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Abstract

Flood forecasting models are a necessity, as they help in planning for flood events,
and thus help prevent loss of lives and minimize damage. At present, artificial neural
networks (ANN) have been successfully applied in river flow and water level forecasting
studies. ANN requires historical data to develop a forecasting model. However, long-5

term historical water level data, such as hourly data, poses two crucial problems in data
training. First is that the high volume of data slows the computation process. Second is
that data training reaches its optimal performance within a few cycles of data training,
due to there being a high volume of normal water level data in the data training, while
the forecasting performance for high water level events is still poor. In this study, the10

zoning matching approach (ZMA) is used in ANN to accurately monitor flood events
in real time by focusing the development of the forecasting model on high water level
zones. ZMA is a trial and error approach, where several training datasets using high
water level data are tested to find the best training dataset for forecasting high water
level events. The advantage of ZMA is that relevant knowledge of water level patterns15

in historical records is used. Importantly, the forecasting model developed based on
ZMA successfully achieves high accuracy forecasting results at 1 to 3 h ahead and
satisfactory performance results at 6 h. Seven performance measures are adopted in
this study to describe the accuracy and reliability of the forecasting model developed.

1 Introduction20

The nature of river flow is determined by many factors, such as sedimentation, dam op-
eration, soil type, cross sectional area of the river, and rainfall. This leads to stochastic
behavior that complicates the study of river flow. There are studies that use regres-
sion for forecasting river flow, but the computed results only provide a rough estimation
of the flow. Extensive reviews on artificial neural network (ANN) applications in hy-25

drological simulation and forecasting have been reported in ASCE (2000a, b), and
ANN modeling can achieve good performance when used to predict river flow. ANN
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is a parallel-computing model that mimics information processing in the human brain
(El-Shafie et al., 2008; El-Shafie and Noureldin, 2011). ANN does not require data re-
garding the physical characteristics of the study area (Dawson et al., 2001), but does,
however, require historical data on the subject being studied. This data is normally
separated into a training dataset and a validation dataset. ANN learns the hidden pat-5

terns in the historical data through the training dataset. Once the learning process is
completed and the knowledge is saved, forecasting can be done using new data in-
put. To verify the success of the data training, forecasting results using the validation
dataset are evaluated. Historical records should also be as accurate as possible to
ensure reliable forecasting results.10

In river flow studies, forecasting normally means either forecasting the water leve1
(Alvisi et al., 2006; El-Shafie et al., 2008; Campolo et al.,1999; Leahy et al., 2008) or
the runoff (Thirumalaiah and Deo, 1998; Shamseldin et al., 2002; Shrestha et al., 2005;
Toth et al., 2000; Dawson et al., 2001). The source for data training can be based on
the same data type as the forecasting or it can come from several data types. Data15

types that are used as the source for data training are river flow (El-Shafie et al., 2008;
Thirumalaiah and Deo, 1998; Shrestha et al., 2005), rainfall (Toth et al., 2000; Dawson
et al., 2001), water level and rainfall (Alvisi et al., 2006; Campolo et al., 1999; Lihua et
al., 2004; Boucher et al., 2010), water level and sea level pressure (Leahy et al., 2008),
and flow, rainfall, temperature and snowmelt (Coulibaly et al., 2000).20

The rainfall runoff method for river flow forecasting has the drawback that this ap-
proach cannot be easily implemented because the data from rainfall and runoff are not
easily synchronized in real time. It also requires infrastructure to manage the different
data inputs (Dawson and Wilby, 1998). Further, although river flow results can be con-
verted into water level using a rating curve, this does not necessarily provide the same25

results as forecasting based on water level. To date, no study has shown that river flow
forecasting is comparable with water level forecasting.

The most common problems in flood forecasting are underestimating the flow or
water level (Alvisi et al., 2006; Thirumalaiah and Deo, 1998; Shrestha et al., 2005)
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either at peak or low level events. The lack of data at the high points is generally
suggested (Toth et al., 2000) as the cause of underestimating the peak water level.
This is true for the highest points reached above flood level. However, it is not true
for events where the water level is within flood alert or dangerous levels. The problem
of underestimating overestimating may be caused by the approach in developing the5

models. The selection of training data where high proportion of the data comes from
the normal zone could contribute to underestimating the water level at its peak. This is
true if the same data type is used for the data input and data output of an ANN-based
forecasting model. However, if other data sources such as rainfall are included in the
data input, the situation is different depending on whether the importance of rainfall as10

a data input is higher or lower than the flow or water level data. Confidence in ANN
forecasting results has been an issue raised by many skeptics, so it is important to
provide an indication of the accuracy of the model (Dawson et al., 2001). Kerh and
Lee (2006) show accuracy and reliability of training results by using a chart showing
the distribution in errors of discharge. Using more evaluation methods can help to15

