

Modelling and Control of a Reconfigurable Multipurpose Wheelchair for Elderly/Disabled Mobility

A thesis submitted to the University of Sheffield for the degree of Doctor of Philosophy

By

Nor Maniha Abdul Ghani

Department of Automatic Control and Systems Engineering The University of Sheffield Mappin Street Sheffield S1 3JD UK

January 2015

Abstract

This research is embarking on development of modelling and designing control strategies for a multipurpose wheelchair as a mobile transporter for elderly and disabled people to move in confined and domestic environments independently. The research is aimed at helping people who have physical weakness/disabilities in their upper and lower extremities to move on their own without human intervention. In this work, a novel reconfiguration which allows multi-task operations using the same wheelchair system with compact and simple mechanism is developed for use in confined domestic environment. It can perform manoeuvrability on flat surfaces, stairs climbing (ascending and descending), standing in the upright position on two wheels and transforms back to standard four wheels with reduced initial torque and reduced tilt angle.

The wheelchair model is designed in Visual Nastran 4D (VN4D) software with standard specifications of stairs dimension and size. A humanoid model with approximate weight of 71kg is also developed in solid works and incorporated in VN4D to represent a disabled/elderly person. The wheelchair mechanism is based on the link/cluster rotation by lifting the other pair of wheels at the vertical upright position like an inverted pendulum. The completed model in VN4D is then integrated with Matlab/Simulink for control design and performance evaluation. The challenge resides in an appropriate design and implementation of robust controller for the system to guarantee stability of the overall wheelchair while performing multi-function tasks without falling over.

A modular fuzzy logic control mechanism with integrated phases is introduced in this work for the two-wheeled stabilization as the main principle of the overall tasks. It is implemented in the stabilizing/landing for stair climbing and sit-to-stand/stand-to-sit transformation control system. Yaw and linear motions are considered in the stair climbing while seat height extension and suspension mechanism are incorporated during standing/sitting control. Moreover, systematic optimization approach is used for the fuzzy input output scaling parameters using spiral dynamic algorithm for performance comparison purposes with heuristic values. Unique rule bases are implemented in all fuzzy modules and controlled independently. The developed control approaches are evaluated through intensive visual simulation and quantitative assessment to verify the proposed control design.

Acknowledgements

All praises be for Allah s.w.t, the beneficent, the merciful and the lord of the whole universe along with His mercy that have been awarded to the author.

My ultimate gratitude and appreciation to my PhD supervisor, Dr. Osman Tokhi for his priceless supervision, guidance and support during my study and doing research in his group. His precious knowledge and idea in guiding me to address and solve problems throughout my research work are highly valued. Also, I will never forget the warm welcome from him and his family when I first arrived in Sheffield.

I would like to dedicate my greatest thanks to all my colleges and friends (Omar, Ahmad Nor, Shwan, Abdullah, Saad, Hadi, Siti and Azliyan) who have involved directly and indirectly in my research. A special dedication to Dr. Khaled and Prof Dr. Shafiul Alam who were previous students of Dr. Osman and have reviewed, commented and give suggestions on my research work. Special thanks to all staff of department of Automatic Control & System Engineering especially Richard, Liz and Yuka for being kind and helpful.

Thanks to Ministry of Education, the government of Malaysia for sponsoring my study as well as Universiti Malaysia Pahang for supporting my family financially to join me during my study.

Special thanks to my dearest husband, Hasrul who have been understanding and sacrificing a lot throughout my study. To my dearest children Luqman and Iman, who have been my sources of motivation and inspiration, I have cherished unforgettable moments with you here. To my beloved family members, Mak, Ma, Abah, Cikni and Mamat, thank you for your thoughtful prayer and May Allah grants you with good health and happiness here and the day after.

