DEVELOPMENT OF

MUCOADHESIVE BIOPOLYMERS

FOR FOOD FORMULATION

By

MOHD FAIZAL ALI

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Chemical Engineering

University of Birmingham

ABSTRACT

Development of mucoadhesive biopolymer has received great attention in the pharmaceutical application due to its ability to retain the drug dosage at the specific targeted area. This special property could be applied in food formulation for optimum delivery of the active ingredients in the mouth. This research was carried out to study, correlate and review several in vitro analytical methods that can be used in development process for characterisation of mucoadhesive polymer. Four well known mucoadhesive biopolymers namely, chitosan, pectin, sodium alginate and sodium carboxymethylcellulose (CMC) were used in this study. A modified rheological characterisation was used to study the interaction between the biopolymers with mucin and the assessment was based on the viscosity synergism. The detachment force characterisation was carried out via pull-off and tensile test using texture analyser and atomic force microscopy (AFM). Kinetic interaction study was done using quartz crystal microbalance with dissipation monitoring (QCMD) and interpretation of data from the modified rheological characterisation. Meanwhile, the removal of biopolymer emulsion after water flushing in a flow cell was observed under a microscope. It was found that mucoadhesion properties of tested biopolymers were affected by the concentration of biopolymer solutions, molecular weight, contact time, ionic strength and pH. Sodium alginate was characterised as the most mucoadhesive material by all the methods while QCMD shows CMC has the highest interaction with mucin layer compared to sodium alginate and pectin.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God the Almighty for His guidance and help in giving me the strengths to complete this thesis. I would like to acknowledge to Universiti Malaysia Pahang for the financial support throughout my study.

In particular, I would like to express my sincere appreciation to my supervisor, Prof. Serafim Bakalis and co-supervisor, Prof. Ian T Norton for the encouragement, knowledge, motivation, patience and time in helping me to complete my PhD study.

I would like also to acknowledge other contributors to the work, especially Dr. James Bowen for his help in AFM. For his help with QCMD, I would like to thank Dr. Roger Parker from Institute of Food Research, Norwich. Many thanks to Dr. James Covington (University of Warwick) for his help in fabrication process of flow cell. Big thanks also go out to Dr. Benjamin Le Révérend for his guidance during my early year of study.

A lot of thanks to my wife, Diana Ghazale and handsome son, Muhammad Faris for always being at my side and for the moral support during my hard time.

My big appreciation goes to my mother-in-law, Nor Hashimah Abdullah, for her ideas that helped me in editing process of this thesis. Finally, thank you to my beloved family and friends who always pray for my happiness and successfulness.

TABLE OF CONTENTS

Abstract	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	xi
List of Tables	xxiv
List of Symbols and Abbreviations	xxvii

1	INTE	INTRODUCTION		
	1.1	General Introduction	2	
	1.2	Literature Review	Literature Review	
		1.2.1 Mucoadhes	sion	7
		1.2.1.1 Theo	ory of Mucoadhesion	8
		1.2.1.2 Mec	chanism of Mucoadhesion	12
		1.2.1.3 Fact	tors Affecting Adhesion	14
		1.2.2 Mucoadhesi	sive Polymer	19
		1.2.3 Emulsion ar	nd Gel Particles	24
		1.2.4 Mucous Lay	yer and Mucin	27
		1.2.5 Mucoadhesi	ion Analysis	29
		1.2.5.1 In vi	itro Measurement	30
		1.2.5.2 <i>Ex v</i>	vivo and In vivo Study	35
	1.3	Objectives of Stud	ly	37
	1.4	Significances of St	tudy	37

2	Meth	odology	38
2.1 Introduction		Introduction	39
	2.2	Methodology	39
		2.2.1 Rheometer	39
		2.2.1.1 Working Principles	39
		2.2.1.2 Instrumental Setup	46
		2.2.2 Texture Analyser	50
		2.2.2.1 Working Principles	50
		2.2.2.2 Instrumental Setup	52
		2.2.3 Quartz Crystal Microbalance with Dissipation	
		Monitoring (QCMD)	55
		2.2.3.1 Working Principles	55
		2.2.3.2 Instrumental Setup	58
		2.2.4 Atomic Force Microscopy (AFM)	60
		2.2.4.1 Working Principles	60
		2.2.4.2 Instrumental Setup	63
		2.2.5 Flow Cell with Microscope Imaging	64
		2.2.5.1 Working Principles	64
		2.2.5.2 Instrumental Setup	66
3	Rheol	ogical Characterisation	68
	3.1	Introduction	69
	3.2	Materials and Methods	71