describe the reliability and accuracy of the ANN forecasting model.
It is always better to have a long lead-time with high accuracy in a forecasting model,

so that preventative measures and flood warnings can be carried out in sufficient time.
In practicality, a longer lead-time decreases the forecasting accuracy. Typically, a
shorter lead-time is used for operational flood warning and a longer lead-time is used20

as guidance to take precautionary measures in case of a flood event.
The objective of this study is to investigate an ANN-based forecasting model to im-

prove predictions of water level above the flood alert level, and also to find the best
lead-time in terms of providing both high accuracy and satisfactory performance in
forecasting. The study area is Rantau Panjang, Johor, Malaysia and the lead-time25

tested in the development of the forecasting model is from 1 to 6 h. The reliability of
forecasting results is also a major focus in this study, since this will build confidence in
the forecasting model that is developed.
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2 Study area

The study area concerned in the development of this forecasting model is Kota Tinggi,
Johor, Malaysia. Kota Tinggi is located on the banks of Johor River and has been hit
with more than 12 flood events since 1963. It is an administrative town with a large
population, making the development of the forecasting model relevant. However, due5

to the lack of historical water level data at Kota Tinggi station, Rantau Panjang station,
which is also on the banks of Johor River upstream from Kota Tinggi, has been selected
as the study area. The Johor River basin is shown in Fig. 1.

The distance between the two stations is about 40 km and the lag time for river
flow from Rantau Panjang to Kota Tinggi is about 24 h. The normal water levels at10

Rantau Panjang and Kota Tinggi are 4 m and 2 m respectively, while the flood levels
at the two stations are 9 m and 2.1 m. Figure 2 shows the normal, alert and danger
water levels at Rantau Panjang station. Both locations have been hit with more than
12 flood events since 1963. There is a correlation between the flooding events that
occurred at the two stations that will not be described in this paper, but successful15

forecasting at Rantau Panjang could later assist with studies of flood events at Kota
Tinggi. All of the flooding events at Rantau Panjang occurred during the Northeast
monsoon which happens between November and March, shown in Fig. 3. The Johor
River is about 122.7 km in length and drains an area of 2636 km2. Its main tributaries
are Sayong River and Linggiu River. The river originates from Mount Gemuruh (109 m)20

and discharges into the Straits of Johor (0 m). The average annual precipitation for the
Johor River catchment is 2.47 m.

3 Methodology

This study aims to improve the current forecasting approach by developing an ANN-
based model for high water level events in real time with the zoning matching approach25

(ZMA). The initial target lead-time for testing the model is 3 h and the target forecasted
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water level is above 8000 mm. Several performance measures such as Nash-Sutcliffe
efficiency, the correlation coefficient, root mean square error, the scatter index and
three offset errors are used to evaluate forecasting results.

3.1 Artificial Neural Network

An Artificial Neural Network (ANN) is a parallel-computing mathematical model for solv-5

ing dynamic nonlinear time series problems. There are many types of ANN, the most
common being the multilayer perceptron neural network (MLP-NN) (Zhang et al., 1998)
that is used in this study. The architecture of the MLP-NN, shown in Fig. 4, contains
three types of layer that are ordered in sequence. The first layer is an input layer, the
last layer is an output layer and there can be one or more hidden layers in between.10

Each layer consists of one or more neurons. The function of the neurons in the input
layer is to receive data input and pass this data to the neurons in the second layer.
The function of neurons in the hidden and output layers is to receive the input and the
weight of input from the neurons in the previous layer and compute the activation trans-
fer function (ATF). There are many types of ATF, and again we use the most common15

of which is the sigmoid function (Zhang et al., 1998; Maier et al., 2000). The equations
for computing the inputs are shown in below:

Input= INi=0(Wi j .Xi j ) where x0 =1 (1)

Output=
1

1+e − k.Input
, (2)

where x is the output from the previous neuron, w is the weight of the output and k20

is the gradient of the sigmoid function. An extra neuron x0 is added in the input layer
and in each hidden layer as shown in Fig. 4 with a fixed output value of 1. This is
called the bias and its function is to stabilize the computed output between 0 and 1.
It does not have any links to previous neurons. In most studies, the numbers of input
and hidden neurons are determined by trial and error (Coulibaly et al., 2000; Joorabchi25
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et al., 2007; Solaimani and Darvari, 2008; Turan and Yurdusev, 2009). The number of
outputs is normally one, which can be a forecasted week, day or hour, or a forecast at
M-hour intervals. The neurons in the network architecture are interconnected between
the layers. These interconnections represent the flow of computation in the ANN. The
nonlinear equation for forecasting water level WL at time t+1 with N data inputs is5

defined as below:

WLt+1 = f (WLt,WLt−1,...,WLt−N ,WL1,...,wK ) (3)

where w is a weight and K is the number of weights. The computation process starts
from input neurons where data inputs are received, and then propagates to hidden
neurons and further to the neurons in the output layer, which produce the model output.10

The computational process described above is called feed-forward computation. If
the number of neurons and layers are established, the only unknown parameters in
the computation are the weights, since K can be computed based on the network
architecture.

