

INCREASING PERFORMANCE OF ROTARY ULTRASONIC MOTOR THROUGH STATOR MODIFICATION

FADHLUR RAHMAN BIN MOHD ROMLAY

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

AUGUST 2013

ABSTRACT

This thesis concerns with the performance of the travelling wave ultrasonic motor (TWUSM). The performance of TWUSM is mainly constraint by the quality of the piezoceramic material, the electrical driving signal synchronisation and optimization, the heat dissipation system during the operation and the stator-rotor interface designed. One of the factors in the stator-rotor interface design is the deflection amplifier mechanism. Under travelling wave electrical excitation, the piezoceramic laver of the stator vibrates by expanding and compressing. The amplitude of the vibration is amplified by the metal attached on the top of the piezoceramic layer. The metal vibration is in contact with the rotor and through a frictional layer, torque is generated and the rotor rotates. This mechanism of transferring the piezoceramic vibration to the rotor motion is called deflection amplifier. Current TWUSM utilises the comb-teeth structure as the deflection amplifier. One of the factors that influence the deflection amplifier is the position of the stator neutral axis to the contact surface of the stator. Thus, the objective of this thesis is to modify the design of the comb-teeth stator so that the neutral axis position is further distance from the stator top contact surface. The proposed solution is to remove selected mass element from the combteeth structure. Modelling and simulation of the proposed concept were carried out under Marc Mentat FEM software utilising Shinsei USR60 as the chosen TWUSM. Results from the modal, harmonic, transient and stress analyses indicate that the modified comb-teeth stator increases the position of the neutral axis from the stator top surface. Due to the neutral axis shifting, simulation results also confirm that the stator speed increases for the modified stator. To observe the performance of the modified stator, experiments were conducted using Shinsei USR60 as the test platform. One set of Shinsei USR60 motor was modified by drilling hole to the comb-teeth structure. Results from experiments confirm that the motor with the modified stator produced better speed, torque and power consumption.

ABSTRAK

Tesis ini adalah berkaitan prestasi rambatan gelombang motor ultrasonik (TWUSM). Prestasi TWUSM secara keseluruhannya bergantung kepada kualiti bahan piezoseramik, pengoptimuman dan penyeragaman isyarat kawalan elektrik, sistem pembebasan haba ketika operasi dan rekabentuk antaramuka stator-rotor. Salah satu faktor rekabentuk antaramuka stator-rotor adalah mekanisma penganda lenturan. Ketika rambatan gelombang elektrik dibekalkan, lapisan piezoseramik stator bergetar secara mengembang dan mengecut. Amplitud getaran digandakan oleh logam yang melekat di atas lapisan piezoseramik. Getaran logam tersebut menyentuh rotor, melalui lapisan geseran, tork dihasilkan dan seterusnya memusingkan rotor. Mekanisma yang menukarkan getaran piezoseramik kepada pergerakan rotor ini dipanggil sebagai pengganda lenturan. TWUSM terkini mengunapakai struktur gigisesikat sebagai pengganda lenturan. Salah satu faktor yang mempengaruhi pengganda lenturan adalah posisi paksi neutral struktur stator tersebut dari permukaan atas sentuhannya. Oleh yang demikian, objektif tesis ini adalah untuk mengubah rekabentuk struktur gigisesikat stator supaya posisi paksi neutral dijauhkan dari permukaan atas sentuhannya. Cadangan penyelesaiannya adalah dengan membuang sebahagian jisim struktur gigi-sesikat pada bahagian yang telah dikenalpasti. Permodelan dan simulasi terhadap konsep yang dicadangkan, dilakukan menggunakan perisian kaedah berangka Marc Mentat dengan menggunapakai TWUSM yang pilih iaitu USR60 Shinsei. Hasil simulasi yang diperolehi menerusi analisis modal, harmonik, transian dan tegasan menunjukkan stator gigi-sesikat yang diubahsuai mempunyai kedudukan paksi neutral yang lebih jauh dari permukaan atas sentuhan stator. Disebabkan anjakan paksi neutral ini, keputusan simulasi turut mengesahkan kelajuan stator yang diubahsuai adalah bertambah. Untuk memerhatikan prestasi stator yang diubahsuai, eksperimen dijalankan menggunakan motor USR60 Shinsei sebagai platfom ujian. Satu set motor USR60 diubahsuai dengan cara mengorek lubang pada struktur gigisesikatnya. Keputusan yang diperolehi dari eksperimen mengesahkan bahawa stator yang dubah bentuk menghasilkan kelajuan, tork dan penggunaan kuasa yang lebih baik.