	3.2.2	Sample Preparation	72		
	3.2.3	Instrumental Setup	72		
3.3	.3 Result and Discussion				
	3.3.1	Characterisation of Chitosan and Mucin Solution	77		
	3.3.2	3.3.2 Different Concentration and Concentration of			
		Polymers			
	3.3.3	Effect of Different Degree of Esterification of			
		Pectin on Adhesive Capability	93		
	3.3.4	Effect of Holding Time Before Shearing Process	94		
	3.3.5	Effect of the Amount of Mucin and Sodium Alginate			
		at Same Concentration	96		
3.3.6 Effect of Ionic Strength on Sodium Alginate and					
		the Mixture with Mucin	101		
	3.3.7	Viscosity Synergism, Normalised Parameter and			
		Force of Mucoadhesion	105		
	3.3.8	Oscillation Analysis of the Biopolymer-Mucin			
		Mixtures	112		
	3.3.9	Control Experiment	115		
3.4	Conc	lusion	117		
Pull-	Off and	Tensile Test Using Texture Analyser	119		
4.1	Introc	luction	120		
4.2	Mater	rials and Methods	122		
	4.2.1	2.1 Pull-Off Experiment			

		4.2.1.1 Materials and Instrumental Preparation	122
	4.2.2	Tensile Test	124
		4.2.2.1 Materials and Instrumental Preparation	124
4.3	Resu	lt and Discussion	126
	4.3.1	Pull-Off Experiment	126
		4.3.1.1 Effect of Different Polymers and	
		Concentration of Polymers	128
		4.3.1.2 Effect of Different Holding Time on Mass	
		Absorbed	136
		4.3.1.3 Mass Changed During Holding Time	137
	4.3.2	Tensile Test	143
		4.3.2.1 Peak Force and Total of Work of Different	
		Concentration and Biopolymers	143
		4.3.2.2 Normalised Parameter	148
4.4	Conc	clusion	149

Mucoadhesion Measurement Using Atomic Force					
Micr	Microscopy (AFM)				
5.1	Introd	Introduction			
5.2	Mate	rials and Methods	153		
	5.2.1	Continuous Solution	153		
	5.2.2	Preparation of 'Piranha' Solution	154		
	5.2.3	Preparation of Biopolymer Absorption onto Au			
		Substrate and Mucin Coated Cantilever	154		

		5.2.4	Force Measurement	155
	5.3	Resul	t and Discussion	157
		5.3.1	Force Measurement in Air	157
		5.3.2	Force Measurement in Distilled Water	162
		5.3.3	Different Ionic Strength and pH Environment	167
	5.4	Concl	usion	172
6	Muc	oadhesio	on Kinetic Studies	173
	6.1	Introd	luction	174
	6.2	Mater	ials and Methods	175
		6.2.1	Kinetic Absorption by Quartz Crystal Microbalance	
			with Dissipation Monitoring (QCMD)	175
		6.2.2	Kinetic Interaction Analysis by Rheological	
			Characterisation	177
	6.3	Result	t and Discussion	177
		6.3.1	QCMD	177
		6.3.2	Rheological Characterisation	184
	6.4	Concl	usion	190
_				
7	Muc	oadhesio	on Testing on Mucoadhesive Biopolymer	
	Forn	nulation		192
	7.1	Introd	luction	193
	7.2	Mater	ials and Methods	194
		7.2.1	Preparation of Mucoadhesive Biopolymer Emulsion	194
		7.2.2	Flow Cell Analysis	195

	7.2.3	Preparation of Agar Gel Particles	198
7.3	Resul	esult and Discussion	
	7.3.1	Oil in Water Emulsion (O/W) with Mucoadhesive	
		Biopolymer	198
	7.3.2	Viscometric Experiment of Mucoadhesive	
		Biopolymer Emulsion with Mucin Layer	202
	7.3.3	Flow Cell Observation on Interaction Between	
		Mucoadhesive Biopolymer Emulsion with Mucin	
		Layer	205
	7.3.4	Agar Gel Particles	213
7.4	Conc	lusion	217
Conclusion and Future Work			219
8.1	Introc	ntroduction	
8.2	Conc	lusions	220
	8.2.1	Rheological Characterisation	220
		8.2.1.1 Recommendation for Rheological	
		Characterisation	226
	8.2.2	Pull-off and Tensile Test Using Texture Analyser	227
		8.2.2.1 Recommendation for Pull-off and Tensile	
		Test Using Texture Analyser	230
	8.2.3	Mucoadhesion Measurement Using Atomic Force	
		Microscopy (AFM)	230