List of Figures

Figure 1.1: Crawler type from (a) Sunwa and (b) Top Chair	4
Figure 1.2: Leg type (a) WL-16RII 2005and (b) RT-Mover	5
Figure 1.3: Hybrid four robotic legs wheelchair	6
Figure 1.4: Hybrid mechanism (a) Two decoupled and (b) Two-legs using dista sensors	
Figure 1.5: Linkage mechanism with twelve pivoting wheels	8
Figure 1.6:TBW-1 Matsushima	8
Figure 1.7: Redman Power Wheelchair, 2014	. 10
Figure 1.8 : HLPR Wheelchair, 2007	.11
Figure 1.9: P'GASUS	. 12
Figure 1.10: iBOT(Johnson & Johnson company, 2001)	. 14
Figure 1.11: Noborot	. 14
Figure 2.1: Material type in VN4D	. 25
Figure 2.2: Dialog box to customize own material	. 26
Figure 2.3: Dialog box to select a constraint	. 27
Figure 2.4: vNPlant icon in Simulink toolbox	. 29
Figure 2.5: Standard wheelchair types in the market	. 30
Figure 2.6: Complete wheelchair diagram in VN4D	. 30
Figure 2.7: Schematic diagram of a wheelchair when transforming to two-whee position	

Figure 2.8: Human model in standing mode and associated anthropometric
dimension (Winter, 1990)
Figure 2.9: Complete wheelchair model with humanoid (a) side view (b) 3D view
for sitting (c) 3D view for standing
Figure 2.10: Type of structure and stair slope (Canadian Centre for Occupational
Safety and Health, 2010)
Figure 2.11: Control parameters
Figure 3.1: Computational Intelligence Paradigm (Engelbrecth, 2007)
Figure 3.2: Configuration of fuzzy controller
Figure 3.3: Different membership functions
Figure 3.4: Diagrammatic representation of fuzzy velocity in three linguistic
variable terms
Figure 3.5: Fuzzification in Gaussian MF
Figure 3.6: Centre of gravity, COG
Figure 3.7: Block diagram of a PD-fuzzy control system
Figure 3.8: Universal scheme of a Modular Control structure (Vascak, 1999) 54
Figure 3.9: Simulink/Matlab and VN4D integration
Figure 3.10: Architecture of the modular fuzzy controller
Figure 3.11: Structure for input output PD-fuzzy controller
Figure 4.1: Schematic diagram of the wheelchair
Figure 4.2: Architecture of the modular fuzzy controller (a) General coordination of
IPFL (b) Specific coordination of IPFL for τ_{F} and τ_{R}

Figure 4.3: Membership functions for inputs and output for stabilizing and stair
climbing
Figure 4.4: Switching action between stabilizing and landing control with FLC1a
and FLC1b
Figure 4.5: Switching action between front and rear wheel torque control
Figure 4.6: Flow chart of stabilizing mechanism
Figure 4.7: Transformation from four wheeled to two wheeled wheelchair
Figure 4.8: System performance in terms of link, tilt angle, axle positions and yaw
angle
Figure 4.9: Control efforts
Figure 4.10: Train of positive impulse disturbances73
Figure 4.11: System performance in terms of Link1, tilt angle, axle positions and
yaw angle for various disturbances
Figure 4.12: Control efforts for various positive disturbances
Figure 4.13: System performance in terms of Link1, tilt angle, axle positions and
yaw angle for 12kN impulse disturbances76
Figure 4.14: Control efforts for 12kN impulse disturbances
Figure 4.15: Train of various negative impulse disturbances
Figure 4.16: System performance in terms of Link1, tilt angle, axle positions and
yaw angle
Figure 4.17: Control efforts for various negative disturbances
Figure 4.18: System performance in terms of Link1, tilt angle, axle positions and
yaw angle for –11kN impulse disturbance

