 0 ~ l s y = 0 0 1 
(2.12) 

where 

M+m 
a = -=-:-::-:------=--~----=---:c 

l(Jvl + m) + £ 2mNI 
(2.13) 

b = l + L
2
m 

J (Jvf + m) + £2m1 i 
(2.14) 

Thus, the state and output vectors is represented by 

s=[ x x ()or (2.15) 

(2.16) 

2.3.1.2 Parameters for Control System Implementation 

Parameters of the control object were selected based on a real cart pendulum device as 

shown in figure 2.11 prior to the simulation. Since the cart movement is limited to a certain 

range, the Learning Control System was applied on simulations before being handled by 

the real device. The simulations are programmed and arranged using MATLAB, based on 

the parameters of the real operating devices as shown in table 2.3. 
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Table 2.3: Parameters of the cart-pendulum device. 

Cart Position, x x [m] 
Cart Velocity, ± v [m] 
Pendulum Angle, () () [rad] 
Pendulum Angular Velocity, iJ w [rad/sec] 
Cart mass, M 3.117 [kg] 
Pendulum Length, l 0.4 [m] 
Pendulum Mass, m 0.08 [kg] 

0.0012 0 0 
Pendulum Inertia, I 0 1.6 x w-7 0 [kgm2] 

0 0 0.0012 

0.9[m] 

Figure 2.11: Cart-pendulum device (Japan E.M. Co., Ltd.) on which the simulations were 
based. 

The simulations were conducted in three subjects according to the purposes; to confirm 

the effectiveness of learning using substitute target, to confirm the effectiveness of learning 

among direct control constraints and the effectiveness of learning among direct and indirect 

control constraints. Simulation for each subjects apply the parameters shown in table 2.4 

for Q-learning which were selected prior to the experiments. 

Table 2.4: Parameters for Q-learning of Learning Control System by substitute targets. 

Parameters Range I Intervals I 
State 

Cart Position, x[m] -1.0 rv 1.0 0.2 
P endulum Angular Velocity, w [rad/ s] -14 rv 14 2 

Substitute Target Cart Movement Displacement, ~x [m] -0.2 rv 0.2 0.05 
Displacement 

I Learmng rate, a I 0.5 II Discount rate, 1 I 0.3 I 
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The initial and target states of the control device that was conducted in the simulation 

are as shown in table 2.5.2. During the initial state, the pendulum angle () = 1r [rad], the 

cart position x are located in the middle of the track, x = 0 [m], while the cart velocity 

v and the pendulum angular velocity w are zero. The inverted state are defined as target 

state, where the pendulum angle () is 0 [rad]. The cart position of the assigned target state 

is the final substitute target xr selected during the swing-up process. 

Table 2.5: Initial state and target state of the simulations for Learning Control System by 
substitute target. 

I Parameters Initial State Target State 

Cart Position, x[m] 0 xr 
Pendulum Angle, ()[rad] 7f 0 
Cart Velocity, v[m/s] 0 0 
Pendulum Angular Velocity, w[radjsec] 0 0 

2.3.1.3 Simulation on the Usage of Substitute Target Knowledge 

In case of the subject of confirming the effectiveness of learning using substitute target 

knowledge, simulation was arranged to confirm the validity of the Learning Control System 

using constructed substitute target knowledge and a random substitute target knowledge. 

Left Limit 
X=O[m) 

Right Limit 

x=-l[m] x=l[m] 

Figure 2.12: Movement range of the cart to satisfy the knowledge limit. 

The constructed substitute target knowledge, as shown as figure 2.17b, was structured 

based on the basics of pendulum swing intensification control without arrangement of any 

constraints. The random substitute target knowledge as shown in figure 2.13a was struc

tured as the value function by random number. 

For this subject, the simulation was conducted in episodes, the simulation stops after 
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each trial which counts as one episode. The rules assigned for the simulation were specified 

into: 

• Simulation completes after 2300 episodes. 

• Policy selects substitute target by roulette selection for 2000 episodes. 

• Policy selects substitute target by greedy selection for 300 episodes starting after 

2000th episode. 

• Stop the simulation for each episodes. 

• If the pendulum is in the inverted position, episodes end. 

• If the cart position is out of learning range, episode ends 

The roulette selection is a selection policy assigned to help increase exploration rate of 

a value function by turning the value of its selection options into selection probability and 

selected based on a random number. The greedy selection is a selection policy that selects 

an optimum option from the value function based on the highest value. 

2.3.1.4 Simulations on Learning Control through Direct Control Constraints 

These simulations were arranged for confirming the capability for learning control through 

direct control constraints, which is the constraints within cart movement, x. For this 

subject, three simulations were performed with three different sets of constraints as shown 

in figure 2.14. The constraints of the cart position x as shown in Figure 2.14 are as follows: 
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(a) Case 1 (P8M8), -0.8 < x < 0.8: Constraints on both left and right sides 

(b) Case 2 (P4M4), -0.4 < x < 0.4: Larger constraints on both left and right sides 

(c) Case 3 (P2M6), -0.6 < x < 0.2: Constrains on the right side is larger than that on 

the left side. 

Constructed substitute target knowledge as shown in figure 2.17b were used as the 

initial knowledge fore these simulations in hope of a shorter simulation time. In order of 

Left Constraint Right Constraint 

x=-0.8[m] x=0.8[m] 

(a) Constraints for case 1 (P8M8) 

x=-0.4[m] x=0.4[m] 

(b) Constraints for case 2 (P4M4) 

Left Constraint 
x=O[m] 

Right Constraint 

x=0.2[m] 

(c) Constraints for case 3 (P2M6) 

Figure 2.14: Constraints assigned among the cart position for simulations. 
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real control object application, the required behaviours for the system control object were 

specified before the simulation was done: 

• Stop the simulation after 3000 seconds. 

• If the pendulum is in the downward position, initialize after 10 times knowledge 

renewal. 

• If the pendulum is in the inverted position, initialize after 3 seconds. 

• If the cart position is between constraints, initialize after encountering the constraints. 

• Attenuate the pendulum swing during initialization. 

2.3.1.5 Simulations on Learning Control through Direct and Indirect Control 
Constraints 

These simulations was arranged for confirming the capability of the proposed system for 

learning through indirect control constraints, which is the constraints in the pendulum 

angle() [rad]. For this subject, three simulations were conducted consisting both direct and 

indirect control constraints. These simulations were categorized into 3 cases which each 

have difference sets of constraints. 

(a) Case 1: Cart movement constraints in left and right side 

(b) Case 2: Cart movement constraints in left and right side, and pendulum rotation 

constraints at top left and top right side. 

(c) Case 3: Cart movement constraints in left and right side, and pendulum rotation 

constraints at the top middle. 

During simulation, substitute target displacement were selected from the knowledge 

based on figure 2.17b by roulette selection for 300 trials, and later continues with greedy 

selection. 

The desired system behaviour during simulation is described below. 

• Stop the simulation after 5000 seconds. 

• If pendulum is in downwards position, initialize after 25 times knowledge renewal. 
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Left Constraint 
x=O[m) 

Right Constraint 

x1 =·0.8[m) x1=0.8[m] 

(a) Constraints for case 1 
Left Constraint 

y2=0.3[m] y2=0.3[m] 

xl = -l[m] x2=·0.S[m] x2=0.5[m] xl= 1[m] 

y3=0.3[m] 

(b) Constraints for case 2 

Middle Constraint 

xl= ·l[m] x2=·0.3[m] x2=0.3[m] 

(c) Constraints for case 3 

y3=0.3[m] 

xl= l[m] 

Figure 2.15: Constraints arranged around the cart position and the pendulum angle. 

• If the pendulum is in inverted position, initialize after 3 second. 

• If cart position is between constraints, initialize after constraints encounter. 

• If pendulum tip point is inside constraints area, initialize after constraints encounter. 

• Attenuate the pendulum swing during initialization. 

29 



2.3.2 Experiments Results 

Results for application of substitute target on Learning Control System emphasize the 

effectiveness of the system into providing multi-functionality in a cart-pendulum system. 

The Simulations provide results concerning the effectiveness of the system in developing 

substitute target knowledge. Results from the simulations were then applied on the real 

cart-pendulum device to confirm the effectiveness of the system in real world application. 