		8.2.3.1 Recommendation for Mucoadhesion	
		Measurement Using Atomic Force	
		Microscopy (AFM)	234
	8.2.4	Mucoadhesion Kinetic Studies	235
		8.2.4.1 Recommendation for Mucoadhesion	
		Kinetic Studies	237
	8.2.5	Mucoadhesion Testing on Mucoadhesive	
		Biopolymer Formulation	238
		8.2.5.1 Recommendation for Mucoadhesion Testing	
		on Mucoadhesive Biopolymer Formulation	240
8.3	Corre	lation of Mucoadhesion from Different Analytical	
	Metho	ods	240
8.4	Revie	ew of Analytical Methods used in This Study	242
	8.4.1	Conclusion of Review	248
8.5	Futur	e Work	251

References

LIST OF FIGURES

Figure 1.1	The interpenetration or diffusion theory illustration where there	
	are three stages involved for the interaction between a	
	mucoadhesive polymer and mucin glycoprotein.	9
Figure 1.2	An illustration of the influence of the contact angle on the	
	strength of mucoadhesion.	11
Figure 1.3	Illustration of fracture mechanisms.	12
Figure 1.4	Contact stage and consolidation stage in the mucoadhesion	
	phenomenon.	13
Figure 1.5	Some scenarios where mucoadhesion can occur.	13
Figure 1.6	Molecular diagram of different mucoadhesives (A) Pectin, (B)	
	Sodium alginate, (C) Sodium carboxymethyl cellulose (CMC)	
	and (D) Chitosan.	21
Figure 1.7	Schematic of Mechanism leading to coalescence of an O/W	
	emulsion.	26
Figure 1.8	Hypothetical model of stabilizing the O/W emulsion droplets	
	with pectin.	26
Figure 1.9	Structure of human salivary monomeric mucins (MG2)- the	
	MUC7 gene product.	28
Figure 1.10	Structure of human salivary monomeric mucins (MG1)- the	
	MUC5B gene product.	29

Figure 1.11	Modified Wilhelmy plate method apparatus for mucoadhesion	
	study.	33
Figure 2.1	Laminar shear of fluid between two plates.	40
Figure 2.2	Three dimensional schematic diagram of basic term in the	
	determination of shear viscosity.	41
Figure 2.3	Steady state flow curve of fluid.	42
Figure 2.4	Schematic stress response to the strain deformation for elastic	
	solid, viscous fluid and viscoelastic material.	44
Figure 2.5	Schematic of the front of AR rheometer.	45
Figure 2.6	Selection of rheometer geometries.	46
Figure 2.7	Schematic diagram of sample volume for the rheological	
	characterisation experiments.	49
Figure 2.8	Typical applications of texture analyser.	51
Figure 2.9	Schematic diagram of a texture analyser equipment.	51
Figure 2.10	Typical graph of force versus time or distance for adhesion	
	measurement.	52
Figure 2.11	TA. XT. Plus texture analyser instrument.	53
Figure 2.12	Experiment setup using texture analyser. (A) Pull-off	
	experiment and (B) Tensile test experiment.	54
Figure 2.13	(a) Butterworth van Dyke (BVD) model of a quartz resonator	
	and (b) Schematic diagram of internal circuit of the QCMD.	56
Figure 2.14	QCMD instrument with QAFC 302 axial flow chamber with	
	temperature controlled loop.	59
Figure 2.15	Piezoelectric gold chip.	59