Figure 4.19: Control efforts for –11kN impulse disturbance
Figure 4.20: Flow chart of stair climbing operation
Figure 4.21: Ascending stairs motion
Figure 4.22: System performance in terms of Link1, Link2 and tilt for $d=0.302m$ 84
Figure 4.23: Wheelchair performance in terms of control input signals for $d=0.302$ m
Figure 4.24: Wheelchair performance in terms of Links and tilt control for $d=0.407$ m
Figure 4.25: Wheelchair performance in terms of wheels position and yaw control $d=0.407$ m
Figure 4.26:Train of impulse disturbance forces in different scenarios at crucial points during ascending
Figure 4.27: Wheelchair performance in terms of Links, tilt control, wheels position and yaw angle for various positive disturbances
Figure 4.28: Wheelchair performance in terms of tilt angle, wheels position and yaw control for 2050N impulse disturbance
Figure 4.29: Control input signals for various positive disturbances
Figure 4.30: Train of negative impulse disturbances
Figure 4.31: Wheelchair performance in terms of Links and tilt control for various negative disturbances
Figure 4.32: Wheelchair performance in terms of wheels position and yaw control for various negative disturbances
Figure 4.33: Wheelchair performance in terms of tilt angle, wheels position and yaw control for -4600N disturbance

Figure 4.34: Control input signals for various positive disturbances
Figure 4.35: Control input signals for -4600N disturbance
Figure 4.36: Schematic diagram of wheelchair during climbing downstairs96
Figure 4.37: Complete descending stairs motion in VN4D97
Figure 4.38: System performance in terms of Link1, Link2, tilt and wheels position with and without yaw control
Figure 4.39: Wheelchair performance in terms of control input signals with and without yaw control
Figure 4.40: Yaw angle with and without controller
Figure 4.41: Train of impulse disturbances in different scenarios at crucial points in the descending task
Figure 4.42: Wheelchair performance in terms of Links, tilt angle and wheels positions for positive pulses disturbances
Figure 4.43: Wheelchair performance in terms of input signals and yaw control for positive pulses disturbances
Figure 4.44: Train of negative impulse disturbances
Figure 4.45: Wheelchair performance in terms of Links, tilt angle and wheels positions for negative impulse disturbances
Figure 4.46: Wheelchair performance in terms of input signals and yaw control for negative impulse disturbances
Figure 5.1: Schematic diagram of the standing wheelchair
Figure 5.2: Linear actuator and revolute motors
Figure 5.3: Spring/Damping elements

Figure 5.4: Simulink/Matlab and VN4D integration
Figure 5.5: (a) FLC structure and fuzzy rules examples (b) Fuzzy logic 3D surface
Figure 5.6: Sit-to-stand and Sit-to-stand transformations in VN4D 120
Figure 5.7: Sit-to-stand flow chart
Figure 5.8: Stand-to-sit flow chart
Figure 5.9: System performances
Figure 5.10: Control efforts
Figure 5.11: Train of positive impulse disturbances
Figure 5.12: System performances
Figure 5.13: Control efforts
Figure 5.14: Train of negative impulse disturbances
Figure 5.15: System performances 129
Figure 5.16: Control efforts
Figure 5.17: System performances
Figure 5.18: Control efforts 134
Figure 5.19: Linear motion on standing position
Figure 5.20: Primary and secondary control structure
Figure 5.21: Travel distance
Figure 5.22: System performances 138
Figure 5.23: Control efforts

Figure 5.24: Travel distance
Figure 5.25: System performances
Figure 5.26: Control efforts
Figure 6.1: Input output of fuzzy parameters
Figure 6.2: Graphical representation of spiral model. Case (1) $r = 0.9$; $\theta = \pi/4$, Case
(2) $r = 0.95$; $\theta = \pi/4$ and Case (3) $r = 0.95$; $\theta = \pi/2$
Figure 6.3: SDA Optimization algorithm
Figure 6.4: Flow chart of SDA operation
Figure 6.5: Detail input output scaling parameters for fuzzy control
Figure 6.6: SDA and PSO fitness cost functions, (a) SDA (b) PSO (c) Both SDA
and PSO
Figure 6.7: Transformation from four wheeled to two wheeled wheelchair 157
Figure 6.8: System performance in terms of link, tilt angle, axle positions and yaw
angle
Figure 6.9: Control efforts
Figure 6.10: Detail input output scaling parameters for fuzzy control
Figure 6.11: SDA fitness cost function for (a) First step and (b) Second step 161
Figure 6.12: Ascending stairs motion
Figure 6.13: System performance in terms of link 1, link 2 and tilt angle
Figure 6.14: Wheels positions and yaw angle164
Figure 6.15: Control efforts

