Model-Free Controller Design based on Simultaneous Perturbation Stochastic Approximation

Dissertation
Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Informatics

Mohd Ashraf bin Ahmad

Department of Systems Science
Graduate School of Informatics
Kyoto University
Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

Symbols and Definitions x

1 Introduction 1
 1.1 Background .. 1
 1.1.1 What is model-free controller design? 1
 1.1.2 Why model-free controller design? 2
 1.1.3 Review on tools for model-free controller design 3
 1.1.4 Motivation of using SPSA as a tool for model-free controller design ... 6
 1.2 Goals and Contributions 8
 1.3 Organization of Thesis 9

2 Model-Free Controller Design based on Simultaneous Perturbation Stochastic Approximation 11
 2.1 Simultaneous Perturbation Stochastic Approximation 12
 2.2 Convergence conditions of the SPSA algorithm 13
 2.3 Illustrative Examples 15
 2.4 Framework of Model-Free Controller Design based on SPSA . 17
 2.5 Summary ... 20

3 PID Controller Tuning of MIMO Systems 21
 3.1 Introduction .. 21
 3.2 Problem Formulation .. 23
 3.3 Model-Free PID Controller Design using Simultaneous Perturbation Stochastic Approximation 24
 3.3.1 Simultaneous Perturbation Stochastic Approximation Methods .. 24
Contents

3.3.2 Model-Free Design .. 27
3.4 Implementation and Results 27
 3.4.1 Example 1 (Wind turbine) 28
 3.4.2 Example 2 (Distillation column) 31
 3.4.3 Example 3 (Bell 201A-1 helicopter) 35
3.5 Summary ... 38

4 Switching Controller Design for Hybrid Electric Vehicles 39
 4.1 Introduction .. 39
 4.2 Benchmark Problem: Optimizing Fuel Consumption of the Hybrid Electric Vehicles ... 41
 4.2.1 Hybrid Electric Vehicles System 41
 4.2.2 Performance Evaluation 43
 4.3 Switching Model-free Controller Design using Simultaneous Perturbation Stochastic Approximation 44
 4.3.1 Motivation of using Switching Controllers 44
 4.3.2 Controller Description 45
 4.3.3 Model-Free Design 47
 4.4 Implementation and Results 49
 4.5 Discussion ... 51
 4.6 Summary ... 56

5 Maximizing Power Production of Wind Farms 58
 5.1 Introduction .. 58
 5.2 Problem Formulation ... 60
 5.3 Multi-Resolution Simultaneous Perturbation Stochastic Approximation ... 61
 5.4 Model-Free Controller Design for Maximizing Power Production of Wind Farms ... 64
 5.5 Implementation and Results 67
 5.5.1 Wind Farm Model .. 67
 5.5.2 Horns Rev Example .. 69
 5.6 Summary ... 79

6 Conclusion .. 81

A Parameters for the numerical tests of the PID tuning 84

B Convergence conditions of the 1SPSA, GSPSA, and ASPSA methods 89

C Design parameters in the HEV controller 92
Contents

Bibliography 97
Published Papers 111
List of Figures

1.1 Model-free controller structure .. 2
1.2 General flow of SPSA algorithm 7

2.1 Responses of the objective function $f(\theta(k))$ in Example 1 15
2.2 Responses of the objective function $f(\theta(k))$ in Example 2 16
2.3 Responses of the objective function $J(\kappa(k))$ 18

3.1 PID control system .. 23
3.2 Output responses of the wind energy conversion system 31
3.3 Output responses of the binary distillation column system 33
3.4 Output responses of the Bell 201A-1 helicopter system 38

4.1 The architecture of split type hybrid powertrain 41
4.2 Control system of the benchmark problem 42
4.3 Driving data of going to office on Monday 45
4.4 Driving data of going to office on Wednesday 45
4.5 Driving data of returning to home on Monday 46
4.6 Driving data of returning to home on Wednesday 46
4.7 Diagram of Switching controller 47
4.8 Convergence of the objective function $J(P_v, K_{SW}, R(t), (62007, 63699, ..., 60519, 62007))$ 52
4.9 Responses of the engine torque Y_7 and power Y_8 for the driving mode $j = 1$.. 54
4.10 Responses of the motor 1 revolution speed Y_9, torque Y_{10}, and power Y_{11} for the driving mode $j = 1$ 55
4.11 Responses of the motor 2 torque Y_{13} and power Y_{14} for the driving mode $j = 5$.. 56