Figure 2.16	Reflection of laser beam from the cantilever to photodetector.	61		
Figure 2.17	Atomic force causes the cantilever to bend corresponded by the			
	sample surface tomography at nano-scale level.	61		
Figure 2.18	A typical force curve during the measurement done by AFM.	62		
Figure 2.19	Schematic diagram of AFM system.	64		
Figure 2.20	Flow cell	67		
Figure 2.21	1 Schematic diagram of the flow cell apparatus. (A) Reicher-			
	Jung; (B) Flow cell; (C) Peristaltic pump; (D), Beaker			
	containing pure distilled water; (E) Beaker containing solution			
	removed from flow cell.	67		
Figure 3.1:	Schematic diagram of the viscometric experiment.	75		
Figure 3.2:	Steady state flow curve of 5% (w/v) mucin solution.	80		
Figure 3.3	Flowcurve (steady state) of 1% (w/v) Chitosan in 1% (v/v)			
	acetic acid solution measured with step up (0.2 s ⁻¹ to 1000 s ⁻¹)			
	followed by step down (1000 s ⁻¹ to 0.2 s^{-1}).	81		
Figure 3.4	Viscosity profile 1% (w/v) Chitosan in 1% (v/v) acetic acid			
	measured on different day after stored in fridge (T~5°C).	81		
Figure 3.5	Steady stead flow curve of 1% (w/v) chitosan in 1% (v/v) acetic			
	acid, 5% (w/v) mucin and chitosan-mucin mixture which was			
	mixed with a spoon (not magnetic stirrer).	84		
Figure 3.6	Agglomeration of chitosan-mucin when mixed with spoon.	84		
Figure 3.7	Stress sweep of 1% (w/v) chitosan solution in 1% (v/v) acetic			
	acid.	87		

- Figure 3.8Frequency sweep 1% (w/v) chitosan in 1% (v/v) acetic acid and
its mixture with 5% (w/v) mucin.
- **Figure 3.9** Viscosity profile of 1.5 ml 1% (w/v) and 2% (w/v) different polymer solutions, water, polymer-mucin and water-mucin at shear rate of 50 s⁻¹. 4 ml of 10% (w/v) mucin solution was dried on the peltier stage for the shearing process. Measurement was done for 20 minutes after applying 5 minutes equilibrium time (holding time).
- Figure 3.10 Viscosity profile of 1.5 ml of 1% (w/v) high DE pectin mixed with 4 ml 10% (w/v) mucin at different of shear rate and 5 minutes holding time before the shearing process (40 s⁻¹, 50 s⁻¹, 60 s⁻¹).
- **Figure 3.11** Viscosity of the mixture of 1.5 ml 1% (w/v) high DE pectin with mucin at different shear rates. Initially, the high DE pectin-mucin mixture was mixed at 50 s⁻¹ shear rate after 5 minutes holding time.
- Figure 3.12 (a) Frequency sweep test for the mixture of 1.5 ml 1% (w/v) high DE pectin 4 ml 10% (w/v) mucin (mixed at different shear rate: •G' 40 s⁻¹; ■G" 40 s⁻¹ ▲G' 50 s⁻¹; ×G" 50 s⁻¹; ×G' 60 s⁻¹; •G" 60 s⁻¹; ●G" 60 s⁻¹) at different angular frequencies. (b) Tan δ for the mixture of 1.5 ml 1% (w/v) high DE pectin 4 ml 10% (w/v) mucin (mixed at different shear rate: •40 s⁻¹; 50 s⁻¹; ▲ 60 s⁻¹) at different angular frequencies.

91

91

- Figure 3.13 Viscosity profile of two different types of pectin (35% and 60% degree of esterification) mixed with 4 ml of 10% (w/v) mucin (temperature is 37°C, shear rate is 50 s⁻¹ and equilibrium time is 0 s).
- Figure 3.14 Viscosity profile of the 1.5 ml of 1% (w/v) high DE pectin mixed with 4 ml 10% (w/v) mucin (dried condition) at different initial holding times and shear rate of 50 s⁻¹.

98

- Figure 3.15 Initial viscosity of mixture of 1.5 ml of 1% (w/v) high DE pectin mixed with 4 ml 10% (w/v) mucin (dried condition) at different holding times and shear rate of 50 s⁻¹.
- Figure 3.16 Effect of amount of mucin in the combination of 1.5 ml of 2% (w/v) sodium alginate and 10 % (w/v) mucin on the viscosity of the mixture. (Shear rate: 50 s⁻¹; holding time: 0 s).
- **Figure 3.17** Specific viscosity of sodium alginate-mucin with different amount of mucin in the mixture. (Shear rate: 50 s⁻¹; holding time: 0 s).
- Figure 3.18 Viscosity profile of the different volume of 2% (w/v) sodium alginate mixed with 4 ml of 10% (w/v) mucin (dried condition). (Shear rate: 50 s⁻¹; holding time: 0 s).