The process of data training is used to determine the weights. Data training is the15

process of using sample historical data as the input and output of the network model
so that it can simulate the sample data. The training process involves feed-forward
and back-propagation computation cycles. Back-propagation computation adjusts the
weights of the output and hidden neurons based on the gradient descent method.
These weights are normally initialized with random values to speed up the training pro-20

cess. Among the performance measures to evaluate the simulation are mean squared
error, root mean squared error and sum of squared error (Zhang et al., 1998). Once
data training is successfully completed, data forecasting can be made with new data
input. To evaluate forecasting performance, validation data are used for the input to
the network where only feed-forward computation processes the data. Several perfor-25

mance measures are applied to the output of the model and the outputs are compared
with observations from the validation dataset to determine the accuracy and reliability
of the network model developed.
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3.2 Datasets

Hourly historical water level data from the period 1963–2008 were collected from the
Department of Irrigation and Drainage (DID) as shown in Fig. 5. The data was divided
into training and validation datasets. The training dataset is 37 yr of hourly water level
data from the period 1963–1999 while the validation dataset is hourly water level data5

from 2000–2008, that is, about 9 yr of data.
The dataset is organized into sets of inputs and output based on Eq. (3), where the

number of data inputs depends on the network requirements. In this study, the number
of inputs ranges from three to seven water level observations prior to the forecasted
period. The reason a minimum of three data inputs are used to determine the best10

number of inputs for forecasting is that pre-analysis using less than three data points
resulted in a poorer forecasting performance than using three or more data inputs.
This could be because there are not enough patterns in the data when using fewer
inputs. On the other hand, pre-analysis using more than seven inputs did not improve
forecasting performance, possibly due to too many input patterns causing the loss of a15

distinct pattern within the training dataset. The results presented in this study use from
three to seven data inputs, which is reasonable for developing a water level forecasting
model.

To forecast the water level M hours ahead with N data inputs requires the data input
to consist of hourly water level data at times t, t−1 to t−N, where the interval between20

each time step is M hours. The reason that the interval is the same as the lead-time
is so that the rate of change in water level is measured on a consistent scale. Among
the data inputs, the hourly water level at the forecasted time t+1 is also required.
During data training the hourly water level at the forecasted time is needed for the
learning process, while in data forecasting the hourly water level at the forecasted time25

is required for validation. A schematic of the model for an interval of 3 h is shown in
Fig. 6, where the interval between each time step is 3 h and the lead-time is also 3 h.
For a lead-time of M hours, the interval between each time step is M hours. The water
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level data are normalized for the network model based on the equation:

Ni =
(Oi −Omin)

Omax−Omin
, (4)

where N is the normalized value, O is the observed water level, Omax is the highest
observed water level and Omin is the lowest observed water level.

3.3 Network model5

This study uses network models with the following features. One hidden layer is used,
since this is adequate for approximating non-linear equations, based on the universal
approximation theorem (Hornik et al., 1989; Maier and Dandy, 2000). The number of
input neurons is the same as the number of the data inputs, and the number of neurons
in the hidden layer is the same as the number of neurons in the input layer. Pre-10

analysis using more hidden neurons than input neurons did not produce any significant
improvement in forecasting performance, but it was apparent that more hidden neurons
made the data training process slower. The activation transfer function used in the
hidden and output neurons is the sigmoid function. Most studies use 1 as the value
of the steepness coefficient in the sigmoid function, but here we use a value of 0.075.15

This is based on the study by Sulaiman et al. (2011), which shows that a steepness
coefficient between 0.17 and 0.025, with similar numbers of hidden and input neurons,
successfully achieves optimal daily water level forecasting performance.