Figure 6.16: SDA fitness cost function for (a) Step 1 (b) Step 2 166
Figure 6.17: System performance168
Figure 6.18: Control effort 169
Figure 6.19: Detail input output scaling parameters for fuzzy control
Figure 6.20: Sit-to-stand and stand-to-sit transformations in VN4D 171
Figure 6.21: SDA fitness cost function for sit-to-stand and stand-to-si transformations
Figure 6.22: System performance 174
Figure 6.23: Control efforts 175

List of Tables

Table 2.1: Control input signal in VN4D software
Table 2.2: Control output signal in VN4D software
Table 2.3: Joint specification in VN4D (MSC Software, Simulating Reality Delivering Certainty, 2010). 34
Table 2.4: Anthropometric data of the designed human model (Winter, 1990) 35
Table 2.5: Dimension and specifications of the wheelchair model (Winter, 1990) 35
Table 2.6: Properties of human joint
Table 2.7: Specifications and the limitation of the stair dimension 39
Table 3.1: Initial construction of fuzzy rules 53
Table 4.1: Fuzzy Rules for link, v_{ℓ} , wheels, $\tau_{F/R}$ and seat motors, τ_{s}
Table 5.1: System performance (Numerical analysis) for 4m travel distance 139
Table 5.2: System performance (Numerical analysis) for 5m travel distance 143
Table 6.1: Parameters for SDA
Table 6.2: Comparison of scaling factors 155
Table 6.3: Comparison parameters for PSO, benchmark value and SDA
Table 6.4: Comparison parameters for benchmark value and SDA
Table 6.5: Comparison parameters for benchmark value and SDA
Table 6.6: Comparison Parameters for benchmark value and SDA 167
Table 6.7: System performance (Numerical analysis)

Table 6.8: Comparison parameters for benchmark value and SDA				
	170			
Table 6.9: System performance (Numerical analysis)	1/6			

Nomenclatures

The following are the variables being used in this work.

τ $_{FL}$, τ $_{FR}$	Front left and front right wheels motor		
$ au_{RL}$, $ au_{RR}$	Rear left and rear right wheels motor		
v_{ℓ}	Link/cluster motor		
$oldsymbol{ heta}_\ell$	Link/cluster angle		
θ_{s}	Overall seat angle		
τ s	Overall seat motor		
W	Width of stair		
h	Height of stair		
d	Depth of stair		
v _h	Height of linear actuator		
ν _α	Seat motor		
ν _β	Back seat motor		
<i>x</i> ₁	Front wheel position		
<i>x</i> ₂	Rear wheel position		
Ψ	Yaw angle		
h	Position of seat		
θ_{α}	Bottom seat angle		
θ_{β}	Back seat angle		

Table of Contents

Abs	stract			i		
Ack	nowled	gements	5	iii		
List	t of Figu	ires		ix		
List	t of Tab	les		xiii		
Nor	nenclat	ures		XV		
Tat	ole of Co	ontents		xvi		
СН	APTER	R 1		1		
1	Intro	duction		1		
	1.1	Introdu	ction and motivation1			
	1.2	Multi-1	functions w	unctions wheelchair2		
		1.2.1	Stability control wheelchair2			
		1.2.2	Stair climbing wheelchair			
			1.2.2.1	Crawler type4		
			1.2.2.2	Leg type4		
			1.2.2.3	Hybrid type6		
			1.2.2.4	Wheeled type		
		1.2.3	Sit-to-sta	and and stand-to-sit wheelchair9		
		1.2.4	Wheelchair on two wheels 12			
	1.3	Inverted pendulum concept on two wheels				

3	Modu	lar Fuzz	y Logic Control	41		
CHAPTER 3 41						
	2.5	Summary				
	2.4	Stairs dimension Visual Nastran integrated with Matlab/Simulink				
	2.3					
		2.2.4	Wheelchair with a payload	36		
		2.2.3	Human model	32		
		2.2.2	Body and joint specifications	31		
		2.2.1	Mechanical design of a wheelchair	29		
	2.2	Modelli	ing of a wheelchair using Visual Nastran 4D environment	25		
	2.1	Introdu	ction	24		
2	Whee	eelchair Model 2				
CHA	APTER	2	:	24		
	1.8	Summa	ry	23		
	1.7	Publications				
	1.6	Contribution				
	1.5	Thesis of	outline	18		
	1.4	Aims and objectives of the research				
		1.3.2	Proposed multi-functions two-wheeled wheelchair	16		
		1.3.1	Single and double inverted pendulum	15		

