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Abstract 

Carbon deposition during ethanol dehydration remains an issue that needs a conceivable solution as ethylene is 
coke-precursor for acidic-type catalysts. This research is focused on bimetallic CaO-Ni/Al2O3 catalyst to increase the 
resistance of coke formation on catalyst which mainly due to decomposition of carbon. Using wet impregnation 
procedure, various metal loadings of CaO and Ni (2-10wt%) were introduced onto -alumina support. The prepared 
catalysts then were subjected to in-situ activation in a fixed-bed reactor using H2/N2 gas mixture before underwent 
the ethanol dehydration process in the same reactor. Catalysts were characterized using TEM, FTIR and FESEM. 
While CHNS Elemental Analyzer was used to observe coke formation before and after reaction.  Based on the 
results obtained, the catalyst composition 6wt%CaO-10wt%Ni/Al2O3 shows the best conversion of ethylene (87.89 
%) at 450oC of reaction temperature. It also suppressed the carbon formation only 13.28 % carbon content after the 
reaction. 
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1. Introduction 

The global demand of ethylene is estimated to rise up to the average of five percent annually between 2012 and 
2017[1]. The increased of ethylene consumption leads to a high producing rate by various manufacturers which 
typically produce by thermal cracking using petroleum and natural gas. However, this will also lead to the increased 
of production cost due to the shortage of natural resources and the exponential increased in crude oil prices 
altogether with the forecast that petroleum resources will inevitably depleted. All these factors are indeed, limit the 
production rate and tend to increase the price. Therefore, alternative resources for the ethylene production are 
essential and thereby could serve as new sustainable ways for this production.  

 
In dehydration of ethanol to produce ethylene, catalyst is used to increase the rate of selectivity of the chemical 

reaction and reduce the activation energy of the process without being consumed at the end of the reaction. Among 
noble and transition metals, Ni is the most promising choice as it is cheap, comparatively more active and high 
selective  [2, 3]. Bimetallic catalyst is an advance type of catalyst which produced by combining two types of metal. 
It is evident the bimetallic catalysts can further improve the ethylene selectivity as compared to monometallic 
catalysts [4-9]. Thus, bimetallic catalysts were used in this research for bioethanol dehydration to form ethylene. 
Traditionally, Ni-based catalysts undergo catalyst deactivation mainly due to coking process as a result of 
decomposition of ethylene. Therefore, improving the resistance of catalyst toward coke formation is essential in 
order to extend the lifespan of catalyst and simultaneously reducing the cost of regenerating the catalyst. It was 
reported that addition of basic metal oxide into the catalyst can help to reduce the formation of coke on the surface of 
catalyst [10]. In this research, series of metal loadings of CaO-Ni/Al2O3 catalysts were tested for its effectiveness in 
reducing the formation of coke on catalyst’s surface in ethanol dehydration. 

2. Experimental 

2.1. Catalyst Preparation 

Catalysts were prepared using wet impregnation method according to a procedure available in the literature [11]. 
Accurately weighed of calcined aluminium oxide (Merck) were loaded dropwise with Ca(NO3)2.6H2O aqueous 
solution followed by Ni(NO3)2.6H2O aqueous solution using pipette. After magnetically stirred for 1h on Thermo 
Scientific Super-nuova Hot Plate, the slurry mixture was oven-dried for 12h at 100 oC and calcined in WiseTherm 
Chamber Furnace at 500 oC for 6h. The cooled catalyst were crushed and sieved using Retsch AS 200 digit Sieve 
Shaker to obtain the final particle range of 45-125 µm for characterization and reaction studies. In this work, six 
types of CaO modified catalysts were synthesized, viz. 2 wt%, 4 wt% and 5 wt% Ca-loadings and 5 wt% and 10 
wt% Ni-loadings, respectively. 

2.2. Physicochemical Characterization 

CO - FTIR technique method according to a procedure available in the literature [12] was used. The samples 
spectra were recorded in 450 – 4000 cm-1 range using Perkin Elmer Spectrum One/BX FTIR spectrometer with 
high-vacuum purge system (HVPS). Catalyst surface morphology was observed using field emission scanning 
electron microscopy (FESEM) technique at magnifications of 1000X to 50,000X and transmission electron 
microscope (TEM) with electron energy loss (EELs). 

2.3. Catalytic Ethanol Dehydration 

Hydrocracker Reactor was used for catalytic ethanol dehydration using 450 and 500 oC temperatures under 
atmospheric pressure. The reactor was charged with 2.0 g of the prepared catalyst. Prior to the reaction, the prepared 
catalysts then were subjected to in-situ activation in a fixed-bed reactor using H2/N2 gas mixture before undergoes 
the ethanol dehydration process in the same reactor at 450-500 oC range of reaction temperature for 1 h with 1 
mLmin-1 flow rate of ethanol.  Gaseous product was collected and analyzed using GC-TCD model Shimadzu GC-
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8A. Column used was 3m Molecular Sieve 5A at 101 kPa. Perkin Elmer CHNS elemental analyzer was used to 
analyze total carbon content of spent catalyst. 