TABLE OF CONTENT

PAGE

SUPERVISOR DECLARATION		ii
DECLAR	ATION	iii
DEDICAT	TION	iv
ACKNOV	VLEDGEMENTS	v
ABSTRA	СТ	vi
ABSTRA	K	vii
LIST OF	TABLES	xi
LIST OF	FIGURES	xii
LIST OF	SYMBOLS	xviii
LIST OF ABBREVIATIONS		xxi
СНАРТЕ	R 1 INTRODUCTION	
1.1	Research Motivation	1
1.2	Research Problem Statements	6
1.3	Research Objectives and Scopes	7
1.4	Research Methodology	8
1.5	Thesis Organization	9

CHAPTER 2 STATE OF THE ARTS OF THE ULTRASONIC MOTOR

2.1	Overvi	ew of the Ultrasonic Motor	10
	2.1.1	Ultrasonic Motor History	12
	2.1.2	Ultrasonic Motor Advantages	14
	2.1.3	Ultrasonic Motor Classifications	15

CHAPT	CHAPTER 3 SIMULATION STUDY OF THE PROPOSED		
2.6	Summa	ary	67
	2.5.2	Simulation on the Proposed Modification Concept	62
	2.5.1	The Concept of the Proposed Modification	60
2.5	Hypot	hesis to Increase the Motor Efficiency	60
	2.4.4	Stator-Rotor Constraint	59
	2.4.3	Driving Input Constraint	58
	2.4.2	Material Constraint	57
	2.4.1	Heat Constraint	56
2.4	TWUS	SM Performance Issues	55
	2.3.5	Simulation of TWUSM Stator-Rotor Motion	52
	2.3.4	TWUSM Rotor Model	50
	2.3.3	TWUSM Stator-Rotor Model	47
	2.3.2	TWUSM Stator Model	39
	2.3.1	Stator Model	32
2.3	Mode	lling of TWUSM	31
	2.2.5	Rotor	30
	2.2.4	Friction Layer and Pre-loaded Force	28
	2.2.3	Elastic Stator Vibrator	27
	2.2.2	Piezoceramic Disc	25
	2.2.1	Electrical Driver	24
2.2	Princi	ples of Travelling Wave Ultrasonic Motor (TWUSM)	22

ix

HAPTER 3 SIMULATION STUDY OF THE PROPOSED MODIFICATION TO THE TRAVELLING WAVE ROTARY ULTRASONIC MOTOR

3.1	Simulation Objectives	69
3.2	Simulation Scope	69
3.3	Simulation Setup	69
3.4	Finite Element Modelling of the Stator	70

3.5	Simulatio	n Results	78
	3.5.1	Modal Analysis Result	78
	3.5.2	Harmonic Analysis Result	82
	3.5.3	Transient Analysis Result	90
	3.5.4	Effect of Stator Modification on the Stator Speed	102
	3.5.5	Stress Analysis Results	109
3.6	Summary		114

CHAPTER 4 EXPERIMENT STUDY OF THE PROPOSED MODIFICATION TO THE TRAVELLING WAVE ROTARY ULTRASONIC MOTOR

4.1	Experiment Objectives	115
4.2	Experiment Scope	116
4.3	Experimental Setup	116
4.4	Experimental Procedure	125
4.5	Experiment Results and Discussions	128
4.6	Summary	140

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1	Research Summary	141
5.2	Research Conclusion	142
5.3	Recommendations for the Future Research	142
REFER	ENCES	143