2.3.2.1 Experiments Results by Simulations 

Results from simulations are separated in three parts according to three subjects arranged 

in the settings of the simulation. Firstly, results concerning the effectiveness in developing 

the substitute target knowledge were analysed. Then, results concerning development of 

substitute target knowledge by controls among direct constraints were analysed. Finally, 

results concerning development of substitute target knowledge by controls among direct and 

indirect constraints were analysed, 

Success Rate 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

1 

-- Previously con
structed knowledge 

I I 

Random 
knowledge 

Roulette Selection 
Greedy Selection 

( ) 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Number of episodes (xl 00) 

Figure 2.16: The average control success rate of the swing control for the first subject of 
the simulation. 
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2.3.2.1.1 Effectiveness of the Developing Substitute Target Knowledge. 

Figure 2.16 provides information about the development of the substitute target knowl

edge according to episodes during the simulation. Here, the result shows that the rate of 

successful episodes increases towards maximum at the end of the simulation. Simulation 

using constructed knowledge started at a higher successful rate compared to simulation 

using random knowledge. The developed knowledge is shown in figure 2.17, describing that 

updates were applied on the knowledge, changing the structure of the value functions during 

the simulation. 

Pendulum Angular Velocity, w [rad/sec] 

(a) Updated constructed knowledge. 
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Figure 2.17: The updated knowledge for both constructed knowledge and random knowledge 
after the simulation for Learning Control System by substitute targets. 

2.3.2.1.2 Development of Substitute Target Knowledge from Control among 

Direct Constraints 

Figure 2.18 provides information about the development of the substitute target knowl

edge according to episodes during the simulation with assigned direct constraints along the 

cart movement path. Here, the result shows that the rate of successful episodes increases 

towards maximum at the end of the simulation for all three cases of direct constraints. 

The cart movement manoeuvre that was obtained in the substitute target knowledge 

is shown in 2.19, showing that the cart-pendulum system was able to successfully avoided 

the assigned constraint states. Each movement successfully swung the pendulum towards 

the inverted state using the path available for moving the cart. Here, results shows that 

the substitute target knowledge is able to constructed safe and reliable control knowledge 
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Figure 2.18: The average success rate for pendulum swing control among direct control 
constraints. 
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Figure 2.19: Cart movement during the successful swing control for simulations for the 
three assigned cases of direct control constraints. 
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under influence of direct constraints. The control knowledge that applies these manoeuvres 

is shown 2.20. 

The developed knowledge is shown in figure 2.20 describing that updates were applied 

on the knowledge when compared with the initial knowledge, changing the structure of 

the value functions during the simulation. Different structures were obtained due to the 

influence of constraints on the development of substitute target knowledge. 
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(a) Initial Knowledge. 
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(b) Final knowledge after P4M4 simulation. 
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(d) Final knowledge after P8M8 simulation. 

Figure 2.20: Comparison between initial substitute target knowledge and final substitute 
knowledge for each simulation concerning the direct control constraints. 
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Figure 2.21: The average success rate from every 10 trials for Pendulum Swing control 
among direct and indirect control constraints. 

2.3.2.1.3 Development of Substitute Target Knowledge from Control among 

Direct & Indirect Constraints. 

Figure 2.21 provides information about the development of the substitute target knowl

edge according to episodes during the simulation with assigned direct constraints and indi

rect constraints along the cart and pendulum movement path. Here, the result shows that 

the rate of successful episodes increases towards maximum at the end of the simulation for 

all three cases of direct and indirect constraints. 

The developed knowledge is shown in figure 2.23 describing that updates were applied 

on the knowledge when compared with the initial knowledge, changing the structure of 

the value functions during the simulation according to the assigned constraints. Different 

structures were obtained due to the influence of direct and indirect constraints on the 

development of substitute target knowledge. 

The constraints that was detected by the Learning Control System by substitute target 

during this simulation is shown in 2.23 showing that the cart-pendulum system was able to 

successfully avoided the assigned constraint states. Results show that the constraints state 

can be detected and avoided by the Learning Control system by substitute targets. Control 
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Figur 2.22: omparison betw en initial substitut target knowledge and final substitute 
knowledge concerning direct and indir ct c ntrol ·onstra.ints. 

manoeuvre is configured by the substitute target knowledge that had experienced collision 

with the assigned constraints. The Learning Control System by substitute target are able 

to provide multi-functionality by being able to swing the pendulum towards inverted state 

while avoiding any assigned constraints. Here, results shows that the substitute target 

knowledge is able to constructed safe and reliable control knowledge under influence of 

direct and indirect constraints. 
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Figure 2.23: Success area and constraint area detected during the simulations with direct 
and indirect constraints. 

2.3.2.2 Experiments Results by Real Machine Operation 

After confirming the effectiveness of the Learning Control System by substitute targets 

in the simulation, real machine test was conducted using results obtained in one of the 

simulation. Here, simulation of case P4M4 in simulation of subject 2 is applied due to the 

Parameters being utilizable on the real cart-pendulum device. Comparison of the results 

obtained through simulation and real machine can be seen in figure 2.24. The control 

Inanoeuvre differs due to slight differences of the real device properties compared to the 

specification applied on the simulation. However, the real device was able to apply the 

substitute target knowledge in conducting a new safe control manoeuvre. Here, results 

show that the Learning Control System by substitute target is applicable in real operation. 
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Figure 2.24: Cart movement during the successful swing control for simulation P4M4 and 
result from application on a real machine. 

2.4 Summary 

A learning control system that learns substitute target knowledge is designed to provide 

multi-functionality for a safe and reliable control in achieving the final target while consid

ering constraints. Application of substitute target may provide utilization of linear control 

knowledge in a complex non-linear control system. Application of substitute target was 

utilized on cart-pendulum control where constraints were assigned in the cart and pendu

lum movement path. Simulations was arranged to confirm the effectiveness of the system 

in applying multi-functionality by providing successful swing controls among assigned con

straints. 

The Learning Control System was able to learn to consider environment constraints while 

learning to control the control device. During simulation, constraints were detected by the 

Learning Control System and the system learns to construct a safer control manoeuvre 

considering the assigned constraints. The substitute target knowledge learned in one of the 

simulation is applied on real control operation and results shows that the Learning Control 

System by substitute target are applicable on real world operation. 

Based on the results, safe and reliable controls were obtained through utilization of 

substitute target in a Learning Control System. Applying substitute targets in a Learning 

Control system could provide multi-functionality, resulting in safer and reliable controls for 

non-linear devices. 
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Chapter 3 

Multiple-Functions Learning 
Control by Multiple Control 
Knowledge 

D ign of Learning Control with quality of multi-functionality produces functions with each 

function are based on specific control knowledge. Utilizing multiple control knowledge in 

a Learning Control System may provide flexibility in producing control commands, where 

rei vant control function can be chose according to the requirement of the control environ

ment. Design of a Learning Control System that applies multiple control knowledge may 

provide human like multi-functionality where human dependency can be reduced, resulting 

in semi-autonomous control device. 

3.1 Multiple Control Knowledge in Learning Control 

Human command plays major role in providing instruction for a device through series of 

control systems. Such command is based on human decisions in monitoring the surrounding 

eliVironm 1t, choosing an optimum option in providing reliable manoeuver to the control 

cl vice. Complex control system such as devices with non-linearity produces more strain in 

the human decisions, requiring expert skills in producing command for a safe and reliable 

ontrol. Applying a Learning Control System with multiple control knowledge can help 

decide a control decision to support an operation and can reduce the dependency on human 

OllUllaud through application of multiple source of control knowledge in the system. Mul
t' 
lple source of control knowledge can be updated using Learning Control, providing expert 

COnttol capable of replacing human commands. 
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Multiple source of control knowledge provides multiple options of functions in a control 

System that has potential to produce human like multi-functionality in a control operation. 

This is due to autonomous development of multiple control knowledge provided by the 

Learning Control System as shown in figure 3.1. Using multiple source of control knowledge, 

control strategy that applies both control knowledge can be produced, resulting in expert 

control of the control device. Here, the Learning Control System with multiple control 

knowledge can provide most of the control decision, reducing the control burden on human 

command. 

,-
c t 1 o ti < ' Human ~n r~era on Decision :.. - -n=_ c~ntrol - ' 

r =-=-=f Decision F - - - - - - - - - - - - -v~f~~ation 
:~utonomous reconfiguration of control strategy l'r-----..::.r..,.. 

I I 

: Controllnformation : IJ]~m1m!~ru 
1 Autonomous development of control knowledge 

~ ~====--~======~~===-~======~ 
: Knowledge of Function A Knowledge of Function B 1 
1 Intelligent Control System : '- - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 3.1: Structure of Learning Control System by multiple control knowledge . 

