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ABSTRACT 

 

Development of mucoadhesive biopolymer has received great attention in the 

pharmaceutical application due to its ability to retain the drug dosage at the specific 

targeted area. This special property could be applied in food formulation for 

optimum delivery of the active ingredients in the mouth. This research was carried 

out to study, correlate and review several in vitro analytical methods that can be used 

in development process for characterisation of mucoadhesive polymer. Four well 

known mucoadhesive biopolymers namely, chitosan, pectin, sodium alginate and 

sodium carboxymethylcellulose (CMC) were used in this study. A modified 

rheological characterisation was used to study the interaction between the 

biopolymers with mucin and the assessment was based on the viscosity synergism. 

The detachment force characterisation was carried out via pull-off and tensile test 

using texture analyser and atomic force microscopy (AFM). Kinetic interaction study 

was done using quartz crystal microbalance with dissipation monitoring (QCMD) 

and interpretation of data from the modified rheological characterisation. Meanwhile, 

the removal of biopolymer emulsion after water flushing in a flow cell was observed 

under a microscope. It was found that mucoadhesion properties of tested 

biopolymers were affected by the concentration of biopolymer solutions, molecular 

weight, contact time, ionic strength and pH. Sodium alginate was characterised as the 

most mucoadhesive material by all the methods while QCMD shows CMC has the 

highest interaction with mucin layer compared to sodium alginate and pectin.  
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Chapter 1 Introduction and Literature Review 

2 
 

1.1 General Introduction 

Throughout the pharmaceutical industry and more recently, with the 

introduction of ‘functional foods’ in the food industry there is a need to deliver active 

components to consumers especially people with ailments. This is possible by 

encapsulation technology. This is an advanced technology which is growing in the 

pharmaceutical, cosmetic, food and printing industry (Heinzen, 2002). Encapsulation 

can be defined as a technique to coat an active ingredient or a mixture of active 

materials in a system (Madene et al., 2006). The system or coating material is called 

shell, wall, material, carrier or encapsulant while the active ingredient that is coated 

is known as the active material or core material. In food industry, the materials that 

are normally used as the core material are flavours, colourants, aroma compounds, 

fats and oils, vitamins and minerals (Shahidi and Han 1993). Enhancement of the 

quality of food through encapsulation technology has gained increasing importance 

in the manufacture of health food or functional food. The use of encapsulation 

technology to achieve a target of flavour release and some other functions 

encourages researchers to study the mechanisms of flavour release and make 

enhancement on the existing encapsulation technology. Similar emphasis is given in 

the pharmaceutical industry where encapsulation of drugs has been explored 

extensively in order to improve the therapeutic performance of drugs. The reasons 

for applying encapsulation technology in the industries mentioned are summarised in 

Table 1.1.  
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Table 1.1: Reason of the encapsulation technology. (Adapted from Finch and 

Bodmeier, 2005). 

Reason Description 

Controlled release Controlling the release of the active material in a 

carrier material to have various release profiles. 

This reason is mainly applied to the food and 

pharmaceutical industry. 

Protection of core material 

against the atmospheric 

condition 

Some of active ingredients are sensitive to the 

atmospheric condition such as moisture, 

atmospheric oxygen and temperature. 

Encapsulation can prevent any active materials 

from direct contact to the atmospheric condition 

and thus increase its functionality.   

Protection of hygroscopic core 

contents 

Flowability and direct compressible nature of 

hygroscopic core materials such as hygroscopic 

B group vitamins can be improved with iron 

phosphate by microencapsulating this core 

material before compressing it into tablets.  

Masking of taste and odour Compounds with unpleasant taste and odour can 

be masked by microencapsulation in hard 

gelatine capsules or by incorporating the 

unpleasant compound in sugar or film-coated 

tablets.  

Flavour and aroma release Encapsulation can control the release profile of 
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3.1 Introduction 

Rheological technique that studies the flow and deformation of material due 

to applied stress and strain is useful in predicting the mucoadhesive properties of 

polymers or formulations. These techniques have been widely used by previous 

researchers to study the mucoadhesion properties and mechanisms of interaction of 

some biopolymers such as pectin, sodium alginate, chitosan and others (Hassan and 

Gallo, 1990; Mortazavi, 1995; Rossi et al., 2000; Thirawong et al., 2008; 

Sriamornsak and Wattanakorn, 2008). The interaction between the mucoadhesive 

polymers with mucin (or mucous) through chain interpenetration, structure 

conformation and chemical reaction will be reflected by the viscosity and rheology 

properties (Thirawong et al., 2008). Hence, the reflection of intermolecular friction 

as characterised by viscosity could be used to describe the mucoadhesion properties. 

The rheological characterisation for assessing the mucoadhesiveness of polymers in 

vitro was first discovered by Hassan and Gallo (1990). They have tested the 

interaction of several polymers (e.g. polyethylene glycol, dextran, chitosan, 

polyacrylic acid and others) with porcine gastric mucin. They introduced the term 

viscosity synergism and bioadhesion force in order to rank the adhesive strength of 

the polymers. The viscosity synergism is the increase in viscosity due to bioadhesion 

between polymers and mucin components in the mixture. The assessment has been 

considered successful when the results obtained by Hassan and Gallo (1990) were 

consistent with the results obtained by others.  

 

Several different strategies can be used to study mucoadhesion when using 

rheology. One of them is the direct method of measuring the viscosity increment or 
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synergism at different shear rate using shear rheology. Besides the viscosity, the 

viscoelastic properties of the polymer-mucin mixture can be determined by 

oscillatory rheology. Rheological enhancement (synergism) is the term used to 

describe the magnitude of changes in viscoelastic properties of the sample due to 

mucoadhesion (Sriamornsak and Wattanakorn, 2008). In this technique, the sample is 

subjected to an oscillatory stress which is enough to excite the sample without 

breaking its molecular structure. Riley et al. (2001) have successfully investigated 

and characterised the polyacrylic acid (PAA) as mucoadhesive polymer and its 

interaction with homogenised pig gastric mucous using the rheological techniques. In 

their study, concentration and pH of the polymer and mucous were identified as 

some of the factors affecting the interaction. Another technique is the advanced 

frequency sweep analysis proposed by Mortazavi (2003). He used lower range 

frequency (0.0001 - 10 Hz) as compared to ordinary limited frequency sweep study 

(0.1 - 10 Hz) and reported that the technique could provide a more detailed and 

accurate data on change in intermolecular structure during the interaction of polymer 

with mucous layer.          

 

Likewise, the purpose of this investigation is to study the mucoadhesion 

properties of five well known mucoadhesive biopolymers (chitosan, high DE pectin, 

low DE pectin, sodium alginate and sodium carboxymethylcellulose) and the factors 

that affect their interaction with mucin using similar rheological characterisation. 

However, there was a small modification in the technique used in this research. 

Instead of using mixtures of biopolymers and mucin as in previous studies, a thin 
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