LIST OF TABLES

Table No.	Table Title	Page No.
Table 1.1	Piezoelectric device market	4
Table 1.2	Commercialization of ultrasonic motors	5
Table 1.3	Ultrasonic motor literatures with the successful torque produced	7
Table 2.1	Characteristics of various ultrasonic motor	21
Table 2.2	Travelling wave parameters	53
Table 2.3	Parameters to observe the effects of the neutral axis location	62
Table 2.4	Stress component plot of solid tooth beam	66
Table 2.5	Stress component plot of tooth beam with removal segment	66
Table 3.1	List of mode frequencies of non-modified stator	80
Table 3.2	List of mode frequencies of modified stator	80
Table 3.3	Maximum displacement of the non-modified and the modified	97
	stator for all point of interests	
Table 3.4	Comparison of maximum displacement between the non-	98
	modified and the modified stator	8
Table 3.5	Comparing of maximum horizontal speeds of different POI for	106
	both non-modified and modified stator	
Table 3.6	Comparing of maximum horizontal speeds of non-modified and	106
	modified stators for each POI	
Table 3.7	Stress for each of POIs for both the non-modified and the	111
	modified stator	
Table 4.1	Shinsei D6060 Driver Specification	121
Table 4.2	Calibration data for the non-modified motor	129
Table 4.3	Calibration data for the modified motor	130
Table 4.4	Speed and torque results for non-modified and modified motor	133
Table 4.5	Input and Output power of the non-modified and modified	136
	ultrasonic motor	

xi

xii

LIST OF FIGURES

Figure No.	Figure Title	Page No.
Figure 1.1	Economic growth of the manufacturing sector (2015 -2011)	2
Figure 1.2	Exports and imports of Malaysian machine tools industry (1996	2
	-2011)	
Figure 1.3	Research methodology	8
Figure 2.1	Ultrasonic motor invented by Barth	13
Figure 2.2	Sashida's mechanism	53
Figure 2.3	Ultrasonic motor classifications	15
Figure 2.4	Horn-standing-wave concept	66
Figure 2.5	Cylinder vibrator initiated by longitudinal-torsional mode	66
Figure 2.6	Flextensional ultrasonic motor	19
Figure 2.7	Exploded view of TWUSM	22
Figure 2.8	The elements of TWUSM system	23
Figure 2.9	TWUSM block diagram	24
Figure 2.10	Block diagram of a typical TWUSM driver	25
Figure 2.11	Stator Construction of Shinsei USR D6060E	26
Figure 2.12	Piezoceramic disk layout of Shinsei USR D6060E	26
Figure 2.13	Deflection amplifier concept	27
Figure 2.14	L-shaped lever modelling of TWUSM stator	28
Figure 2.15	The rotor motion driven by the travelling wave of the stator	29
Figure 2.16	TWUSM rotor coupled with the stator	30
Figure 2.17	TWUSM modelling principles	31
Figure 2.18	Piezoceramic upon the polarization process	32
Figure 2.19	Longitudinal and transverse strain of piezoelectric material	33
Figure 2.20	Designation of strain constants in piezoelectric materials	34
Figure 2.21	The mechanical-electrical effect	35
Figure 2.22	An equivalent circuit of piezoceramic effects	36
Figure 2.23	The piezoceramic stator (a) is modelled as mass-spring system	38
	(b) and equivalent circuit (c)	
Figure 2.24	Stator flexural wave	39

viii
XIII

Figure 2.25	Beam element of the ultrasonic motor stator	40
Figure 2.26	Curvature of the beam element model	41
Figure 2.27	Curvature deformation due to the expansion	43
Figure 2.28	The elliptical motion of stator-rotor contact point	47
Figure 2.29	Contact area between the stator and the rotor	49
Figure 2.30	Two standing wave positions to generate a travelling wave	52
Figure 2.31	Plot of z-axis stator displacement stator	53
Figure 2.32	Plot of z-axis stator speed	54
Figure 2.33	Plot of rotor angular speed	54
Figure 2.34	Plot of rotor torque	55
Figure 2.36	The L-level principle	60
Figure 2.37	Stator geometry. (a) neutral axis position is in the middle (b)	61
	neutral axis position is lower due to un-symmetry (c), neutral	
	axis position is even lowered	
Figure 2.38	The effect of distance between stator contact surface and	63
	neutral axis, c to the horizontal stator speed	
Figure 2.39	Comb-teeth beam model	64
Figure 2.40	Comb-teeth beam with the removed segment	65
Figure 2.41	Stress plot of comb-teeth the beam model	65
Figure 2.42	Stress plot of the comb-teeth beam with the removed segment	65
Figure 2.43	Plot of maximum 1-1 stress component versus POI position	67
Figure 3.1	Stator modelling (a) non-modified stator and (b) modified stator	70
Figure 3.2	Meshing of non-modified stator	71
Figure 3.3	Meshing of modified stator	72
Figure 3.4	Electrostatic boundary condition	74
Figure 3.5	Physical arrangement of the USR60 Shinsei stator electrodes	75
Figure 3.6	Bottom view of FEM model with electrostatic boundary	76
	condition	
Figure 3.7	Location of the points of interest (POI) of the non-modified	77
	stator	
Figure 3.8	Location of the points of interest (POI) of the modified stator	77
Figure 3.9	Stator modal analysis at the ninth flexural mode (a) 3-D view	79
	and (b) bottom view	