	3.1	Introduction				
	3.2	Fuzzy Logic4				
		3.2.1	Fuzzy Set and Terminology	44		
		3.2.2	Membership Function	45		
		3.2.3	Linguistic Description	45		
		3.2.4	Fuzzification and Defuzzification	47		
		3.2.5	Inference	49		
	3.3	3.3 Fuzzy modelling				
	3.3	Modul	Modular fuzzy logic control structure			
	3.4	Summ	ry	59		
CHAPTER 4 60						
СН	APTER	R 4		60		
СН. 4			nd stair climbing control with an interchangeable pha			
	Stabi	lizing a		ase		
	Stabi	lizing a	nd stair climbing control with an interchangeable pha	ase 60		
	Stabi fuzzy	lizing a logic Introdu	nd stair climbing control with an interchangeable pha	ase 60		
	Stabi fuzzy 4.1	lizing a logic Introdu	nd stair climbing control with an interchangeable pha	ase 60 61 ing		
	Stabi fuzzy 4.1	lizing a logic Introdu IPFL f	nd stair climbing control with an interchangeable phatection or stabilizing and stair climbing Multi-input single-output fuzzy logic control for stabilizi	ase 60 61 ing 64		
	Stabi fuzzy 4.1	lizing at logic Introdu IPFL f 4.2.1	ad stair climbing control with an interchangeable phatection or stabilizing and stair climbing Multi-input single-output fuzzy logic control for stabilizing and stair climbing	ase 60 61 ing 64 66		

	4.3	Stabilizing on two-wheeled system			
		4.3.1	Simulatio	on results for two-wheeled stabilizing 69	
	4.4	Ascending stair control			
		4.4.1	Simulatio	on results for stair ascending82	
			4.4.1.1	Stairs tread dimension d=0.302m 82	
			4.4.1.2	Stairs tread dimension d=0.407m85	
			4.4.1.3 T	rain of positive impulse disturbances for ascending task	
			4.4.1.4 Ti	rain of negative impulse disturbances for ascending task	
	4.5	Descending stairs control			
		4.5.1	Simulatio	on results for stair descending96	
			4.5.1.1	Different treads with yaw control	
			4.5.1.2	Different treads without yaw control 100	
			4.5.1.3	Train of positive impulse disturbances for descending task	
			4.5.1.4	Train of negative impulse disturbances for descending task	
	4.6	Summar	ry		
СНА	PTER	5		110	
5	Trans	formatio	on of Sit-to	o-Stand and Stand-to-Sit Manoeuvre110	
	5.1	Introduc	ction		

	5.2	Sit-to-Stand Mechanism			
		5.2.1	Actuator and revolute motor models 112		
		5.2.2	New meter and control 114		
		5.2.3	Passive suspension for stand-to-sit motion 114		
	5.3	Sit-to-stand and stand-to-sit control structure			
		5.3.1	Sit-to-Stand118		
		5.3.2	Stand-to-Sit119		
	5.4	Simulat	ion results for sit-to-stand motion121		
		5.4.1	External positive disturbance forces		
		5.4.2	External negative disturbance forces		
		5.4.3	Simulation results for sit-to-stand and stand-to-sit with/without spring/damper		
	5.5	Linear motion			
		5.5.1	Simulation results for 4m travel distance with /without spring/damper		
		5.5.2	Simulation results for 5m travel distance with /without spring/damper		
	5.6	Summa	ry144		
CHAPTER 6 145					
6	Optim	nization	of Fuzzy Logic Scaling Parameters with Spiral Dynamic		
	Algori	ithm			
	6.1	Introduc	ction		