We stop the data training process in this study when there is no improvement to the
data training performance. Many ANN studies have reported that this approach could20

cause over-fitting, that is, the performance of the data training increases while the
validation performance deteriorates. In this study, a small number of hidden neurons
are used to avoid over-fitting. The final data forecasting performance is compared to
the data training performance to verify that over-fitting does not occur. Data training
performance is evaluated using Nash-Sutcliffe efficiency.25
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3.4 Zoning Matching Approach (ZMA)

Two approaches to the development of a water level forecasting model are compared
in this study. The first is the standard approach (SA), which is the common way of
developing forecasting model. In this approach, all data in the training dataset is used
in the training process and all data in the validation dataset is used in data forecasting.5

The forecasting performance for this approach is more general, meaning that the per-
formance represents forecasting of all water levels, whether low, normal or high. The
approach introduced in this study is ZMA, which selects the training dataset based on
the target water level for forecasting. The target water level in this study is 8000 mm,
which is 1 m below flood danger level. The alert water level (7000 mm) is not used as10

the target water level, because water levels above 8000 mm are more critical. However,
the final network model will be tested using the alert water level to look at the possibility
of whether a single forecasting model can be used successfully to not only to forecast
water levels above 8000 mm, but also above 7000 mm.

3.5 Stages in the analysis15

In this study, there are four stages in the development of forecasting models for high
water level events.

The first stage is to evaluate five network models that use SA to forecast water level
above 0 mm and above 8000 mm with a lead-time of 3 h. We use 3 h initially as a guide
since it is in between 1 h and 6 h, and we also intend to find the best lead-time in this20

study. The total number of records in the training dataset is about 290 000. Each record
consists of a data set for inputs and output of the network model. The architecture of
the five network models Net 3 to Net 7 is shown in Table 1. The first objective is to
show the current weaknesses in SA when it is used to forecast high water level events.
The second objective is to determine the best model to compare with and evaluate25

ZMA in forecasting high water level events.
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The second stage is to find the best training dataset using ZMA, combining it with the
network model found in the first stage to improve forecasting performance of high water
level events with a lead-time of 3 h. Four training datasets, ZMA 7, ZMA 8, ZMA 9
and ZMA 10, consisting of water level data above 7000 mm, 8000 mm, 9000 mm and
10 000 mm respectively, are used for data training. In comparison to SA, which uses5

about 290 000 records, ZMA has fewer than 2900 records, or about 1 % of the total
data training records.

The third stage is to determine the best lead-time for achieving high forecasting
accuracy model, in addition, the best satisfaction lead-time forecasting results for water
levels above 8000 mm. this is accomplished by evaluating the proposed lead-time10

range from 1 to 6 h utilizing the best dataset achieved in the second stage. It should be
noted that, the lead-time 3 h is already evaluated, then, the model is examined for lead-
time of 1, 2, 4, 5 and 6 h. The data inputs and output model for the lead-time testing
is shown in the Fig. 6, where the interval between time steps is adjusted to equal the
lead-time.15

Finally, in the fourth stage we evaluate the performance of forecasting water levels
above 7000 mm using the two forecasting models found in the third stage. The aim
here is to extend the capability of the two models in terms of forecasting water levels
above the alert level.

3.6 Performance measures20

There are seven performance measures that are used to evaluate the results in this
study. Four of these come from common statistical indices that evaluate the goodness
of fit between two data series. These are the Nash-Sutcliffe efficiency coefficient (NSC),
the correlation coefficient (R2), root mean square error (RMSE) and the scatter index
(SI). The equations for these are shown below:25

NSC=1−
INi=1(Oi −Fi )

2

INi=1(Oi −O)2
, (5)
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R2=
INi=1(Oi−O)(Fi−F )√

INi=1(Oi−O)2INi=1(Fi−F )2
, (6)

RMSE=

√
INi=1(Fi −Oi )2

N
, (7)

SI=
RMSE

O
, (8)

where i is the record number, O is the observed value, F is the forecast value and N
is the number of records evaluated. The performance ranking of the indices depends5

on their value as follows. For NSC and R2, a value of one means a perfect fit and for
RMSE and SI, a value of zero means the best fit. The unit for RMSE is millimeters.
In this study, a value for NSC and R2 between 0.95 and 1 means a strong perfor-
mance, a value between 0.9 and 0.95 is satisfactory, and below 0.9 is unsatisfactory.
RMSE below 100 mm is strong accuracy, a value between 100 mm and 500 mm is sat-10

isfactory and greater than 500 mm is unsatisfactory. An SI value between 0 and 1 is
a strong performance, a value between 1 and 2 is satisfactory, and greater than 2 is
unsatisfactory.