Figure 3.10	Plot of resonant modes versus flexural mode shape number for	81
	non-modified and modified stator	
Figure 3.11	Reaction electric charge magnitude against frequency of the	82
	non-modified stator	
Figure 3.12	Reaction electric charge phase against frequency of the non-	83
	modified stator	
Figure 3.13	Admittance against frequency of the non-modified stator	84
Figure 3.14	Flexural deflection of the non-modified stator at the peak	85
	frequency of 38140.3 Hz	
Figure 3.15	Reaction electric charge magnitude against frequency of the	86
	modified stator	
Figure 3.16	Reaction electric charge phase against frequency of the	87
	modified stator	
Figure 3.17	Admittance against frequency of the modified stator	88
Figure 3.18	Flexural deflection of the modified stator at the peak frequency	89
	of 35973.7 Hz	
Figure 3.19	History plot of Z-displacements at the top surface of the stator	91
	(POI A) for the non-modified stator	
Figure 3.20	The Z-displacement as a function of the X-displacement for the	92
	non-modified stator	
Figure 3.21	History plot of Z-displacements at the top surface of the stator	93
	(POI A) for the modified stator	
Figure 3.22	The Z-displacement as a function of the X-displacement for the	94
	modified stator	
Figure 3.23	Displacement comparisons between the non-modified and the	95
	modified stator of POI A	
Figure 3.24	Displacement comparisons between the non-modified and the	95
	modified stator of POI B	
Figure 3.25	Displacement comparisons between the non-modified and the	96
	modified stator of POI C	
Figure 3.26	Displacement comparisons between the non-modified and the	96
	modified stator of POI D	
Figure 3.27	Illustration of neutral axis shifts (a) the non-modified neutral	100

xiv

	axis location and (b) the modified stator neutral axis location	
Figure 3.28	Maximum Z-displacement versus distance of POI from stator	101
	top surface	
Figure 3.29	Maximum X-displacement versus distance of POI from stator	102
	top surface	
Figure 3.30	Horizontal speed comparisons between POI A, B, C and D of	103
	the non-modified stator	
Figure 3.31	Horizontal speed comparisons between POI A, B, C and D of	103
	the modified stator	
Figure 3.32	Horizontal speed comparisons between non-modified and	104
	modified stator of POI A	
Figure 3.33	Horizontal speed comparisons between non-modified and	104
	modified stator of POI B	
Figure 3.34	Horizontal speed comparisons between non-modified and	105
ň.,	modified stator of POI C	
Figure 3.35	Horizontal speed comparisons between non-modified and	105
	modified stator of POI D	
Figure 3.36	Maximum X-speed versus the distance from the top surface	107
Figure 3.37	Plot of x-axis speed versus natural frequency for non-modified	108
	and modified stator	
Figure 3.38	Stress analysis for non-modified stator	109
Figure 3.39	Stress plot for the modified stator	109
Figure 3.40	T_{II} stress component analysis for non-modified stator	110
Figure 3.41	T_{II} stress component analysis for modified stator	111
Figure 3.42	Stress plots for non-modified and modified stator	112
Figure 4.1	The drilling process to modify the stator	117
Figure 4.2	The modified stator	117
Figure 4.3	Experiment setup block diagram to obtain motor speed and	118
	input power	
Figure 4.4	Experiment setup block diagram to obtain motor stalled-torque	119
Figure 4.5	Experiment setup of speed and torque measurement of	119
	ultrasonic motor	
Figure 4.6	HY-3003-3 Digimess regulated DC power supply	120