5.1 MR-SPSA optimization problem based on three resolution steps 63
5.2 The selection of the design parameter in each resolution 66
5.3 The wake expansion in the Park model 69
5.4 Horns Rev wind farm layout ... 70
5.5 Convergence of the total power production $\overline{P}(v_1, v_2, ..., v_{80})$ with wind direction 170° ... 72
5.6 Group selection in the first and second resolutions for wind direction 220° .. 74
List of Figures

5.7 Group selection in the first and second resolutions for wind direction 270° .. 75
5.8 Four types of selected groups in the second resolution for wind direction 220° .. 76
5.9 Non-static wind speed and direction during 10 h simulation time ... 77
5.10 Total power improvement of the MR-SPSA, SPSA, GT, and FS-MPPT-based methods for non-static wind speed and direction during 10 h simulation time ... 77
5.11 Layout of Horns Rev wind farm with five turbine failures 78
5.12 Convergence of the total power production $P(v_1, v_2, ..., v_{75})$ with five turbine failures ... 79

C.1 Engine controller ... 92
C.2 ICE controller .. 93
C.3 Motor 1 controller .. 93
C.4 Motor 2 controller .. 93
C.5 Battery controller ... 94
C.6 General switching controller ... 94
List of Tables

2.1 The values of convergence time for different dimensions 19
3.1 Design parameters of Example 1 .. 29
3.2 Statistical result of Example 1 .. 30
3.3 Design parameters of Example 2 .. 32
3.4 Statistical result of Example 2 .. 33
3.5 Statistical result of Example 2 with time delay and stochastic disturbance .. 34
3.6 Design parameters of Example 3 .. 36
3.7 Statistical result of Example 3 .. 37
4.1 Fuel efficiency comparison for benchmark problem 40
4.2 The information of reference input, control input, and output of HEV system .. 42
4.3 Driving data on \([0, 17595]\) ... 46
4.4 Design parameters in the HEV controller ... 49
4.5 The driving data for the switching controller design 50
4.6 Simulation results of the total power for the engine, motor 1, and motor 2 in three weeks driving data .. 53
5.1 Performance analysis of the total power production (MW) for the MR-SPSA, SPSA, and existing model-free approaches with different wind directions, Std.: Standard deviation .. 72
5.2 Performance analysis of the convergence time (h) for the MR-SPSA, SPSA, and existing model-free approaches with different wind directions .. 73
5.3 Performance comparison of different group selections in the second resolution for wind direction 220° .. 76
5.4 Performance comparison of the MR-SPSA, SPSA, and existing model-free approaches with five turbine failures .. 79
A.1 Parameters of the SPSA-based algorithms 88
C.1 Initial values of the design parameters .. 95
C.2 Optimal values of the design parameters 96
Symbols and Definitions

In this thesis, we use the following symbols and definitions. The symbols \mathbb{R} and \mathbb{R}_+ represent the set of real numbers and the set of positive real numbers, respectively. The symbol $\mathcal{S}^{n \times n}$ denotes the set of $n \times n$ positive definite matrices. The cardinality of set \mathcal{S} is denoted by $|\mathcal{S}|$. The vector whose all elements are one is denoted by $\mathbf{1}$. For the vector $\mathbf{\theta}$, we use $\| \mathbf{\theta} \|$ to express the standard Euclidean norm. For the random variable V, the probability of event $V = a$ is represented by $\mathbb{P}(V = a)$. The expectation of the random variable b is denoted by $\mathbb{E}(b)$. For $\delta \in \mathbb{R}_+$, $\text{sat}_\delta : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denotes the saturation function whose i-th element given as follows:

$$\text{The } i\text{-th element of } \text{sat}_\delta(\mathbf{\theta}) = \begin{cases}
\delta & \text{if } \delta < \theta_i \\
\theta_i & \text{if } -\delta \leq \theta_i \leq \delta \\
-\delta & \text{if } \theta_i < -\delta
\end{cases}$$

where $\mathbf{\theta} \in \mathbb{R}^n$ and $\theta_i \in \mathbb{R}$ is the i-th element of $\mathbf{\theta}$.