Additional performance measures that are included in this study are percentage of
offset error above 200 mm, percentage of offset error above 500 mm and highest offset15

error. Offset error is the difference between the forecasted and observed water levels.
The equation for the offset error is:

Offseti = (Fi −Oi ), (9)

where i is at the time step, F is the forecasted value and O is the observed value.
The allowable offset error is used as an evaluation tool because it describes the pre-20

cision of the forecasting results in physical values, which can help water authorities to
understand and sense the accuracy of the forecasting model developed. In this study,
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less than 5 % of offset errors above 200 mm means a very accurate forecasting result is
achieved. This means that 95 % or more of the offset errors are below 200 mm. We use
200 mm as the criteria for high accuracy since 200 mm is very small in terms of water
level. A break point of 500 mm is used as an acceptable offset error for a satisfactory
forecasting model in this study. Less than 5 % of offset errors above 500 mm means5

a satisfactory forecasting performance is achieved. This means that more than 95 %
of offset errors are below 500 mm. Lastly, the highest offset error describes the worst
case of water level error expected from the forecasting model developed. Charts show-
ing the distribution of offset errors are presented to show the accuracy and reliability of
the forecasting models.10

4 Results and discussion

As described earlier, the process of finding the two best forecasting models and the
corresponding best lead-times for forecasting with high accuracy and satisfactory per-
formance is divided into four stages.

The results for the first stage are shown in Table 2. The table shows the forecasting15

performance results for the five network models that are based on the SA method. The
number of iterations in the data training is only 20, which is quite a small number. The
reason for this is that the training performance for the entire SA had already achieved
an NSC greater than 0.995 after the first 20 iterations. It takes about 15 min to compute
the 20 iterations for each of the network models, which is time consuming. The reason20

for the slow computing speed is the number of records in the training dataset, which
as described earlier is 62 000. The forecasting results for the five network models are
divided into two sections. The first section evaluates the performance for forecasting
water levels above 0 mm, which means using all the water level data in the validation
datasets. The second section evaluates the performance for forecasting water lev-25

els above 8000 mm, which is the focus of this study. The results for the first section
correspond to the SA forecasting model that uses all available data from the training
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dataset and makes forecasts for all data in the validation dataset. In this section, the
five networks model show strong forecasting performance according to NSC, R2, and
RMSE. The five network models have NSC above 0.99, R2 above 0.99 and RMSE
below 100 mm. This shows a strong forecasting performance by all five models. This
shows that any of the five network models is suitable as a water level forecasting model5

at Rantau Panjang. However, further evaluation using SI, the number of offset errors
above 200 mm, the number of offset errors above 500 mm and the highest offset error
shows otherwise. The SI for each of the network models is above 2.0, much greater
than 0, which is the best possible value. Of the 62 000 forecasted water levels, the
number of offset errors above 200 mm is between 650 and 1245 records (1–2 %), and10

the number of offset errors above 500 mm is between 178 and 255 records (0 %), de-
pending on the lead-time. Even though the percentage is very small the number of
errors is high. The highest offset error in the forecasted water level is about 1800 mm
or 1.8 m, which is also quite high. The last four parameters measuring the performance
indicate that there are many errors in the forecasting results using the SA-based model.15

The second section is the evaluation of forecasting performance for water levels above
8000 mm. The results emphasize the poor forecasting performance of SA for high wa-
ter level events. The NSC values for all the models are below 0.8. However, the R2
values show strong performances, with values above 0.9, and the RMSE values indi-
cate acceptable performance, that is, within 500 mm. The SI for all SA network models20

is above 5, which shows poor performance. The number of offset errors above 200 mm
is between 234 and 334 (31–44 %) and the number of offset errors above 500 mm is
more than 130 (17 %). The results show that there is a high percentage offset errors
in the forecasting results for high water events. Of the five network models, NET 5
produce the best forecasting performance for water levels above 8000 mm. However,25

Table 2 still shows that none of the SA forecasting models is suitable for forecasting
water levels above 8000 mm with a 3-h lead-time.
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The results for stage two are shown in Table 3. For the four training datasets in the
model with ZMA, this table shows the effect on water level forecasting performance
for water levels above 8000 mm with a lead-time of 3 h. Recall that NET 5, which is
the best model developed in the first stage, is used as the basic model in which ZMA
is tested. There are dramatic improvements in performance with ZMA as compared5

to the forecasting performance of SA. The NSC values for ZMA are all above 0.99,
whereas the best NSC for SA is only 0.796, representing an improvement from poor
performance to high accuracy. There is not much difference between the R2 values for
SA and ZMA. In Table 3, the R2 for ZMA is above 0.997, while R2 in Table 2 is 0.970.
However, RMSE for ZMA again shows another dramatic improvement over SA, with10

RMSE values around 100 mm, indicating high accuracy in performance. The RMSE for
SA is about 500 mm, so there is about an 80 % improvement with ZMA. The SI for all
ZMA trials also show accurate forecasting, with all SI values less than 1. The number of
offset errors greater than 200 mm for ZMA is between 31 and 59, while for SA it is above
234, and while there are more than 283 cases of offset errors greater than 500 mm15

using SA, for ZMA there are at most two. The highest offset error in the SA model is
1669 mm, while for ZMA it is 479 mm. The last three performance measures show a
high accuracy of forecasting performance by ZMA. There is no clear best ZMA model
for the 3-h time-step, since each of the models has a different advantage in terms of
the performance criteria. In fact, all of these models produced good forecasting results.20