xvi

Figure 4.7	D6060 Shinsei ultrasonic motor driver	121
Figure 4.8	Gw Instek GDS1022	122
Figure 4.9	ELVIS DAQ	123
Figure 4.10	A snapshot of National Instruments Visual Oscilloscope	124
Figure 4.11	HIOS HP-100 torque meter	124
Figure 4.12	USR6060 Shinsei specification	125
Figure 4.13	Speed measurement procedure	126
Figure 4.14	Torque measurement procedure	127
Figure 4.15	Calibration results of the modified and non-modified TWUSM	128
Figure 4.16	Command voltage versus driving frequency for the non-	131
	modified and modified motors	
Figure 4.17	Command voltage versus input power for the non-modified and	132
	the modified ultrasonic motors	
Figure 4.18	Torque produced by the non-modified and modified ultrasonic	134
	motor	
Figure 4.19	Torque versus frequency for non-modified and modified	134
	ultrasonic motors	
Figure 4.20	Driving frequency versus speed for the non-modified and the	135
	modified ultrasonic motors	
Figure 4.21	Speed- torque curves of the non-modified and the modified	135
	ultrasonic motor	
Figure 4.22	Output power over the command voltage of the non-modified	137
	and the modified ultrasonic motors	
Figure 4.23	Power curves of the non-modified and the modified ultrasonic	138
	motor versus speed	
Figure 4.24	Power curves of the non-modified and the modified ultrasonic	139
	motor versus torque	
Figure 4.25	Efficiency of the non-modified and the modified ultrasonic	139
	motor subjected versus the command voltage	

LIST OF SYMBOLS

F_T	Tangential force
F_B	Braking force
F_N	Normal force
μ_s	Static frictional constant
D	Electric flux density
εο	Permittivity
Р	Polarization performance
E	Electric field
<i>d</i> ₃₃	Piezoelectric strain constants in longitudinal direction
<i>d</i> ₃₁	Piezoelectric strain constants in transverse direction
F_p	Piezoceramic force
W	Force factor
V	Applied electrical voltage
v	Velocity
Ι	Electrical current
Ζ	Mechanical impedance
Y_d	Blocking admittance
b	Width
Y11	x-directional Young's modulus
\vec{S}	Strain tensor
S	Elastic compliance
s^E	Elastic compliance of the material in the absence of an electric field
\vec{T}	Stress tensor
$ec{E}$	Electric field tensor
c^E	Stiffness matrix under a zero electric field
е	Piezoelectric stress constant
i,	x-axis electric field direction
j	z-axis electric field direction
m	x-axis strain direction
I	z-axis strain direction

xvii

t	Transpose
L	Inductance
С	Capacitance
Κ	Spring constant
т	Mass
ω_o	Natural frequency
Δx	Segmented beam
dθ	Curvature angle
F_S	Shear force
∂M	Changed moment
∂x	Beam local position element on the x-axis
ρ	Density
A	Cross section area
u_z	Stator z-axis displacement
du_z	Changed z-axis displacement
r	Radius
ε	Strain
Т	Stress
Y	Young's modulus
М	Moment
Ι	Moment of inertia
n	Wave number
L	Beam length
β	Eigenvalue
h	Height
ω	Driving frequency
k	Wave characteristic
t	Time
u _x	Stator x-axis displacement
С	Distance between stator top surface to the neutral axis
w ₀	Stator maximum z-axis displacement
μ_d	Dynamic friction coefficient

Relative speed between the stator and rotor
Rotor power
Rotor speed
Maximum speed
Stator tangential speed
Wave length
Distance of the stator expansion or contraction
Motor torque
Effective radius of stator-frictional layer contact
Current temperature
Initial temperature
Displacement tensor
Sample length
Amplification constant
Mechanical quality factor
Electromechanical coupling factor

LIST OF ABBREVIATIONS

AC	Alternate current
ANSI	American National Standards Institute
CNC	Computer numerical control
DC	Direct current
IEEE	Institute of Electrical and Electronics Engineers
FEM	Finite element method
GDP	Gross domestic product
IMP2	Second Industrial Master Plan
IMP3	Third Industrial Master Plan
LNG	Liquid and natural gas
MITI	Malaysian Ministry of International Trade and Industry
PZT	Lead titanate-lead zirconate
TWUSM	Travelling wave ultrasonic motor
USD	United State Dollar
POI	Point of interest

CHAPTER 1

INTRODUCTION

1.1 RESEARCH OVERVIEW

Manufacturing sector is the major contributing sector that drives Malaysian economy. The manufacturing sector is targeted by the Malaysian government to grow 5.6% annually and to contribute 28.5% to the gross domestic product (GDP) in the year 2020 (Industrial Master Plan 2, 2006). Malaysian manufacturing sector mainly covers electrical and electronic products, palm oil, liquid and natural gas (LNG), chemicals and chemical products, refined petroleum products, crude petroleum, machinery, machine appliances, parts and metal fabrication. Manufacturing sector overall economic growth values from 2005 to 2011 posted a steady increment even though there was a slight decrement in the year 2009. This is shown in Figure 1.1. The export and import values in 2011 posted the highest value which was RM516.8 billion for exports and RM433.1 billions for imports.