Learning Control System by multiple control knowledge may reduce burden for con

trols on control devices with non-linearity. Control device as aerial hovering vehicle shown 

in figure 1.3 requires the operator to control the movement of the control device while 

maintain the stability of the device on air. Expert human operator is capable in ma

nipulating those control parameters for rapid position transition of such device. Human 

multi-functionality provides commands on the angular orientation of the device using cyclic 

with assistant of thrust command that is also provided by the human. Based on the human 

multi-functionality, a Learning Control System with multiple source of Control Knowledge 

may provide Rapid Position Control by multiple Acceleration Control Functions in aerial 

hovering vehicle. Here, a Learning Control System by multiple source knowledge is design 

to Provide rapid position control and rapid position control among obstacles for aerial hov

ering vehicle. The system is separated into two sections where the first section introduces 

the design of Learning Control System by multiple control knowledge for rapid position con-
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trol, while the second section introduces the design of Learning Control System by multiple 

control knowledge for rapid position and obstacle control. 

3.2 Application of Multiple Control Knowledge In Learning 
Control: Rapid Position Control 

The first section of the Learning Control System by multiple control knowledge was designed 

for rapid position control of aerial hovering vehicles. Aerial hovering vehicles consist of non

linear parameters that require expertise in providing a quick reliable control. Here, human 

expertise in operating such device is generated through application of Learning Control 

System by multiple control knowledge. 

3.2.1 Introduction to Rapid Position Control 

Controls for aerial hovering vehicles involve manipulation of cyclic and thrust. Expert 

operator is able to operate the cyclic and thrust in providing safe position control for 

aerial hovering vehicle as shown in figure 1.3 through non-linear parameters within the 

device. Expert operator could even perform rapid position transition using cyclic and 

thrust along obstacle due to skills and experience in operating such device. Such skill is 

difficult to be operated by an autonomous control system. Here, Learning Control System 

by multiple control knowledge is designed to provide expertise in rapid position control for 

aerial hovering vehicles. 

The system was developed for learning the best coordination of target angle Br that can 

perform a rapid position transition. Target angle Br provides changing in the direction of 

the thrust to create horizontal force that can create a horizontal movement while airborne. 

Figure 3.2 shows the changing in direction of the thrust according to target angle Br making 

the horizontal movement possible. 

Configuration of the target angle Br requires increasing in thrust for providing lift force 

to preserve the leaning angle against gravity. When the preservation period of the leaning 

angle increased, the horizontal velocity of the aerial hovering vehicle will be increased due 

to changing of intensity in the horizontal force. Therefore, certain strategy concerning 

configuration of the target angle Br and its preservation period is needed for providing 

acceleration and deceleration for a precise position control. 

Figure 3.3 shows the manipulation angular orientation of the aerial hovering vehicle 

during a position transition. A target angle B} is configured to provide a horizontal force 
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Figure 3.2: Configuration of aerial hovering vehicle by angular orientation. 

for acceleration while another B} is configured to provide a horizontal force for deceleration 

before returning to its initial angle Bo. Such manipulation of target angles provides position 

transition between two point of x. Manipulation of target angles and thrust provide quick 

position transition which defined here as rapid position control. 
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Figure 3.3: Position control of an aerial hovering vehicle using target angle Br as reference. 
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2 Manipulation of Angular Orientation for Rapid Position Control 3.2. 

Dynamics of the aerial hovering vehicles provides information concerning parameters that 

. olves in creating rapid position control on such device. Using this information, controls of 
lilY 

aerial hovering vehicles was emulated on cart-pendulum system, where a Learning Control 

System by multiple control knowledge was designed. 

2 2 1 Emulating Angular Orientation Control of an Aerial Hovering Vehicle 3 ... 
on Pendulum System 

Controls of the aerial hovering vehicles are based on the non-linear properties of the device. 

Such properties can be defined in other control devices such as the cart-pendulum device. 

The dynamics of the aerial hovering vehicles concerning manipulation of angular orientation 

and thrust was emulated in the inverted control of cart-pendulum system as shown in figure 

3.4. Manipulation of angular orientation is manipulated through manipulation of leaning 

angle of the pendulum while the horizontal force from the thrust was emulated through the 

cart movement. Through manipulation of pendulum's leaning angle and cart's movement, 

a movement similar to aerial hovering vehicle can be obtain where manipulation of the 

learning angle provides horizontal force, performed by cart movement, for applying position 

transition to the cart. Figure 3.5 shows the position control of cart-pendulum system which 

is emulated from the position control of the aerial hovering vehicles shown in figure 3.3. 

8 =O[rad] 
I 

Figure 3.4: The stabilization control of inverted pendulum. 
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Figure 3.5: The position control of inverted pendulum using target angle er as reference. 

The above control of cart-pendulum was designed through Learning Control System 

by multiple control knowledge as shown in figure 3.6. Two control knowledge concerning 

manipulation of the leaning angle of the pendulum was embedded in the system, where the 

first control knowledge is about preservation time of learning angle for acceleration while 

the second control knowledge is the knowledge of preservation time of leaning angle for 

deceleration. Target learning angle was determined depending on the target cart location, 

therefore, combination of optimum leaning angle and preservation time of the angle has to 

be learned by the system to provide an optimum rapid position control of the cart-pendulum 

device. Here, the Learning Control System by multiple control knowledge is able to learn 

to provide expert control of the device, which emphasizes the possibility of applying such 

system on aerial hovering vehicle. 
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tgure 3.6: Structure of system with multiple control knowledge for rapid position control. 
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3.2.2.2 PD Control of Angular Orientation on a Cart Pendulum System 

In order to apply the Learning Control System by multiple control knowledge on the cart-

du.lum devi , a series of test is done to confirm that the cart-pendulum device are 
p ll 
apabl of op rating by using target angle Br as reference for the cart movement. It is 

}<nown that the horizontal acceleration of aerial hovering vehicles increase when the leaning 

angle increased, therefore the same conclusion must be confirmed in the cart-pendulum 

device before being applied in the experiment. Here, a PD control system that applies 

target angle Or as reference for the cart movement was structured for the cart-pendulum 

device. Figure 3.7 shows the structure of the PD control of the cart-pendulum device using 

target angle Or as reference for the control command of cart movement. 

Target Angle 

fJr 

Current Angle 
ei/OW ___ __J 

KpB 

Xnow 
Current Position 

KdB 

Kdx 

Control 
Command 

u 

Figure 3.7: PD control of cart-pendulum system emulating aerial hovering vehicle . 

Simulations were conducted to confirm the effectiveness of the structured PD control. 

Simulation was conducted using a set of target angle with arranged preservation time and 

the movement of the cart was recorded. Table 3.1 provides the results of the simulation that 

USes a set of three target angle Br. Here, it is confirmed that acceleration of cart movement 

increases as target angle Or increase. Control output concerning the motor input of the cart 

is studied to study the relation between the quantities of the output to the preservation 

Period of the leaning angle. Figure 3.8 provides relation of the motor input and preservation 
ticne at e . very samplmg pulse for each tested target angle Or. 

Based n figure 3.8, a certain amount of output, total output Vout is produced for each 
target angl f) 

7' assigned for the leaning angle at a certain operation time. Total output Vout 
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Figure 3.8: The reference data used to calculate the preservation period of output for each 

target angle. 

provides information for calculating the period of maintaining the target angle, therefore, 

direct usage of Total output Vout is used in the learning algorithm to help produce the 

learning control system by multiple control knowledge. Total output Vout is used replacing 

the preservation time t as the unit of the preservation period of leaning angle is for lesser 

burden in computation during the simulation. Since the range of the cart movement for 

the operation is limited, the range of the total output Vout were limited up to 100 [V]. 

Based on these results, the angular orientation of the pendulum is known to be related to 

the acceleration of the cart movement. This confirmed that the system have the dynamics 

similar to the controls of an aerial hovering vehicle. 

Table 3.1: Pre-experimental results for determining the output required by the cart-
pend l d · £ l h l l f · 1 h h · 1 uum ev1ce or emu ating t e angu ar contra o aena ovcrm.e ve 1c es. 