- Figure 3.19 Effect of amount of sodium alginate solution on the viscosity for mixture of 4 ml of 10% (w/v) mucin and 2% (w/v) sodium alginate solution. Viscosity of different concentration of mucin solution is measured by mixing 0.4 g of mucin (in dried film condition) with different amount of water. (Shear rate: 50 s⁻¹; holding time: 0 s).
- Figure 3.20 Specific viscosity of sodium alginate-mucin at different amount of sodium alginate solution in the mixture. (Shear rate: 50 s⁻¹; holding time: 0 s).
- Figure 3.21 Viscosity profile of the different volume of 2% (w/v) sodium alginate with different concentration of NaCl mixed with 4 ml 10% (w/v) mucin. (5 minutes initial holding time and shear rate of 50 s⁻¹).
- Figure 3.22Viscosity profile of the different volume of 2% (w/v) sodium
alginate with different concentration of KCl mixed with 4 ml10% (w/v) mucin. (5 minutes initial holding time and shear rate
of 50 s⁻¹).103
- Figure 3.23 Viscosities for mixtures of the 2% (w/v) sodium alginate in different concentration of salt and its mixture with 4 ml of 10% (w/v) mucin (dried condition) after 20 minutes shearing at 50 s⁻¹ and 5 minutes initial holding time.
- **Figure 3.24** Variation of zeta potential (ζ) of an apple juice with salt concentration. 104

xvi

Figure 3.25	Force of mucoadhesion for three types of polymers. The						
	mixture (polymer-mucin) was mixed at 37° C and 50 s^{-1} shear						
	rate with 5 minutes holding time.	111					
Figure 3.26	Dynamic moduli of the high DE pectin-mucin mixture.	114					
Figure 3.27	Tan δ of the 2% (w/v) different polymer-mucin mixtures.	114					
Figure 3.28	Viscosity profile of control experiment. The mixing was done						
	at 50 s ⁻¹ and with 5 minutes of equilibrium (holding time).						
Figure 3.29	Viscosity profile of the mixture 1.5 ml 10% (w/v) sugar, 1.5 ml						
	30% (w/v) sugar and 1.5 ml water with mucin. (shear rate: 50 s $^{-}$						
	¹ ; holding time: 5 minutes).	117					
Figure 4.1	Modified of a tensiometer for measurement of detachment						
	force between mucoadhesive material and mucous layer.	121					
Figure 4.2	An advanced dual tensiometer apparatus for tensile force						
	measurement.	122					
Figure 4.3	Schematic diagram of the TA.XT.Plus Texture Analyser. (A)						
	Texture Analyser with moveable arm; (B), Dell PC running the						
	programme Texture Analysis; (C), Clean or mucin coated slide;						
	(D), Glass beaker containing the polymer solution.	124					
Figure 4.4	Schematic diagram of tensile test. The arrows indicated with capital						
	letters represent relevant forces experienced in the test. Unspecific						
	force polymer (A), unspecific force of mucin (B) and specific force						
	between the polymer and mucin (C).	125					
Figure 4.5	Schematic diagram of important sequences in pull-off						
	experiment.	127					

xvii

Figure 4.6	Force balance that experienced by slide. Total force is the					
	measurement recorded by texture analyser.	127				
Figure 4.7	Force of pull-off experiment recorded by texture analyser for					
	different types of polymer with mucin coated slide. (Holding					
	time is 300 s).	130				
Figure 4.8	Force of pull-off experiment recorded by texture analyser for					
	different types of polymer with clean slide. (Holding time is					
	300 s).	130				
Figure 4.9	Illustration of cohesion force recorded during pulling step.	132				
Figure 4.10	Mass changed [(M_i - M_o)/(M_∞ - M_o)] during holding time (420 s)					
	for different polymer solutions.	133				
Figure 4.11	Force profile of pull-off experiment recorded by texture					
	analyser with different holding time (30 s, 180 s,					
	300 s, $-$ 420 s) for 2% (w/v) high DE pectin solution with					
	mucin coated slide.	137				
Figure 4.12	Force profile with different modes speed of 2% (w/v) sodium					
	alginate. Holding time is 100 s.	138				
Figure 4.13	Force profile of different type of polymers (2% w/v) with					
	holding time of 420 s. (Fast dipping into polymer solution and					
	pulled out at 1 mm/s).	139				
Figure 4.14	Force recorded during holding time.	141				
Figure 4.15	Weight change of mucin slide during holding time.	141				
Figure 4.16	Relative weight change of mucin slide during holding time.	142				