According to the Malaysia Third Industrial Master Plan 2006-2020, which was launched on 18 August 2006 by Malaysian Ministry of International Trade and Industry, machine tools industry will be one of the main sub-sectors for the economic growth in manufacturing sector. This is based on the increase of machine tool import and export values in the period of 1996-2011 as shown in Figure 1.2. Based on the report, Malaysian machine tool industry had increased dramatically during the period of the Second Industrial Master Plan (1996-2005) (Industrial Master Plan 2, 2006).

Total exports of machine tools produced by local manufacturers increased from RM5.1 billion in 1996 to RM18.3 billion in 2005.

Figure 1.1: Economic growth of the manufacturing sector (2005 -2011) Source: Ministry of International Trade and Industry, Malaysia (2012)

Figure 1.2: Exports and imports of Malaysian machine tools industry (1996 – 2011) Source: Ministry of International Trade and Industry, Malaysia (2012)

Under the Industrial Master Plan Three (IMP3), the machine tool exports in 2008 are highest with RM 41 billion almost doubling the exports in the year 2005. Most of the export countries were China, Singapore, Thailand and the United States. This shows the potential of machine tools industry in Malaysia. On the other hand, Malaysia still depends on imports of machine tools from overseas. Average rate of yearly growth for imports of machine tools is 1.5%, which was from RM26.7 billion in 1996 to RM32.4 billion in 2005 and to RM46.1 billion in 2011. This is due to Malaysia lack of expertise in high-tech machine tool industries (MITI, 2006).

Malaysia government is trying to support the machine tool industry by focusing on the high technology and customised machine. The government has listed four main categories in IMP3 which are:

- 1) Machine tools for power generator including turbine and power plant.
- 2) Machine tools for specific industry such as for agriculture, electric and electronic, oil and gas and plastic processing.
- Computer numerical control (CNC) machine for steel working process and steel making which involves of conventional and non-conventional cutting process.
- Machine tools for general purposes including air-conditioning, pressure vessel and construction equipments.

Based on the third category, research on CNC machine tools is highly in line with Malaysian's aspiration to be a high technology country beyond 2020. Expertise in CNC machine is essential in reducing the imports while increasing the exports of machine tools.

In machine tool industry, one of the important technologies is precision engineering technology. The technology is applied in vast area such as medical equipment, medical implant and device, micro-process instrumentation and control system, micro-electro-mechanical system, computer numerical control (CNC) of micro-machine tools, telecommunication and satellite.

Inside the precision engineering technology, functional materials play a very important role. One of the functional materials is piezoelectric material that has a special characteristic which can be designed as actuators for ultrasonic welding, cleaning, motors, sensors, transducers, medical imaging, non-destructive acoustic testing, energy harvesting, ceramic resonators, transformers and other types of customised devices. With an excellent characteristic and flexibility in determining the design functions, piezoelectric material exists as a new technology.

According to Innovative and Research Products (2008), the global market for the piezoelectric devices in the year 2010 equals to USD 10.6 billion and projection for the year 2012 is expected to reach USD 19.5 billion. Table 1.1 shows several sectors covered by piezoelectric device market usage.

Sector	Market (%)
Information technology/robots	31.7
Semiconductor manufacturing and Precision machines	18.6
Sonar	12.5
Bio/medical	11.1
Ecology and energy harvesting	7.0
Accelerators and sensors	5.8
Non-destructive testing	. 5.7
Gas igniters, piezo printing heads, telecommunication devices	4.5
Acoustic devices and resonators	3.1

Table 1.1: Piezoelectric device market

Source: Innovative and Research Products Inc. (2008)

Piezoelectric device has a unique characteristic; it vibrates at a micro level through the excitation of electrical signal. This characteristic enhances the design and development of precision devices. One of the precision motion control device that uses piezoelectric characteristic is an ultrasonic motor. The ultrasonic motor is suitable for the development of precision engineering machine tools or processes. In fact more than 20 years ago, the companies that had immersed into the ultrasonic motor business are shown in Table 1.2 (Uchino 1991). This indicates that ultrasonic motors has played significant role in industrial products.