Target Angle,Br [rad] 0.02 0.05 0.1 

Total output, Vout [V] needed to maintain Br for 3[s c] 
(Sampling time:0.01 [sec]) 184.5 460.0 919.6 
Distant. covered, x[m] in 3[sec] 0.80 2.00 4.02 
Total output, Vout [V] needed to maintain Br for 5 [sec] 
(Sampling time:O.Ol [sec]) 504.2 1259.8 2522.9 

:Pistaut covered, x[m] in 5[sec] 2.28 5.71 11.45 
Av rage amount of output per distant covered 225.89 225.28 224.55 
Vout[Vf m] 

~~celera.tion, a [ms ·:l] 0.13 0.24 0.48 
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Obtaining Rapid Position Control Using Angular Orientation for In
verted Pendulum 

. the information obtained through the simulation for manipulation of angular orienta
Us•ng 

by cart-pendulum device, Learning Control System by multiple control knowledge for 
tion 

"d position control of cart-pendulum device was designed as shown in figure 3.9. Here, 
rap• 
a einforcem n Learning was applied for updating the control knowledge which in a form 

of value functions. The value functions consists of state and action parameters, where the 

st.a.te parameters is defined by target angle Or and action parameters is defined by total 

amount of control command output u for preserving target angle Vaut· Target angle is 

d fined by a set of setting rule, which based on command of target position assigned by a 

hullll.an operator. Target angle Or and total amount of control command output u is given 

l.o the controller for arranging control command u for the cart-pendulum device. Using the 

dr igu of Learning Control System by multiple control knowledge for rapid position control, 

. ries of simulation was constructed for evaluating the effectiveness of the system. 
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Figt 
ta .~e 3 -~:. The structure of Learning Control System by multiple control knowledge for 

Pl POSition control of aerial hovering vehicles . 
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Simulation Settings 

··ment for confirming the ~ff ctiv nes f th L arning ontr l Syst m by multiple 
E~pe11 

t 01 !<now ledge in rapid position control was condu ted in seri -s of simulations. Q-
l!lll r 

learning was used to produce value functions Q(Br V0 ut) that defiues the best ombinati n 

of target angle Br and total output Vaut· Q-learning algorithm updates the value functions 

Q(Or, Vout) using reward r for producing an optimum control knowledge. The parameters 

of the Q-learning algorithm configured in the simulation are as shown in table 3.2, where 

these state and action parameters range was selected depending on the properties of the 

control device, selected prior to the experiment. 

The algorithm is defined as 

Q(Br, Vout) = (1- a)Q(Br, Vaut) + a[r + /'QmaxJ, (3.1) 

(3.2) 

where Br denotes continuing target angle Br and Vout denotes the total output Vaut of 

the continuing target angle. a is denoted as learning rate while 'Y is denoted as discount 

rate. 

The simulation was conducted by using five targets of cart position shown in figure 

3.10. The objective of this simulation is to have the system learns the optimum control 

strategy for achieving the target cart position assigned by the multiple control knowledge 

88Signed in the Learning Control System. All those targets were randomly selected before 

the simulations, where these five targets of cart position were selected to confirm that the 

system was able to learn a rapid position control at any direction and distance. 

The properties and rules of the simulation were selected before conducting the simula

tion. These properties and rules are used for all five target positions assigned previously. 

Table 3.2: Q-leami t £ L ng param.e· ·ers or earnmg on ro ;ys em or rap1 c t 1 s t £ · d position control. 
Parameters Range Intervals 

State Target Angle, Br -1 rv 1 0.05 
[rad] 

Action Total Output, 0 rv 100 20 
Vaut [V] 

I Learning rate, a I 0.5 II Discount rate, 'Y I 0.3 I 
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x=O[m] 
Right Limit Left Limit 

x=-1 [m] x=1 [m] 

xr=-0.8[m] xr=-0.3[m] xr=0.2[m] xr=0.8[m] 

xr=O.S[m] 

Figure 3.10: Target position assigned for simulation of rapid position control. 

A control operation is defined by the process of attempting position control of the cart

p udulum device towards the target position within 10 seconds, where operation done is 

couuted as trials. The other simulation properties are as follows: 

• Simulation runs five times with different target position assigned. 

• Simulation end at 550 trials. 

• 10 seconds of operation time for each trial. 

• c-greedy selection of output 

• Reward is given after operation ends. 

• Full reward, r = 1 is given to acceleration target angle, e} if successfully achieve 

target position xr at the end of an operation 

' Half reward, r = 0.5 is given to deceleration target angle, e} if successfully achieve 

target position xr at the end of an operation 

• zero reward, r = 0 is given to both target angle e} and e} if it fails to achieve target 

Position xr at the end of an operation. 

The results were collected and analysed at the end of the simulation with 550 trials for 

each five assigned target position xr conducted in the simulation. 
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4 Simulation Results 3.2. 

The result for the simulation was divided into two categories. The first category defines 

irnprovement achieved through the learning process while the second defines the successful 

control operation achieved at the end of the simulation. The improvement achieved in 

the first result confirms the validity of the learning process in creating a better control 

knowledge through the simulation that can lead to a successful control operation. The 

control operation shown in the second result confirms that the control operation operates 

the position transition towards the target position xr successfully. 

3.2.4.1 Knowledge Improvement through Learning Process 

The value function Q(Br, Vaut) is at zeros at the beginning of the simulation, where any 

control operation operated under this control knowledge will less likely to be successful as 

no particular optimum combination of angle orientation can be detected from the knowl

edge. At the end of the simulation, the optimum combination is recognized through the 

update done by the Q-learning algorithm. Here, successful control operation is obtained 

and consistency is achieved in producing a successful position transition. 
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Figure 3.11: Improvement of the final cart position with respect to the number of tri
als.(Target position, xr=0.5[m]) 

Figure 3.11 shows the results of position transition of the cart at the end of every 

operation trials. The results of cart positions at the beginning of the simulation are scattered 
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nd the cart movement range. However, the results of the cart positions are focused to 
s.rou 
the target position at the end of the simulation. Here, a successful control operation that 

(i8Jl achieve the target position is obtained. 

4 2 Successful Operation Learned through Simulation s.z . . 

0.2 
Target Position,xr[m] 

0.15 - xr = -0.8 

- xr = -0.3 
,....., 0.1 -o - xr = 0.2 ttl .... ........ 
CD - xr = 0.5 
ai 0.05 = 0.8 bil _ xr 
c: 

<( 

E 0 
::::l 

6 8 ::; 
-o 
c: 
,f -0.05 

-0.1 

-0.15 Time, t [sec] 

10 

Figure 3.12: Angular trajectory of the pendulum during control operation that uses control 
knowledge obtained after 550 trials. 

Figure 3.12 shows the pendulum angular trajectory during control operation that uses 

the control knowledge obtained after 550 trials. The pendulum trajectory during the control 

operation varies depending on each target position assigned. However, it can be seen that 

the pendulum angle stabilized at 0 = O[rad] around 5 seconds. Figure 3.13 shows the cart 

trajectory during control operation that uses control knowledge obtained after 550 trials. 

The cart trajectory is seen to be moving towards the target position and stabilizes near the 

target position with an error margin around ±O.l[m]. 

The details of the successful control operation is shown in table 3.3. Here, for each cart 

Position, specific acceleration angle 0} and deceleration angle 0} was selected to complete 

the control operation at certain amount of output Vaut· The target angles 0} and 0} that 

w re selected during the control operation provide a certain pattern. Acceleration angle 0} 
was leaning towards the direction of the target position xr. However, deceleration angle 

Wer leaning to either the opposite direction of the target position xr or zero. Here, the 

50 



0.8 

0.6 

] 0.4 

X 02 c . 
0 ·.;::; 

'iii 0 
0 

a.. 
ti -0.2 
() 

-0.4 

-0.6 

-0.8 

-1 

2 4 6 8 

Time, t [sec] 

Xr = 0.8 [m] 

Xr = 0.5 [m] 

Xr = 0.2 [m] 

10 
Xr = -0.3[m] 

XT = -0.8 (m] 

Figw·e 3.13: Movement trajectory of the cart during control operation that uses control 
knowledg obtained after 550 trials. 

Table 3.3: Time required to complete a position control during a successful operation. 

I Target Position, xr 1 -o.8 1 -o.3 1 o.2 1 o.s 1 o.8 

Acceleration angle,O<}. [rad] -0.05 -0.05 0.05 0.05 0.05 
Deceleration angle,Of [rad] 0.05 0.05 -0.1 -0.1 0.0 
Acceleration output, Vaut [rad] 100 80 80 80 40 
Deceleration output,V out [rad] 80 40 60 20 100 
Time until achieved stabilization, t [sec] 3.8 1.2 2.8 2.5 2.3 

sy tern learns that deceleration angle 0} was selected to decelerate for attempting to stop 

at the target position xr. The total output Vaut varies according to the target angle Or, 

depending on the required force for achieving the target position xr. 