The authors select ZMA 9 as the best, since its RMSE is 90 mm, the SI is 0.986 and
it has about 4 % offset errors that greater than 200 mm. The charts shown in Fig. 7
help to visualize the effects of ZMA in high water level forecasting. In the figure, all the
ZMA models have forecasted values very close to the observed values except at the
highest water level events, where, ZMA 9 has the closest fit. The number of epochs25

for each ZMA is shown in Table 3 along with the forecasting performance measures,
although this study focuses on achieving the best data training performance and the
computational time is not critical. In this study, ZMA 9 for the 3-h time-step took about
an hour to compute.
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The results for the third stage are shown in Table 4, which shows the performance
of NET 5 and ZMA 9 for lead-times from 1 to 6 h. The accuracy of forecasting results
for 1 to 3 h are similarly high, except that the performance at 3 h is slightly worse than
for 1 and 2 h. However, all three of these lead-times show high accuracy, with NSC
above 0.99, RMSE below 100 mm, and SI below 1. Further, there is only one offset5

error of more than 500 mm, and this is also the highest error at 509 mm. Thus, the best
lead-time to ensure a high accuracy forecasting model is 3 h, since the longer lead-
time allows for more advanced predictions of flooding events. For lead-times of 4 to
6 h, the forecasting performances are all satisfactory, with only 2 % offset errors above
500 mm and a highest error of 702 mm. The other measures show strong performance10

with the NSC above 0.97, RMSE below 200 mm, and the SI below 2. Hence the 6-h
lead-time is selected as the satisfactory model since it has the greater lead-time time.
The overall results show that as the lead-time increases, the forecasting performance
decreases. This is to be expected, due to the fact that a shorter time interval provides
better forecasting accuracy. Figures 8 and 9 show comparisons between the observed15

and forecasted values for lead-times of 3 h and 6 h respectively, representing the high
accuracy model and the satisfactory model found in this study. To highlight the accuracy
of the 3- and 6-h lead-times in monitoring flood events, two cases of flooding that
occurred in December 2006 and January 2007 in Rantau Panjang are shown in Figs. 10
and 11. The general pattern to observe in the figures is that the offset error is quite20

high as the flooding starts, but the offset is small as the flood recedes. During the peak
water level event in January 2007, the model under-estimated the peak water level,
possibly due to the fact that not many historical flooding events above 12 000 mm have
occurred. In contrast, for the December 2006 event the model is able to accurately
forecast peak water levels.25

The results for the fourth stage, forecasting water levels above 7000 mm, are also
shown in Table 4. The performance for a lead-time of 3 h is similar to the result for
water levels above 8000 mm. The percentages of offset errors above 200 mm are 4 %
and 3 % for water levels above 7000 mm and 8000 mm respectively, and there are only
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one or two cases of an offset error above 500 mm. Forecasting performance for a 6-h
lead-time at water levels above 7000 mm and 8000 mm also show small differences in
the number of offset errors and the statistical indices. Thus, both models can be used
for forecasting water levels above 7000 mm and 8000 mm, with one model having high
accuracy and the other being satisfactory.5

The error distribution charts shown in Fig. 12 highlight the accuracy of the forecasting
results for the best SA model with a 3-h lead-time, the best ZMA model with a 3-h lead-
time, and the best ZMA model with a 6-h lead-time in forecasting water levels above
8000 mm. Figure 12a for the SA model clearly shows that most of the offset errors
are non-zero, while a high percentage of the offset errors are greater than 500 mm.10

Meanwhile, in Fig. 12b the offset errors are within 500 mm and most of the errors are
close to zero. Even in Fig. 12c, most of the offset errors are within 500 mm, with a few
points that are above 500 mm, but still below 1000 mm. Another result in the study is
that all data training performances using ZMA are slightly better than the forecasting
performances shown in Tables 3 and 4. This means that over-fitting has not occurred15

in this study, since the small number of hidden neurons helps to avoid this.

5 Conclusions

In this paper, an ANN based model with ZMA is reviewed in the development of real
time water level forecasting at Rantau Panjang station, specifically to monitor high wa-
ter level events. The forecasting models developed using ZMA are able to forecast20

water levels above 8000 mm with high accuracy with a lead-time of up to 3 h, and with
satisfactory performance at 6 h. Two cases of high flooding events that occurred in
December 2006 and January 2007 are successfully tracked by the model that is de-
veloped. The strength of ZMA is that the selection of training data is based on the
forecasting target. The trial and error method using several datasets is needed to ob-25

tain the best training dataset for forecasting the target water level. On the other hand,
SA is not suitable for forecasting high water levels, because the high volume of normal
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water level in the training dataset causes high water level data to be ignored during the
training process. Since the properties of high water level events is not learned well by
the model, it cannot make good predictions, and thus the forecasting results for high
water level events are poor.