	6.2	SDA optimization of fuzzy input output scaling parameters			
	6.3	Simulation results			
		6.3.1	Two-wheeled balancing wheelchair	152	
		6.3.2	Stair ascending	159	
		6.3.3	Stair descending	165	
		6.3.4	Sit-to-Stand and Stand-to-Sit	170	
	6.4	Summa	ury	176	
CH	APTER	7		177	
7	Concl	usion an	nd Further Work	177	
	7.1	Summa	ry and conclusion	177	
	7.2	Recom	mendation for future work	179	
References181					
Appendix 1: Overall system194					
Appendix 2: Stair ascending195					
Appendix 3: Stair descending 196					
Appendix 4: Sit-to-stand and Stand-to-sit197					
Appendix 5					

Chapter 1

1 Introduction

1.1 Introduction and motivation

Mobility dominance has always been highly valued but is sometimes over sighted in case of people with disability and the elderly. The number of disabled persons across the world has kept on increasing. For example in Great Britain, there are a total of 11.2 million disabled persons, of whom 0.8 million are children, 5.2 million are working adults and the same goes to pension people according to 2010/2011 disability prevalence estimation data (Disability factsheet, 2011). This has caused high demand on some form of transport mechanism and thus wheelchairs continue to play a vital role. The wheelchair designs range from traditional to electricpowered types with their associated advantages and limitations. However, most of the manual wheelchair designs are not capable of performing multiple tasks within the same wheelchair system. Thus, there is a significant gap between the able bodied and paraplegic people in utilizing the facility especially in case of different operations with compact and simple mechanism for use in confined domestic environments. The main goal of this work revolves around provision of assistance with electric-powered wheelchairs (EPWs) to help disabled/elderly people with lower and upper extremity impairments so as to increase their functional mobility to perform multipurpose tasks independently. The wheelchair system allows manoeuvrability on flat surfaces, stairs climbing (ascending and descending), standing in the upright position on two wheels and transforming back to standard four wheels. Various mobility assistive techniques are highlighted in this thesis and recent advances in wheelchair mechanism are described.

1.2 Multi-functions wheelchair

EPWs allow functional mobility for people with spinal cord injury (SCI) and paraplegics with paralysis in both upper and lower limbs. It becomes increasingly prominent as more wheelchair users have changed to powered machine due to the ability to move within their homes and communities independently especially for people with high level of impairment. This chapter highlights current work for multipurpose wheelchair including stability control wheelchair, stair climbing wheelchair and sit-to-stand/ stand-to-sit manoeuvring using two wheeled wheelchair.

1.2.1 Stability control wheelchair

Three or more points of contact on the ground are needed for a wheelchair to be stable, similar to modern vehicles approach. If a balance mechanism is used, two points of contact will be adequate, e.g. a rickshaw supporting a person as an external balance mechanism, bicycle and motorcycle in case of using an internal balance mechanism. The person in this case needs to control the vehicle's lateral motion in order to maintain the appropriate COG position for the bicycle and motorcycle. If a single point of contact with the ground is used, such as unicycle and wheelbarrow, then acquiring control and balance at both side to side and front to rear will be a complex task.

It is vital to ensure safety of a user during manoeuvring using a wheelchair to prevent any severe accidents such as tips and falls. Tipping stability occurs when one or more wheels of a wheelchair are lifted due to the loss of control of a driver. Cooper et al. (1998) indicated that leg rests play a significant role on the wheelchair stability and can increase the possibility of falling and tipping. Corfman et al. (2003) also suggested that proper leg rest position and the use of seatbelt might guarantee the stability of the wheelchair when traversing on any obstacles.

Torres et al. (2000) implemented a level sensor to detect the seat height and maintain level while the wheelchair traverse on untreated surfaces through extension and retraction control mechanism. A commercialized iBOT wheelchair utilized the balance mode throughout the wheelchair operation which operates on two-wheeled mode using inverted pendulum principle. It controls the (COG) of the wheelchair system by bringing the rear wheels at the upright vertical position. It uses the on board sensors system; gyroscope and encoder to measure the tilt angle of the seat, angular velocity and base linear velocity to drive and balance the iBOT system through the motor voltage and current (Kamen et al., 2002). Cooper et al. (2006) conducted a study to report the various types of wheelchair activities at home and in the community. The tasks include performing eye-to-eye level discussion with people and reaching items at higher shelves at home and library.