Based on the result, the Learning Control System by multiple control knowledge was able 

to learn optimum combination of target angle Or and its preservation period for producing 

rapid Position control towards assigned target position. The rapid position control is seen 

by the usage of target angle Or for producing acceleration and deceleration in achieving 

Patticular target position xr. Therefore, it is understood that Learning Control System by 

lllultipl control knowledge was able to perform a rapid position control. 
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3.3 
Application of Multiple Control Knowledge in Learning 
Control: Rapid Position and Obstacle Control 

cond section of the Learning Control System by multiple contr 1 knowledge was 
These 

. ed for rapid position ontr J with obstacle control of aerial h vering vehicles. Aerial 
destgn 

. g vehicles consist of non-linear parameters that require expertise in providing a 
!iOVEJriD 
Safe and reliable control. Here, human expertise in operating such device is generated 

tJp-ough application of Learning Control System by multiple control knowledge particularly 

in application of rapid position and obstacle control. 

3.3.1 Parameters of Learning Control for Rapid Position and Obstacle 
Control 

Figure 3.14: The angular dynamics of aerial hovering vehicle. (ArDrone by Parrot) 

Continuing the Learning Control System design in chapter 3.2, three angle dynamics 

of the aerial hovering vehicle is concerned in designing the Learning Control System by 

multiple control function. In an unknown environment, it is difficult to perform a successful 

a.n:d optimum control operation due to availability of obstacles and other constraints. Here, 

Reinforcement Learning is applied to rewrite the control knowledge by determining the 

favourable state s; location and velocity, for an action a, which is the optimum target 

angt\lar orientation er for rapid position control while considering the existing obstacles. 

1'b control knowledge Q is updated using Q-learning as (3.3) and (3.4), which is 

Q(s, er) = (1- a)Q(s, Br) + a[rew + {QmaxL (3.3) 
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Qmax = maxQ(81,8~) 
(}' 

T 

(3.4) 

Where s and 8
1 denotes state and future state of the control device, a is Learning Rate, 

. the discount rate and r is the reward. 
"(I 

:aowever, as shown in figure 3.14 the aerial hovering vehicle applies three parameters of 

angular orientation, therefore, 3 optimum target angle must be learned in order to perform 

1\ rapid position control. Plus, effective combination of three target angles may help perform 

311 
optimwn rapid position control around obstacles. In this case, target angle Or is a set 

of three target angles from the three parameters of angular orientation, as 

ID:om above, a set of 3 independent control knowledge Q is created for each target angle, 

ince there are three sets of independent control knowledge will be used in the Learning 

Control System based on three dimensional angular orientation, state 8 were prepared to 

be three dimensional coordinates and velocities. State 8 consisted location r, where 

r = {x,y,z}, 

and velocity according to each axis, v, where 

Ther fore, state s is denoted as 

8={r,v}. 

'rh reward rew used to update the control knowledge Q is based on (3.5), 

ds' 

ds- ds' + 1 
rew = (3.5) 

Wh re ds is the distance between the control device at state 8 and the target location, 

llllhd ds' is the distance between the control device at state 8
1 and the target location, as 

own · •n figure 3.15. 
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Figure 3.15: Parameters for determining rewards m Learning Control System for rapid 
position control. 

Reward r in (3.5) was applied for two reasons; to have the control device travel a large 

distance between two states, and to have the control device distinguish the favourability of 

states that are closer to target position. This is because, larger travel distance between two 

states represent higher acceleration that was needed for performing rapid position control 

for reaching the target state at a faster rate. 

Besides (3.5), reward rew is a constant in case of the Learning Control System failed to 

reach the target state within the designated simulation time, and when the control device 

exceed the designated movement range for the simulation. 

3.3.2 System Structure for Rapid Position and Obstacle Control 

Using the learning function arranged in the previous section, a Learning Control System 

by multiple control knowledge concerning application of three target angles was designed. 

The design of Learning Control System by multiple control knowledge for rapid position and 

obstacle control is as shown is figure 3.16, where three control knowledge for producing three 

target angles were applied. The design of the Learning Control System learns the optimum 

COmbination of target angles with predetermined preservation time of target angles and 

C'Onstant elevation. The Learning Control System was design to provide controls of position 
tl'aJ:I . t' 
• 

1 ton for 2 dimensional environment using application of three target angles ssign ·'d 

lll the control knowledge of the Learning Control System. 
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Figure 3.16: The structure of the Learning Control System for rapid position control. 

3.3.3 Simulation Settings 

Series of simulations were conducted in MATLAB Simulink based on the parameters of the 

aerial hovering vehicles shown in figure 3.14. These parameters are shown in table 3.4. A 

series of simulations which consisted different target position was assigned to confirm the 

effectiveness of the Learning Control System. Obstacles were also assigned in the simulation 

to confirm that the Learning Control System was able to operate through obstacles as 

intended. The assigned target states and obstacles were placed as shown in figure 3.17. 

Table 3.4: Specifications of the simulated aerial hovering vehicle. 

j Parameters Value I 
Weight 0.42 [kg] 
Size: 

Length 0.53 [m] 
Width 0.52 [m] 
Height 0.1 [m] 

'l'he Parameters for Q-learning is as shown in table 4.2, where these parameters were 
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Figure 3.17: Obstacles and target location assigned in the simulations of Learning Control 
ystem for rapid position control. 

lected pre-simulation. The position control of the aerial hovering vehicle was only applied 

on horizontal movements with constant altitude, within a movement range assigned. 

Table 3.5: Q-1 arning parameters of Learning Control System for rapid p ition control. 
Parameters Range Intervals 

State Location,r[m -10 < r(x,y) < 10 2 
r(z ) = 1 

Velocity, v -10 < v < 10 2 
[m/s] 

Action Target An- -0.25 < Or < 0.25 0.05 
gle, Br[rad] 

I Learning rate, a I 0.5 II Discount rate, 'Y I 0.3 I 

Thete are several properties designated into the conducted simulations. For each simu-
lation£ h . or eac target state, the properties are as follows. 

• s· nnulation runs six times with different target state assigned with each having 4 four 

Perman nt cylindrical obstacles with diameter of 1[m]. 

• s· •muJati 11 end at 3000 episodes of trials. 
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1 
30 second operation time for each episode. 

1 
Action is evaluated for reward and target angles were renewed every 1 second. 

1 
f-greedy selection of each target angles 

• rew::::: -2 when the action leads to out of range or obstacles. 

1 
Due to large intervals on states, the controller for states within 1 [m] around the target 

state will be switched to PD control. 

The results from the simulations are determined by the accumulated rewards through 

the simulations and the successful attempts on achieving the target position by operating 

with and without obstacles. 

3.3.4 Simulation Results 

At the end of the simulation, the result of the trials for each episode was collected and 

analyses to confirm the reliability of the system. The results should provide the information 

Cln the control path for each target state assigned. This includes position transition and 

angular transition which is important for distinguish the reliability of the Learning Control 

•;tern, with or without obstacles in the environment. The results also provide information 

regarding the improvement occurred in the control knowledge. Therefore, the results of the 

simulation are viewed in two aspects. The first aspect is the characteristic of rapid position 

control operation that successfully operates within an environment while the second aspect 

· the improvement of control knowledge that is used to perform the rapid position control. 

3·3.4.1 Successful Control Operations towards Designated Target States 

This result confirms the reliability of the Learning Control System for performing successful 

c:ontl.'ol operation that is required to reach the assigned target state. There are 6 target 

tat Were assigned with the same initial starting position in the simulation. A successful 

~lltro! attempt for each target states that was learned by the system during the simulation 

howu in figure 3.18. Figure 3.18 shows the control operation that was accomplished at 

he final, 3000th episode of the simulation for each target position assigned. 

ob'l'he results show that the Learning Control System was able to control the control 

d' ~l!()t towards each designated target states. Simulation for target 1 to 2 shows that 

ltcet lllovement from start position was able to achieved, when the movement path is not 
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Figur 3.18: Successful control operation for the simulation with assigned target state. 

ob truct d by any obstacles. However, for target 3 and 4, the movement path was not so 

looth compared to target 1 and 2. This is because, the system learns the most effective 

mano uvr s and in case for target 3 and 4, the optimum manoeuvres that were learned 

here were not as smooth as for target 1 and 2, in figure 3.18. For target 5 and 6, the control 

'ystem bent the movement path so that the control device can avoid the obstacles, but still 

reache the assigned target state. 
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Figure 3.19: Successful control operation without obstacles in direct path. (Target State 1) 
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3.3.4.1.1 Successful Control Operation without Obstacles in Direct Path 

This result explains the movement path of the control device that was operated by the 

system towards reaching target state 1. The direct path towards target state 1 is unblocked 

by any obstacles but the Learning Control System is needed to be careful of the obstacles 

at the side of the direct path. The details of the control operation for reaching target state 

1 is shown in figure 3.19a and figure 3.19b. 