- Figure 4.17 Force versus times for 10% (w/v) mucin and 2% (w/v) high DE pectin solution indicating the general mucoadhesion and unspecific mucoadhesion. The curves were obtained from tensile testing of mucin-pectin solution (MP) (blue line), water-pectin solution (WP) (red line) and mucin-water solution (MW) (green line).
- **Figure 4.18** Net force, Δ Fmax (specific interaction) and net total work, Δ AUC (specific total work) of different polymers (high DE pectin, CMC and sodium alginate) at different concentration. 147
- Figure 4.19 Normalised parameter of different polymer at different concentration. 148
- Figure 5.1Peak force between the polymer substrate and mucin.160
- Figure 5.2 Peak force between the sodium alginate (different ionic strength NaCl) substrate and mucin coated cantilever at different contact time. 160
- Figure 5.3
 Work between the polymer substrates and mucin coated

 cantilever at different contact time.
 161
- Figure 5.4Work between the sodium alginate with different ionic strength
(NaCl) and mucin cantilever at different contact time.161
- Figure 5.5
 Peak force for polymer substrate and mucin coated cantilever at different contact time.
 164
- Figure 5.6
 Work for polymer substrate and mucin coated cantilever at different contact time.
 165

Figure 5.7:	Peak force (detachment force) for sodium alginate (different	
	ionic strength NaCl) and mucin coated cantilever at different	
	contact time.	165
Figure 5.8	Work for sodium alginate with different ionic strength (NaCl)	
	and mucin coated cantilever at different contact time.	166
Figure 5.9	Peak force (detachment force) between different polymers and	
	mucin cantilever at in different ionic strength solution (NaCl).	168
Figure 5.10	Work between different polymers and mucin coated cantilever	
	at in different ionic strength solution (NaCl) environment.	168
Figure 5.11	Peak force (detachment force) between different polymers and	
	mucin coated cantilever in different pH solution.	171
Figure 5.12	Work between different polymers and mucin coated cantilever	
	in different pH solution.	171
Figure 6.1	Sequences for kinetic absorption study of mucoadhesive	
	polymer on mucin layer.	176
Figure 6.2	QMCD frequency and dissipation shifts during the injection of	
	sodium alginate solution on the absorbed mucin layer. F=	
	Frequency and D= Dissipation. Frequencies: F1 (5 MHz); F3	
	(15 MHz); F5 (25 MHz); F7 (35 MHz).	179
Figure 6.3	QMCD frequency and dissipation shifts during the injection of	
	CMC solution on the absorbed mucin layer. F= Frequency and	
	D= Dissipation. Frequencies: F1 (5 MHz); F3 (15 MHz); F5	
	(25 MHz); F7 (35 MHz).	180

Figure 6.4	QMCD frequency and dissipation shifts during the injection of				
	high DE pectin solution on the absorbed mucin layer. F=				
	Frequency and D= Dissipation. Frequencies: F1 (5 MHz); F3				
	(15 MHz); F5 (25 MHz); F7 (35 MHz).	180			
Figure 6.5	Schematic diagram of the expected frequency profile and the				
	process happened during the formation of polymer-mucin layer.	181			
Figure 6.6	Schematic diagram of the phenomenon happened during the				
	experiment.	181			
Figure 6.7	Frequency change after injection of tested polymer solution				
	before the buffer rinse.	183			
Figure 6.8	Relative frequency change after injection of tested polymer				
	solution before the buffer rinse.	184			
Figure 6.9	Focusing area for kinetic interaction analysis by rheological				
	characterisation.	185			
Figure 6.10	Viscosity profile during shearing of mucin layer with water,				
	high DE pectin and low DE pectin. The shearing was done for				
	20 minutes (1200 s) with shear rate of 50 s ⁻¹ and 0 s holding				
	time.	185			
Figure 6.11	Viscosity change during shearing of mucin layer with water,				
	high DE pectin and low DE pectin. From $t=0$ s to $t=800$ s.	186			
Figure 6.12	Relative viscosity change during shearing of mucin layer with				
	water, high DE pectin and low DE pectin from t= 0 s to t= 800				
	S.	186			