Another important finding of this study is that the common statistical performance5

measures such as NSC, R2 and RMSE cannot be assume to indicate specific tar-
get water level forecasting performance, especially when the weight of target data in
the training dataset is minimal. Additional measures such as SI, an offset distribution
chart, scatter plot, allowable offset error, and highest offset error are needed to provide
a clearer view of the quality and reliability of forecasting results so that relevant au-10

thorities can have confidence in the model. In summary, the complexity of water level
forecasting can be addressed by using ANN models. The forecasting model developed
may assist appropriate water-monitoring authorities to take preventative measures be-
fore flooding occurs, and help managing flood operations. Further study of ZMA on
low and normal water level data could enhance the real time forecasting capability at15

Rantau Panjang station.
In general, the results of applying neural networks to water level forecasting are

promising. However, the proposed ANN models still lack an appropriate method for
finding the optimum architecture. In addition, preprocessing of the data is an essential
step for time series forecasting and more survey and analysis may lead to better accu-20

racy in this application. The selection of the parameter set and components within an
ANN model and the variable selection procedures (input pattern) were all attempted
in this study. However, optimal selection of the parameters requires augmenting the
ANN model with some other optimization model, such as the genetic algorithm or par-
ticle swarm optimization methods. On the other hand, variable selection (input pattern)25

in the ANN model is always a challenging task due to the complexity of the hydro-
logic process. Another advanced ANN model, namely the Dynamic Neural Network
(DNN), considers the time-dependent interrelationships between the input and output
patterns and may provide better modeling results. Furthermore, more robust input
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pattern selection approaches (for example, systematic searching for optimal or near
optimal variable combinations in DNN with the ensemble procedure) can be explored
and may lead to important new methods for water level forecasting.

In addition to improved accuracy, forecasting is concerned with assessing uncer-
tainty. Traditional error measures, such as the mean square error (MSE), do not pro-5

vide a reliable basis for comparison of forecasting methods. The median absolute per-
centage error is more appropriate, because it is scale-invariant and not influenced by
outliers. When comparing methods, especially when the number of series is small, we
can control for the degree of difficulty by using the median relative absolute error, which
compares the error for a given model against errors for the naı̈ve “no change” forecast.10

The fit of a model to historical data is a poor way to estimate prediction intervals, as
it typically results in confidence intervals that are too narrow. It is best to simulate
the actual forecasting procedure as closely as possible, and use the distribution of the
resulting ex ante forecasts to assess uncertainty.
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Table 1. Network models in the study.

Network Input Hidden Output
Model neurons neurons neuron

NET 3 3 3 1
NET 4 4 4 1
NET 5 5 5 1
NET 6 6 6 1
NET 7 7 7 1
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Table 2. Forecasting performances for the five SA network models.

Network model
NSC RMSE Offset errors

Totalrecords Epochs
R2 SI >200 mm (%) >500 mm (%) Highest

Section 1: forecasting performance for water level above 0 mm

NET 3
0.996 78

650 (1 %) 178 (0 %) 1908 62 753 20
0.998 2.144

NET 4
0.995 85

789 (1 %) 198 (0 %) 1890 62 708 20
0.998 2.328

NET 5
0.995 85

943 (2 %) 211 (0 %) 1891 62 663 20
0.998 2.333

NET 6
0.994 94

1192 (2 %) 255 (0 %) 1891 62 618 20
0.998 2.588

NET 7
0.994 94

1245 (2 %) 248 (0 %) 1876 62 573 20
0.998 2.577

Section 2: forecasting performance for water level above 8000 mm

NET 3
0.765 488

250 (33 %) 135 (18 %) 1794 762 20
0.976 5.446

NET 4
0.756 498

255 (33 %) 139 (18 %) 1815 762 20
0.973 5.552

NET 5
0.796 454

234 (31 %) 133 (17 %) 1669 762 20
0.973 5.009

NET 6
0.701 551

334 (44 %) 165 (22 %) 1856 762 20
0.970 6.202

NET 7
0.748 505

289 (38 %) 157 (21 %) 1728 762 20
0.968 5.654
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Table 3. Forecasting performances for the four ZMA models and NET 5 for water levels greater
than 8000 mm.