Figure 3.19a shows the position transition of the control device in each 3 axis, during the 

final episode of simulation for Target State 1. Here, the system selects the optimum position 

transition for achieving the target state, with less unnecessary movements according to each 

axis. Figure 3.19b shows the transition of angular orientation based on roll pitch and yaw 

during the final episode of simulation for Target State 1. Here, the manipulation of angle 

can be seen to influence the position transition in figure 3.19a. 
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Figure 3.20: Successful control operation with obstacles in direct path. (Target State 6) 

3.3.4.1.2 Successful Control Operation with Obstacles in Direct Path 

This result explains the movement path of the control device that was operated by the 

Learning Control System towards reaching target state 6. The direct path towards target 

state 6 is blocked by an obstacle and the system is needed to consider this obstacle when 

Performing control operation to reach target state 6. The details of the control operation 

for reaching target state 1 is shown in figure 3.20a and figure 3.20b. 

Figure 3.20a shows the position transition of the control device in each 3 axis, during 
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fiual episode of simulation for Target State 6. Here, the system selects the optimum 
111 

'tioll transition for achieving the target state, with necessary movements according to 

J)OSI "" is needed to avoid the obstacles place in the environment. Figure 3.20b shows the 
('flcll .- ' 

.-~ :on of angular orientation based on roll pitch and yaw during the final episode of 
trnrt l w 

. I t iOll for Target State 6. Here, the manipulation of angle can be seen to influence 
:;~Jllll fl 

Osition transition in figure 3.20a for taking necessary movements to avoid the assigned 
the P 

dbtltllcle. 

4 2 Control Knowledge Improvements during Control Operations towards s.s .. 
Designated Target States 
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Fi~e 3.21: Accumulation of reward during simulations of Learning Control System for 
raptd PO ition control. 

This result shown in figure 3.21 explains the improvement that occurred during the 
airnuta · •on of the Learning Control System. For each episode, Control Knowledge has 
~ . . 

n Updat 1 to satisfy the environment where the control operation will be performed. 
Therefor th . . f l . . • e mcreasmg number o accumu ated rewards represents mcreasmg number 
of 
the uccessful control operation. This explains that the Learning Control System learned 

best control operation needed by attempting the control operation that leads to most 
~·d' 

In each episode, where successful control attempts were learned during the simulation 
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1 
ads to more reward accumulated through more episodes. Here, multi-functionality 

,(lnt e b · 1 t· f · 1 h · h" l · "d ·t· t l d 
\\11!i ac 

hieved y mampu a 1on o aena overmg ve 1c es m rap1 pos1 1on con ro aroun 

oblit,acles. 

4 Summary 3. 
~,operation of Rapid Position Control applies multi-functionality to control an Aerial 

JinUlw• 

btl\ft'Jing vehicle with precision and safety. Multi-functionality applies multiple knowledge 

rd' t'ontrol in providing such precision and safety in controlling devices especially devices 

with non-linearity. Providing Learning Control System with multiple control knowledge 

moY p~ovide multi-functionality in controlling complex non-linear device where human can 

r_'<J)ertly controls due to multi-functionality in human control ability. 

In this chapter, Learning Control System by Multiple Control Knowledge was designed 

IUid applied on rapid position control of aerial hovering vehicle. The Learning Control 

)"Stem with Multiple Control Knowledge is designed for performing an operation that 

requit · multiple functions in controlling a device. The Learning Control System was firstly 

igned and applied for rapid position control alone, using cart-pendulum system as control 

dfvic . It was later designed for control of aerial hovering vehicles for rapid position control 

among vehicles. 

imulations were conduct to confirm application of multi-functionality in rapid position 

rontrol using the designed Learning Control System on aerial hovering vehicles. The con

trols af aerial hovering vehicles were emulated on cart-pendulum system, where Learning 

U!ntrol System for rapid position control was designed, before being applied on simula

tion of the aerial hovering vehicle. Simulations show that the control object has multiple 

tontra} functions to learn and to control for performing rapid position control while consid

ering mn·t·ounding obstacle to reach the assigned target state. Development of a Learning 

Control System with multiple sources of control knowledge provides multi-functionality in 

rapjd Position control while considering obstacles on an aerial hovering vehicle. There

fore, the design of Learning Control System with multiple control knowledge may provide 
lllulti.functiol ·l:t . l l" . l a u y m contra s app 1cat10n. 
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Chapter 4 

Multiple-Functions Learning 
Control by Compound Function 

Oe:;ign of Learning Control with quality of multi-functionality produces functions that re

quire d cision management in order to optimize the usage of each function. Providing 

decision management requires a Learning Control System to be able to analyse surround

ing onviromneut and considers necessary function required by particular specifications of 

the cmril'onmen ,, Compound Function provides multi-functionality with decision manage

ment where necessary function is provided based on the environment that requires them. 

DP.Iign of Learning Control System with Compound Function may render a control device 

autonomous in control operation due to decision management properties that provide action 

consideration during the operation. 

4.1 Compound Function 

human has the ability to learn and utilize their skills from experiences when confronting 

any problem. Such ability capable those in utilizing certain knowledge of skills that was 

obtained through various experiences for solving a new problem that requires a configuration 

of obtained skills. In case of hurdle race, human can utilize the skills of jumping and running 

into Performing hurdle race. Both control knowledge of jumping and running must be 
lltili 
h zed by optimum configuration in order to provide an effective hurdle operation. Here, 

UlJlan Utilizes this knowledge of skills in creating an action by considering the requirement 

of each skill, as shown in figure 4.1. The above skills are not only being utilized in solving 
ProbJ Ill h tba s, owever, the executed actions may provide feedback and help develop the skills 

t were £ Per armed through development of control knowledge of those skills. 
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Figure 4.1: System structure for application of compound function. 

Bnsed on figure 4.1, there are two agents involves in creating a Learning Control System 

witb compound function. The first agent is the learning agent, where control functions 

wbt'r arran d in the system. The second agent is the merger agents, where compound 

function merges the control information provided by the control functions within the learn

ing agent. Compound Function is created in order to provide such human ability in a 

ntrol system. Learning Control System may provide updates to control knowledge how

rer, 1vlien having multiple control knowledge in a Learning Control System, consideration 

or oontrol functions is needed to determine the control knowledge that provides this func

tion. Compound Function provides consideration in selecting the best control knowledge 

Cor applying necessary control function through the Learning Control System. A sugges

ion of control command together with the preference value is provided by the two control 

knowledge, where the compound function considers the optimum action for operating the 

ntrol device. The feedback of the action will provide update for the control knowledge of 

the operated action, enhancing them for consideration in future operation. Here, a design 

of Learning Control that utilizes multiple functions by Compound Function was utilized for 

obstacle and goal consideration of a mobile robot. The Compound Function merges the 

rol knowledge from each control function and stores the control information obtained 

~the .s~urce control knowledge for evaluation in form of compound control knowledge. 

Lea.rntng Control System was designed to apply the proposed Compound Function 

~ ttllin the priority of the control source in executing action based on two Control 

ledge of Goal Attainment and Obstacle Avoidance. 
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Figure 4.2: Method of multiple functions Learning Control by compound control knowledge. 

4.2 Compound Control Knowledge 

In order to create a Learning Control System that can utilize multiple Control Functions, 

0 rol Knowledge from each Control Functions must be merged into one Compound Con

trol Knowledge. The Compound Control Knowledge proposed in Fig. 4.2 can be applied to 

hvoor ntor Control Function. However, in order two confirm the validity of the compound 

COI!trol fun tiou, two control functions was applied on the Learning Control System. 