3. Results & Discussion 

3.1. Characterizations 

The dark zones in Fig. 1 corresponded to a wide variety of metallic particle. The EELs spectrum in Fig. 1 (b) 
showed two visible peak around 355 – 365 eV confirmed the presence of Ca element. According to David Muller et 
al.[13], Ni element peak typically visible at 870 eV which based on Fig. 1 (c), there was no visible peak. While in 
another spot (Fig. 1 (d)), there were visible peaks at both Ca and Ni EELS spectrum (Fig. 1 (e & f)) which indicates 
the presence of both elements on that spot. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 TEM images of 6wt%CaO-10wt%Ni/Al2O3 at two different places (a & d) and EELs spectrum of Ca (b & e) and Ni (c & f) at two different 

spots. 

 
Within each type of Lewis acid site, which were determined with pyridine as a probe molecule, there were 

distinctions in acidity that cannot be revealed with the use of strong bases. In this connection, it was very 
advantageous to employ the adsorption of weak bases like CO. The application of such probe molecules makes it 
possible to estimate both the concentration and the acid strength of OH groups and Lewis acid sites in zeolites, oxide 
and other systems [14]. Broad absorbance band around 3400 cm-1 in Fig. 2 (a) and (b) were assigned to hydrogen 
bond OH groups. In Fig. 2 (a), FTIR spectra of adsorbed CO shown by low frequency a. b. around 2100 cm-1 (purple 
box) corresponded with stretching vibrations of CO molecules of weak Lewis acid sites. However, there is a slight 
shift of adsorb CO a. b. in Fig. 2 (b) around 2300 cm-1 compare to Fig. 2 (a) that corresponded with stretching 
vibrations of CO molecules of strong Lewis acid sites. This may caused by calcination process. By increasing CaO 
loading concentration, Lewis acid sites on Ni/Al2O3 surface are decreased. This may caused by CaO acting as a 
poison on the acid sites of the catalyst surface [15]. 

(a) (b) (c) 

(d) (e) 
(f) 
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Fig. 2 CO-FTIR spectrum of Ni/Al2O3 and CaO-Ni/Al2O3 (a) before and (b) after calcination 

3.2. Analysis of Ethylene & Coke Formation 

Based on Fig. 3 (a), 6wt%CaO-10wt%Ni/Al2O3 catalysts produced the highest ethylene (87.89 %). This may 
caused by good doping dispersion of Ni particle on catalyst surface. Though, 6wt%CaO-5wt%Ni/Al2O3 catalyst (c.f. 
Fig. 3 (b)) formed the lowest carbon formation (9.66 %). The presence of high Ca concentration causes catalyst 
surface to become more basic which inhibited coke from forming at rapid rate [16-20]. Comparing between reaction 
temperatures, CaO-Ni/Al2O3 catalysts at 450 oC reaction temperature yield more ethylene and less coke form than 
500 oC. High reaction temperature caused ethylene decomposition rate to accelerate thus increased coke formation 
rate. 

 

Fig. 3 CaO-Ni/Al2O3 catalysts result of (a) ethylene percentage and (b) carbon content of catalytic ethanol dehydration reaction at 450 oC and 

500oC reaction temperature and various metal loading concentrations. 

 

(a) (b) 

(a
(b
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At reaction temperature of 500 oC, Fig. 4 showed significant difference of coke formations on CaO modified 
catalyst surfaces. Visible nano-flakes formed on the surface of 6wt%CaO-5wt%Ni/Al2O3 catalysts (cf. Fig. 4 (a. ii)) 
which consistent with results (cf. Fig. 3 (a),(b)) where ethylene production were relatively high causing coke to form 
at faster rate compare to 450oC reaction temperature. Figs. 4 (b. ii) and (c. ii) display thick coke layer on catalyst 
surface. These results are in agreement with results obtained in Fig. 3 for 2wt%CaO-10wt%Ni/Al2O3 and 
4wt%CaO-10wt%Ni/Al2O3 catalysts. This implied to high concentration of Ni which favorable in producing 
ethylene but not conducive to prevent coke formation at high reaction temperature. Even though a 6wt%CaO-
10wt%Ni/Al2O3 catalyst able to produce high ethylene, however carbon formation is relatively high compared to the 
same catalyst at 450 oC reaction temperature. 

 
Fig. 4 FESEM photographs of (a) 6wt%CaO-5wt%Ni/Al2O3 catalysts, (b) 2wt%CaO-10wt%Ni/Al2O3 catalysts, (c) 4wt%CaO-10wt%Ni/Al2O3 

catalysts, and (d) 6wt%CaO-10wt%Ni/Al2O3 catalysts, (i) before and (ii) after reaction at 10000X magnification for 500 oC reaction temperature. 

4. Conclusion 

CaO has basic property to reduce the active site of catalysts, enough to reduce carbon formation but still able to 
produce high ethylene. CaO modified Ni/Al2O3 catalyst able to produce more ethylene product at 450 oC reaction 
temperature with less coke formation. The catalyst deactivates faster at higher than 450oC reaction temperature. 
Reaction temperature at 450oC and 6wt%CaO-10wt%Ni/Al2O3 catalyst is the optimal condition and catalyst for this 
research. 
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