Company	Role
Shinsei Kogyo	The pioneering company in marketing ultrasonic motors.
Fukoku	Manufacturer of Shinsei's ultrasonic motors producing 20,000 units per year.
Canon	Utilizing the Shinsei ultrasonic motors for automatic camera lenses with production of 300, 000 units per year.
Toyota	Ultrasonic motor was used for head-rest control for car seat.
Seiko Instruments	Commercializing a miniature ultrasonic motors for watch mechanism
Nasca	Manufacture the ultrasonic motors developed by Matsushita Electric
THK	Axial ultrasonic motors utilizing Shinsei ultrasonic motors
SUN-SYN	Develop precision x-y stages using linear type ultrasonic motors.
Malcon Electronics	Standing wave type ultrasonic motor
AlliedSignal	USA company who is manufacturing the ultrasonic motors.
Rion and Piezotech	Developing various type of ultrasonic motor.

Table 1.2: Commercialization of ultrasonic motors

5

1.2 RESEARCH PROBLEM STATEMENT

In order to improve the performance of an ultrasonic motor, fundamental studies on the behaviour of ultrasonic motor are needed. From the study, the major constraints to the performance of the ultrasonic motor are heat generated, piezoceramic quality, electrical driving signal and stator-rotor interface design.

Firstly, temperature rise causes the piezoceramic characteristic to become nonlinear. Excessive temperature change also causes depoling effect to the piezoceramic. Furthermore, wear between the stator and the friction layer of the rotor increases as the temperature increases. Lastly, the optimum driving frequency changes due to temperature changes.

Secondly, the piezoceramic quality is another factor that affects the performance of the ultrasonic motor. High quality piezoceramic has high piezoelectric strain constant and electromechanical coupling. The strain and electromechanical coupling constants determine the maximum stator displacement which directly influences the speed and torque of the motor.

Thirdly, speed and torque performance is also affected by the consistency of the electrical driving amplitude, phase and frequency. The optimum driving frequency is at the natural frequency of the stator and rotor. In the dynamic of stator-rotor interface, factors such as friction variation and holding torque dynamic affect the optimum driving frequency. Hence, an adaptive driving frequency is needed to enhance the motor performance.

Next, the design of the stator-rotor interface is another factor that influences the motor performance. The frictional layer behaviour between the stator vibration and the rotor causes ripples and hysteresis to the rotor speed. Furthermore, the stator geometrical design affects the amplitude of stator vibration. The design of the so called "deflection amplifier" is critically studied in this research. Deflection amplifier (also called horn) amplifies the stator deflection by acting as "mechanical level". The current design of the travelling wave ultrasonic motor uses a "comb-teeth" structure to increase the stator deflection. The comb-teeth structure functions as a vertical magnitude amplifier (mechanical level) between the piezoceramic vertical amplitude to the stator contact surface amplitude. The rotor speed and torque is directly dependent on the stator-rotor contact surface amplitude. Thus, the goal of this research is to enhance the performance of the ultrasonic motor by increasing the performance of the deflection amplifier. This is achieved by modifying the stator geometry.

1.3 RESEARCH OBJECTIVES AND SCOPES

The research objectives are to:

- Investigate the characteristics of an ultrasonic motor and propose an idea to increase its performance.
- Perform computer modelling and simulation of the proposed idea in order to observe the improved performance.
- Setup and conduct experiments in order to observe the improved performance.

The research focuses on a rotary type which means a linear type motor is not considered. Furthermore, although there are various mechanisms to drive an ultrasonic motor such as flex-tensional, multi-mode vibrations and standing wave concept, ultrasonic motor that utilises travelling wave mechanism is the focus of this research.

For modelling and experimental studies, a specific (commercial) travelling wave ultrasonic motor is chosen. Shinsei USR60 ultrasonic motor is chosen together with its corresponding driver because of its popularity in research literature. Finally, this research focuses on speed-torque performance as well as the motor efficiency. Other performance such as limited operation durability that arises due to the heat generation is not considered.

1.4 RESEARCH METHODOLOGY

Figure 1.3 illustrates the activities conducted for this research.

Figure 1.3: Research methodology