Tha comp und control knowledge was created through selecting the minimum option 
of acr 

ton compared based on the preference value provided by control knowledge of each 
1 l'uncti n. A new set of action is obtained, consists the minimum preference value 

'n(l(,l from comparing both control knowledge. Action of the control device is selected 

h he compound control knowledge where the action with optimum value among the 

With minimum value stored in the compound knowledge is selected. Updates are 

lfie to the control knowledge of control function that provided the executed action. 

rarchical Reinforcement Learning applies comparison between preference values for 

64 



multiple value functions similar to compound function [4 7]. However, the application of 

Hierarchical Reinforcement Learning requires layers of value functions where each layer is 

surveyed by parent task. Application of value function in the lower layer is determined by 

the value function in the upper layer of the hierarchy [42]. In case of compound function, 

value functions are arranged without hierarchy, where the application of the necessary value 

function depends on the state of the control device. The value function is merged when 

application of more than one value functions is necessary through merging function where 

minimum preference value between the value functions is selected. 

4.3 Learning Agent for Compound Function Device 

The learning process applied in the Learning Control System consists Reinforcement Learn

ing where Control Knowledge is updated in a form of value functions Q. The value function 

of the Control Knowledge is denoted by state S, defining the current situation of the control 

object and action A, defining the following move of the control device. StateS and Action 

A is defined into two sets as StateS= {s1, s2, .. , sn} and Action A= {a1, a2, .. , an}· 

During the phase of updating the control knowledge, the preference value q of the com

bination between state s and action a is renewed by the reward r obtained after performing 

the action a. In the case of successful operation, the preference value q increases, and de

creases in result of unsuccessful operation. The value function of the Control Knowledge is 

updated based on Q-learning algorithm shown in equation 1.1. Here, two Learning Agents 

for Compound Function Device was designed using Reinforcement Learning; the first Learn

ing Agent consists Learning Control System for goal attainment function, while the second 

Learning Agent consists Learning Control System for obstacles avoidance. 

4.3.1 Learning Control System for Goal Attainment Function 

Learning Control System for goal attainment operates the control device towards the goal. 

Here, the Learning Control for goal attainment applies goal distance b.G = {b.Xc, b.Yc} 

as state S while movement distant b.r and rotation e as action Ac. Therefore, the value 

function Q for Learning Control for Goal Attainment is defined by Q(b.G, Ac) . 

The update equation for the Learning Control System for goal attainment alone is, 

( 4.1) 
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Qmax = maxQl(~G,Ac) 
Ac (4.2) 

where reward r is assigned according to the function shows in figure ??. Here, rewards 

are given according to distance between the goal and the control device. Action that renders 

the device further than goal will result in negative rewards while action that renders the 

device closer will result in positive reward. 

4.3.2 Learning Control System for Obstacle A voidance Function 

Learning Control System for obstacle avoidance operates the control device away from ob

stacles. Here, the Learning Control System for obstacle avoidance utilizes obstacle distance 

1:10 = {~Xo, ~Yo} as stateS and movement distant T and rotation 0 as action Ao. There

fore, the value function Q for Learning Control System for obstacle avoidance is defined by 

Q(/:10, Ao). 

The update equation for Learning Control System for obstacle avoidance alone is, 

(4.3) 

(4.4) 

where reward r is assigned according to the function shows in figure ?? . Here, rewards 

are given according to distance between the obstacle and the control device. Action that 

renders the device further than detected obstacle will result in positive rewards while action 

that renders the device closer will result in negative reward. 

0 
Initial ~ 

Position 

if dt+1 > dt ,r=D 

if dt+1 < dt ,r=l 

dt 

Goal Attainment Command 

Figure 4.3: Reward for control in Goal Attainment Function. 
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Figure 4.4: Reward for control in Obstacle Avoidance Function. 

4.4 Merger Agent for Compound Function Device 

Having two or more Control Functions in one Learning Control System would require the 

system to utilize the value function from both Control Functions. The preference value from 

both value functions is used to describe the priority in selecting the best actions provided by 

each value functions. In order to provide comparisons between two or more value functions, 

the update method for the participating value functions has a limit between O(bad) and 

1(Good). Therefore, the discount rate 'Y of the updated value in equation 4.1 and 4.3 for 

each value functions is applied as, 

(4.5) 

'Y2 = 1- Qz(f10, Ao). (4.6) 

A new value function defines as Compound Control Knowledge is firstly constructed 

using the value functions provided by the Learning Agent as shown in figure 4.5. The value 

function of Compound Control Knowledge is constructed by Q All and K, 

(4.7) 

with 

K(st,A) = n, (4.8) 
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Figure 4.5: Structure of Learning Control System by compound function in case of 2 control 
functions. (Goal and Obstacle) 

where n is the serial number of the source value functions in the subsystem, which 

defines the Compound Control Knowledge as 

CQ(St, A)= {QAu, K}. (4.9) 

Bared on the above equations, the overall design of Learning Control System by Com

P<lund Function for goal attainment and obstacle avoidance is as shown in figure 4.5. Here, 

. g Agents supplied control information into the merging function, where a new value 

function defined as compound control knowledge is created. Action is selected through 

Ct'>mpotuld control knowledge and the Reinforcement Learning Function updates the 

ing Agents depending on the source of the executed action. The effectiveness of the 

ed Learning Control System by Compound Function was confirmed through series 

erbnen s, where the design was applied on control operation of a small mobile robot 
ng obsta 1 . 
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4.5 Experiments Settings 

The Learning Control System by Compound Function shown in figure 4.5 was evaluated 

in two phases; simulation phase and experiment phase. During the simulation phase, the 

control object applied was a robot that was designed based on parameters as the robot 

shown in figure 4.6a. The robot shown in figure 4.6a was applied for evaluating the designed 

system in the experimental phase. The operation specifications of the robot are as shown 

in figure 4.6b, while the physical specifications of the robot are as shown in table 4.1. 

(a) Robot for real operation experiment. 

y Obstacle Sensor Range ·- ........ , MaKimum turning angle 

', / 1 [rad] 

\\ 
L27o• I_ O[rad] 

' 
/!) 

, .,; • -1 [rad] 
• - • _ • ,... • MaKimum turning angle 

X 

(b) Robot structure for simulation and real operation 
experiment. 

Figure 4.6: Specification of the control device for experiments. 

Table 4.1: Specifications of the simulated control device for Learning Control System by 
compound function. 

Parameters Value 

Weight 5.5 [kg] 
Size: 

Length 0.27 [m] 
Width 0.27 [m] 
Height 0.15 [m] 

The simulation was conducted as a platform to train the control knowledge of the Learn

ing Agents in the Learning Control System and for the evaluation of compound function 
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application. The simulation environments are based on the field map in figure 4.7. The 

parameters for the equation in the Learning Control System are as shown in table 4.2. The 

simulation was conducted in three phases; two phases for training and one phase for eval

uation. The phases of training were conducted each to construct the Control Knowledge 

for control functions of Goal Attainment and Obstacle Avoidance. The phase of evaluation 

was conducted in evaluating the effectiveness of the compound function in applying the 

two Learning Agents. The training phases were conducted in 750 episodes, with 5 targets, 

while the evaluation episode was conducted in 375 episodes for 5 goals. The results ob

tained concerning the movements of the robot and the condition of the learning process was 

evaluated. 

Table 4.2: Parameters for Q-learning in Learning Control System by compound function. 

I Parameters II Range I Intervals 

State (Goal) Goal Distance,~G[m] -10 < ~G(x, y) < 10 2 

State (Obstacle) Obstacle Distance,~O[m] -2 < ~O(x,y) < 2 0.5 

Action Target Angle, O[rad] 
Travel Distance, V[m] 

-1<0<1 
0.1 <X< 0.5 

I Learning rate, a I 0.5 II Discount rate, 1 I 0.3 I 

4.6 Experiments Results 

0.5 
0.2 

The training phase describes the effectiveness of the control knowledge applied in the Learn

ing Agents. The evaluation phase describes the effectiveness of the compound function 

utilizing the whole Learning Control System. The successful simulation obtained during 

the evaluation phase was applied on the robot. The robot movement was recorded and the 

effectiveness of the system in a real environment was evaluated as well. 
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Figure 4. 7: Field map for simulation of Learning Control System by compound function. 

4.6.1 Simulation Results for Goal Training 

Here, results based on the training of control knowledge for goal attainment provides infor

mation regarding the effectiveness of the Learning Control System in creating the control 

knowledge for obtaining goals. The control knowledge for goal attainment is important to 

provide comparison when applying the compound control knowledge. 