NSC RMSE Offset errors

Network
R2 SI

>200 mm >500 mm Total NSC in Data
model (%) (%) Highest records Training & Epoch

ZMA 7
0.985 122

59 (8 %) 0 (0 %) 495 762 0.99711601
0.996 1.335

ZMA 8
0.991 93

44 (6 %) 0 (0 %) 479 762 0.99812236
0.997 1.021

ZMA 9
0.992 90

31 (4 %) 1 (0 %) 509 762 0.99917507
0.998 0.986

ZMA 10
0.990 101

36 (5 %) 2 (0 %) 541 762 0.99820154
0.998 1.111
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Table 4. Forecasting performances for ZMA 9 and NET 5 for 1 to 6 hour intervals.

NSC RMSE Offset errors

Network
R2 SI

>200 mm >500 mm Total NSC in Data
model (%) (%) Highest records Training & Epoch

Section 2: forecasting performance of water level above 8000 mm

1
0.997 56

16 (2 %) 0 (0 %) 288 762 1.00015539
0.999 0.608

2
0.993 84

31 (4 %) 0 (0 %) 390 762 0.99912266
0.997 0.922

3
0.992 90

31 (4 %) 1 (0 %) 509 762 0.99812236
0.998 0.986

4
0.989 107

46 (6 %) 3 (0 %) 576 762 0.99713544
0.996 1.168

5
0.984 127

64 (8 %) 7 (1 %) 654 762 0.99411844
0.994 1.385

6
0.976 157

115 (15 %) 14 (2 %) 702 762 0.99112645
0.99 1.717

Section 2: forecasting performance of water level above 7000 mm

3
0.996 73

42 (3 %) 2 (0 %) 524 1513 0.99812236
0.999 0.882

6
0.985 138

156 (10 %) 26 (2 %) 737 1513 0.99112645
0.994 1.666
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Fig. 1 Johor River basin, Malaysia 

 

 

 
 

Fig. 2 Normal, alert and danger levels at Rantau Panjang station. 

 

 

 
Fig. 3 Flooding events recorded at Rantau Panjang station. 

Fig. 1. Johor River basin, Malaysia.
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Fig. 2 Normal, alert and danger levels at Rantau Panjang station. 

 

 

 
Fig. 3 Flooding events recorded at Rantau Panjang station. 

Fig. 2. Normal, alert and danger levels at Rantau Panjang station.

9383

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/9357/2011/hessd-8-9357-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/9357/2011/hessd-8-9357-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 9357–9393, 2011

Real-time flood
forecasting

M. Sulaiman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Flooding events recorded at Rantau Panjang station.
Fig. 3. Flooding events recorded at Rantau Panjang station.
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Fig. 4. Network model architecture.

Fig. 4. Network model architecture.
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Fig. 5. Daily water level at Rantau Panjang station for period Aug-1963 to June-2008.Fig. 5. Daily water level at Rantau Panjang station for period August-1963 to June-2008.
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Fig. 4 Network model architecture. 

 

 
Fig. 5 Daily water level at Rantau Panjang station for period Aug-1963 to June-2008. 

 

 

 
Fig. 6 Data inputs and output model for a lead-time of 3 hours. 

M is the interval of the time-step and N is the number of data inputs. 
Fig. 6. Data inputs and output model for a lead-time of 3 h. M is the interval of the time-step
and N is the number of data inputs.
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Fig. 7. ZMA_7 to ZMA_10 with 5 inputs and a lead-time of 3 h; forecasted values and observed 
values.Fig. 7. ZMA 7 to ZMA 10 with 5five inputs and a lead-time of 3 h; forecasted values and

observed values.
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Fig. 8 Forecasting results at 3-h intervals for water levels above 8 m using ZMA_9. 

Fig. 8. Forecasting results at 3-hour intervals for water levels above 8 m using ZMA 9.
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Fig. 9 Forecasting results at 6-h intervals for water levels above 8 m using ZMA_9.

Fig. 9. Forecasting results at 6-h intervals for water levels above 8 m using ZMA 9.
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Fig. 10. Comparisons between observations and model outputs for 3-h intervals during 2006–
2007 flood events.

Fig. 10. Comparisons between observations and model outputs for 3-h intervals during 2006–
2007 flood events.
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Fig. 11. Comparisons between observations and model outputs for 6-h intervals during 2006–
2007 flood events. 

Fig. 11. Comparisons between observations and model outputs for 6-h intervals during 2006–
2007 flood events.
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Fig. 12. Distribution of errors for forecasting results (a) SA at 3-h intervals (b) ZMA_9 at 3-h
intervals (c) ZMA_9 at 6-h intervals. 
Fig. 12. Distribution of errors for forecasting results (a) SA at 3-h intervals (b) ZMA 9 at 3-h
intervals (c) ZMA 9 at 6-h intervals.
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