Figure 6.13	Viscosity profile during shearing process for 1% (w/v) pectin,						
	water, 10% (w/v) sugar and 30% (w/v) sugar with mucin layer.						
	Shear rate of 50 s ⁻¹ and holding time 0 s and 5 minutes.						
Figure 6.14	Relative viscosity change during shearing process for 1% (w/v)						
	pectin, water, 10% (w/v) sugar and 30% (w/v) sugar with						
	mucin layer. Shear rate of 50 s ⁻¹ and holding time 0 s and 5						
	minutes.	190					
Figure 7.1	Silverson L4RT high speed mixer.	195					
Figure 7.2	Dimension of flow cell.	197					
Figure 7.3	Setup for flow cell analysis with Reichert-Jung microscope						
	using 25x magnification lense.	197					
Figure 7.4	Images of emulsion droplets made with different mucoadhesive						
	polymers and concentration. (a) No polymer; (b) 0.1% (w/v)						
	high DE pectin; (c) 1% (w/v) high DE pectin; (d) 2% (w/v)						
	high DE pectin; (e) 1% (w/v) sodium alginate; (f) 2% (w/v)						
	sodium alginate.	201					
Figure 7.5	Viscosity profile of the shearing process of (O/W) emulsion						

with dried mucin layer. Three emulsion formulation were used which are 1% (w/v) and 2% (w/v) of sodium alginate and without polymer. Shear rate at 50 s⁻¹ and holding time was 5 minutes prior to shearing process. The measurement done at T= 37° C. 203

Figure 7.6 Emulsion without mucoadhesive polymer on the mucin coated slide. 208

Figure 7.7	Emulsion without mucoadhesive polymer on the clean slide.	209			
Figure 7.8	1% (w/v) Sodium Alginate O/W emulsion on clean slide.	210			
Figure 7.9	1% (w/v) Sodium Alginate O/W emulsion on mucin coated				
	slide.	211			
Figure 7.10	2% (w/v) Sodium Alginate O/W emulsion on mucin coated				
	slide.	212			
Figure 7.11	Temperature ramp of 3% (w/v) agar with different shear rate:				
	(a) 40 s ⁻¹ and (b) 100 s ⁻¹ . Cooling rate is 1.5° C/min.	214			
Figure 7.12	Images of fluid agar gel formed with different shear rate. (a) 40				
	s^{-1} and (b) 750 s^{-1} .	215			
Figure 7.13	Frequency sweep of 3% (w/v) Agar gel particle at 0.5% strain.				
	Shear rate: (a) 40 s^{-1} and (b) 100 s^{-1} .	216			
Figure 7.14	Flowcurve of 3% (w/v) agar gel particle produced by applying				
	different shear rate: (a) 40 s^{-1} and (b) 100 s^{-1} .	216			

LIST OF TABLES

Table 1.1	Reason of the encapsulation technology.					
Table 1.2	Microencapsulation processes.					
Table 1.3	Microencapsulation process for different suspending media.					
Table 1.4	The polymer factors that affecting the mucoadhesion strength.					
Table 1.5	The environmental factors that affecting the mucoadhesion					
	processes.	17				
Table 1.6	Physiological effect on the mucoadhesion strength.	18				
Table 1.7	Example of mucoadhesive polymers. More (+) symbols indicate					
	stronger adhesion.	23				
Table 2.1	Viscoelastic parameters.	43				
Table 2.2	Experiment procedures were used in rheological characterisation					
	experiment and production of agar gel particles.	48				
Table 2.3	Texture analyser setting for the pull-off and tensile test					
	experiments.	54				
Table 3.1	Summary of the experiment parameters used in rheological					
	characterisation. All the tests were performed at temperature of					
	37°C.	75				
Table 3.2	Apparent viscosity and observed viscosity of the different					
	polymers and their mixture with 10% (w/v) mucin (1.5 ml of					
	polymer solution was used for the mixing process) at 50 s ⁻¹ and 5					
	minutes holding time.	107				

Chapter 1: Introduction and Literature Review

1.1 General Introduction

Throughout the pharmaceutical industry and more recently, with the introduction of 'functional foods' in the food industry there is a need to deliver active components to consumers especially people with ailments. This is possible by encapsulation technology. This is an advanced technology which is growing in the pharmaceutical, cosmetic, food and printing industry (Heinzen, 2002). Encapsulation can be defined as a technique to coat an active ingredient or a mixture of active materials in a system (Madene et al., 2006). The system or coating material is called shell, wall, material, carrier or encapsulant while the active ingredient that is coated is known as the active material or core material. In food industry, the materials that are normally used as the core material are flavours, colourants, aroma compounds, fats and oils, vitamins and minerals (Shahidi and Han 1993). Enhancement of the quality of food through encapsulation technology has gained increasing importance in the manufacture of health food or functional food. The use of encapsulation technology to achieve a target of flavour release and some other functions encourages researchers to study the mechanisms of flavour release and make enhancement on the existing encapsulation technology. Similar emphasis is given in the pharmaceutical industry where encapsulation of drugs has been explored extensively in order to improve the therapeutic performance of drugs. The reasons for applying encapsulation technology in the industries mentioned are summarised in Table 1.1.