Figure 4.8 and figure 4.9 describes the results of the training process for the Control 

Knowledge of Goal Attainment in the Learning Agent. In figure 4.8, the robot in the 

simulation was able to reach the target assigned. Movement strategies were constructed 

depending on the direction of the targets under the restriction of the assigned control 

command. Figure 4.9 shows the accumulated reward by the value functions of the control 

knowledge. The accumulated reward increases over episodes, where successful attempts 

towards the goals are achieved more frequently after several trials for each assigned target. 

Therefore, it can be concluded that the Control Knowledge of the Learning Agent for the 

Goal Attainment was successfully constructed. 
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Figure 4.8: Training operation for achieving goal using Learning Control. 
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Figure 4.9: Accumulated reward for goal knowledge over simulation episode. 

4.6.2 Simulation Results for Obstacles Training 

Here, results based on the training of control knowledge for obstacles avoidance provides 

information regarding the effectiveness of the Learning Control System in creating the 

control knowledge for avoiding obstacles. The control knowledge for obstacle avoidance is 

important to provide safe control when applying the compound control knowledge. 

Figure 4.10 and figure 4.11 describes the results of the training process concerning 

the Control Knowledge of Obstacle Avoidance in the Learning Agent. In figure 4.10, the 
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robot movement was obstructed by obstacles from reaching the assigned target. Frequent 

obstruction has created alternative movement strategy for the robot to avoid the obstacles 

as long as possible. Therefore, a successful Control Knowledge for avoiding an obstacle 

was obtained at the end of the simulation. Here, figure 4.11 shows that the accumulated 

rewards increases in the value function of the Control Knowledge of the Learning Agent for 

Obstacle Avoidance. 

15 ~ 0 0 0 0 0 0 0 0 0 0 0 0 
0 Obstacle Location 0 O 

1 
O Start Location • O 

0 0 05 0 ,__ _______ ...... - ..... ~--_,. 0 

0 0 
o O 0 

0 0 
-05 0 0 

0 0 
-1 0 0 

0 0 
-15 0 0 0 0 0 0 0 0 0 0 0 0 O [m] 

15 -15 -1 - 05 0 05 1 

Figure 4.10: Training operation for avoiding obstacles using Learning Control. 
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Figure 4.11: Accumulated reward for obstacle knowledge over simulation episode. 
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4.6.3 Simulation Results for Compound Function Training 

Figure 4.12 describes the results for the evaluation phase with obstacles and target. This 

result evaluates the effectiveness in creating the Compound Knowledge. Figure 4.12a shows 

the robot movements in the simulation where the robot was able to successfully reach all 

the assigned goals while avoiding all the obstacles. Figure 4.12b and Figure 4.12c described 

the changes in the Control Knowledge of Goal Attainment and Obstacle Avoidance in the 

Learning Agents. The value function of each Control Knowledge improves over the episodes. 

Therefore, the proposed system was effective in utilizing Learning Agents in performing a 

control operation for attaining goal while avoiding obstacles. 

[m] Obstacle Location O Start Location • Goal Location 0 
4 0000000000000000000 

0 

-1 

0 
-2 

0000 0000 0000 0000000 ~ 
0 1 2 3 4 

(a) Training operation for compound knowledge. 

Goal2 Goal3 Goal4 Goal5 Goal1 

100 150 200 Jio 50 100 150 200 250 300 lSO 
Episode Episode 

(b) Accumulated reward for goal knowledge over 
simulation episode. 

(c) Accumulated reward for obstacle knowledge 
over simulation episode. 

Figure 4.12: Training results of compound knowledge in simulation. 
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4.6.4 Experiment Results on Real Operation 

Figure 4.13 shows the results of the control operation in a real environment. The operation 

was conducted in a map monitored where the location data collected using Kinect for 

Windows. The obstacles and the target were assigned randomly and the movement of the 

robot was recorded. Figure 4.14 shows the movement configuration of the robot of figure 

4.13. These results show that the robot successfully approaches the target position. The 

results confirm that the Learning Control System by Compound Function was effective in 

applying multi-functionality in goal attainment and obstacle avoidance on a control device. 

(a) Operation with random obstacle and tar
get. (case 1) 

(b) Operation with random obstacle and target.(case 
2) 

Figure 4.13: Evaluation of real operation with robot. 
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(b) Operation with random obstacle and tar
get.(case 2) 

Figure 4.14: Movement results of the evaluation. 
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4.7 Summary 

Learning Control System with multiple functions requires decision management in order to 

provide multi-functionality in control operation. Applying decision management in Learning 

Control System may provide consideration in applying a control function among the option 

of control functions. Due to application of the decision management, necessary control 

function can be provided depending on the environment situation, increasing the reliability 

of control operation in any environment. Therefore, Learning Control System with multiple 

control functions requires a method for decision management in order to provide multi

functionality effectively. 

In this chapter, a multi- function Learning Control System is designed to provide multi

functionality with decision management through application of Compound Function. Com

pound Function described as Merging Agent; consisting merging function and compound 

control knowledge may provide decision management through merging the control knowl

edge of control functions, described by Learning Agents, into compound control knowledge. 

Compound control knowledge is created through selecting the minimum preference value 

of action options when comparing Learning Agents. Application of compound function 

created new temporary compound control knowledge using elements from multiple control 

knowledge of control functions. 

Series of experiment was conducted in order to confirm the effectiveness of the designed 

system. Two phases of simulation were conducted to construct the Learning Agents and 

to evaluate the Merging Agent. Results show that construction of Learning Agent was 

successful and was applied in the simulation for evaluating Merging Agent. Results of the 

evaluation phase show that the designed system was able to utilize compound function 

into applying multi-functionality during control operation for goal attainment and obstacle 

avoidance. Simulation results show that the system was able to apply the compound func

tion in providing multi-functionality in form of Goal and Obstacle Consideration. Therefore, 

a Learning Control System with multiple functions was obtained with application of the 

Compound Function in the Learning Control System. 
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Chapter 5 

Conclusion 

Human actions involve multi-functionality, where an action could provide results for mul

tiple purposes. Through this quality, consideration on multiple parameters can be made 

before an action can be executed. Providing such quality to a control system would require 

application of multiple control function under one system. A control system that is adapt

able to environment with multi-functionality would render the control device autonomous in 

performing control operation. Therefore, adaptable control system with multi-functionality 

may provide safer and reliable control for a control device in any environment. Designs 

concerning application of Learning Control System with multi-functionality are provided 

through this dissertation. Here, the design involves methods of applying Learning Control 

that provides multiple control function for providing safer and reliable control for control 

operation. 

In chapter 2, the first design of multiple functions Learning Control System utilizes sub

stitute target in providing control solution in a constrained non-linear device. Constrained 

Non-linear Learning Control system by substitute targets provides control solution to multi 

dimensional states in Non-linear Control device under constraints. Results show that the 

Learning Control System by substitute target was able to provide multi-functionality in a 

constrained non-linear control device through application on cart-pendulum swing up con

trol among constraints. Therefore, multi-functionality was applied on non-linear control 

device by substitute target and a safe and reliable control was obtainable through multi

function learning control. 

In chapter 3, the second design of multiple functions Learning Control System utilizes 

multiple control knowledge in providing control solution in controls of a non-linear device, 

consisting cart-pendulum system and aerial hovering vehicles. Learning Control System 
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by multiple control knowledge provides solution in applying human like control decision to 

a machine that reduces dependency in detailed human command. Results show that the 

Learning Control System by multiple control knowledge was able to provide human like 

multi-functionality in controls of non-linear device through application of multiple control 

knowledge in rapid position control of aerial hovering vehicles. As a result, the nonlinear 

control by the integration of multiple control knowledge in the learning control system were 

obtained, operated similar to human skills, thus the multivariable multi-function control 

was achieved. 

In chapter 4, the third design of multiple functions Learning Control System utilizes 

compound function in providing decision management in Learning Control System with 

multiple control knowledge of functions. Compound Knowledge Learning Control system 

provides control solution for having control functions priority consideration in environment 

with multiple control functions. Results show that the Learning Control System by com

pound function was able to provide necessary consideration between application of goal 

attainment control or obstacle avoidance control during operation of a small robot device. 

Therefore, the compound knowledge (state-action rule) that integrates goal attainment 

function and the obstacle avoidance function was learned for providing multi-functional 

control. 

In this research, Learning Control System with multi-functionality is designed and de

veloped. By the designs, Learning Control System with multi-functionality may provide 

human-like safe and reliable control in a control device, making it capable of providing 

autonomous control in any environment. 
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