Table	1.1:	Reason	of	the	encapsulation	technology.	(Adapted	from	Finch	and
Bodme	eier, 2	2005).								

Reason	Description		
Controlled release	Controlling the release of the active material in a		
	carrier material to have various release profiles.		
	This reason is mainly applied to the food and		
	pharmaceutical industry.		
Protection of core material	Some of active ingredients are sensitive to the		
against the atmospheric	atmospheric condition such as moisture,		
condition	atmospheric oxygen and temperature.		
	Encapsulation can prevent any active materials		
	from direct contact to the atmospheric condition		
	and thus increase its functionality.		
Protection of hygroscopic core	Flowability and direct compressible nature of		
contents	hygroscopic core materials such as hygroscopic		
	B group vitamins can be improved with iron		
	phosphate by microencapsulating this core		
	material before compressing it into tablets.		
Masking of taste and odour	Compounds with unpleasant taste and odour can		
	be masked by microencapsulation in hard		
	gelatine capsules or by incorporating the		
	unpleasant compound in sugar or film-coated		
	tablets.		
Flavour and aroma release	Encapsulation can control the release profile of		

Chapter 3: Rheological Characterisation

3.1 Introduction

Rheological technique that studies the flow and deformation of material due to applied stress and strain is useful in predicting the mucoadhesive properties of polymers or formulations. These techniques have been widely used by previous researchers to study the mucoadhesion properties and mechanisms of interaction of some biopolymers such as pectin, sodium alginate, chitosan and others (Hassan and Gallo, 1990; Mortazavi, 1995; Rossi et al., 2000; Thirawong et al., 2008; Sriamornsak and Wattanakorn, 2008). The interaction between the mucoadhesive polymers with mucin (or mucous) through chain interpenetration, structure conformation and chemical reaction will be reflected by the viscosity and rheology properties (Thirawong et al., 2008). Hence, the reflection of intermolecular friction as characterised by viscosity could be used to describe the mucoadhesion properties. The rheological characterisation for assessing the mucoadhesiveness of polymers *in* vitro was first discovered by Hassan and Gallo (1990). They have tested the interaction of several polymers (e.g. polyethylene glycol, dextran, chitosan, polyacrylic acid and others) with porcine gastric mucin. They introduced the term viscosity synergism and bioadhesion force in order to rank the adhesive strength of the polymers. The viscosity synergism is the increase in viscosity due to bioadhesion between polymers and mucin components in the mixture. The assessment has been considered successful when the results obtained by Hassan and Gallo (1990) were consistent with the results obtained by others.

Several different strategies can be used to study mucoadhesion when using rheology. One of them is the direct method of measuring the viscosity increment or synergism at different shear rate using shear rheology. Besides the viscosity, the viscoelastic properties of the polymer-mucin mixture can be determined by oscillatory rheology. Rheological enhancement (synergism) is the term used to describe the magnitude of changes in viscoelastic properties of the sample due to mucoadhesion (Sriamornsak and Wattanakorn, 2008). In this technique, the sample is subjected to an oscillatory stress which is enough to excite the sample without breaking its molecular structure. Riley et al. (2001) have successfully investigated and characterised the polyacrylic acid (PAA) as mucoadhesive polymer and its interaction with homogenised pig gastric mucous using the rheological techniques. In their study, concentration and pH of the polymer and mucous were identified as some of the factors affecting the interaction. Another technique is the advanced frequency sweep analysis proposed by Mortazavi (2003). He used lower range frequency (0.0001 - 10 Hz) as compared to ordinary limited frequency sweep study (0.1 - 10 Hz) and reported that the technique could provide a more detailed and accurate data on change in intermolecular structure during the interaction of polymer with mucous layer.

Likewise, the purpose of this investigation is to study the mucoadhesion properties of five well known mucoadhesive biopolymers (chitosan, high DE pectin, low DE pectin, sodium alginate and sodium carboxymethylcellulose) and the factors that affect their interaction with mucin using similar rheological characterisation. However, there was a small modification in the technique used in this research. Instead of using mixtures of biopolymers and mucin as in previous studies, a thin