Similar to iBOT design principle with the ability to transform from four wheeled to two wheeled mode with additional capabilities to lift the seat to a higher position has been introduced by Ahmad et al. (2011, 2014). They used the two-links inverted pendulum concept for lifting both the front wheels and stabilizing the overall wheelchair body on its rear wheels at the upright two wheeled position. However, the front wheels dimension, called caster wheels in this design were much smaller than the rear wheels which contribute to easy transformation processes. Moreover, the wheelchair produced initial high torque at the wheels and tilt motors (Link 1 and Link 2) to lift the overall mechanism to two-wheeled upright position. This will produce big tilt angle at the beginning of the transformation process as the overall system need to be tilted with such high power. The comfort issue of the user is important in this case especially for a disabled person and elderly.

1.2.2 Stair climbing wheelchair

Stair climbing wheelchair provides a facility to the user to utilize the same assistive mobility equipment to move on a flat surface and on the stairs. There is no reliance on the elevator or an assistance to perform stair climbing, thus leading to independent life. A number of stair-climbing wheelchair mechanisms have been developed and these include crawler type, leg type, hybrid type and wheeled type; as described below.

Chapter 1

1 Introduction

1.1 Introduction and motivation

Mobility dominance has always been highly valued but is sometimes over sighted in case of people with disability and the elderly. The number of disabled persons across the world has kept on increasing. For example in Great Britain, there are a total of 11.2 million disabled persons, of whom 0.8 million are children, 5.2 million are working adults and the same goes to pension people according to 2010/2011 disability prevalence estimation data (Disability factsheet, 2011). This has caused high demand on some form of transport mechanism and thus wheelchairs continue to play a vital role. The wheelchair designs range from traditional to electricpowered types with their associated advantages and limitations. However, most of the manual wheelchair designs are not capable of performing multiple tasks within the same wheelchair system. Thus, there is a significant gap between the able bodied and paraplegic people in utilizing the facility especially in case of different operations with compact and simple mechanism for use in confined domestic environments. The main goal of this work revolves around provision of assistance with electric-powered wheelchairs (EPWs) to help disabled/elderly people with lower and upper extremity impairments so as to increase their functional mobility to perform multipurpose tasks independently. The wheelchair system allows manoeuvrability on flat surfaces, stairs climbing (ascending and descending), standing in the upright position on two wheels and transforming back to standard four wheels. Various mobility assistive techniques are highlighted in this thesis and recent advances in wheelchair mechanism are described.

1.2 Multi-functions wheelchair

EPWs allow functional mobility for people with spinal cord injury (SCI) and paraplegics with paralysis in both upper and lower limbs. It becomes increasingly prominent as more wheelchair users have changed to powered machine due to the ability to move within their homes and communities independently especially for people with high level of impairment. This chapter highlights current work for multipurpose wheelchair including stability control wheelchair, stair climbing wheelchair and sit-to-stand/ stand-to-sit manoeuvring using two wheeled wheelchair.

1.2.1 Stability control wheelchair

Three or more points of contact on the ground are needed for a wheelchair to be stable, similar to modern vehicles approach. If a balance mechanism is used, two points of contact will be adequate, e.g. a rickshaw supporting a person as an external balance mechanism, bicycle and motorcycle in case of using an internal balance mechanism. The person in this case needs to control the vehicle's lateral motion in order to maintain the appropriate COG position for the bicycle and motorcycle. If a single point of contact with the ground is used, such as unicycle and wheelbarrow, then acquiring control and balance at both side to side and front to rear will be a complex task.

It is vital to ensure safety of a user during manoeuvring using a wheelchair to prevent any severe accidents such as tips and falls. Tipping stability occurs when one or more wheels of a wheelchair are lifted due to the loss of control of a driver. Cooper et al. (1998) indicated that leg rests play a significant role on the wheelchair stability and can increase the possibility of falling and tipping. Corfman et al. (2003) also suggested that proper leg rest position and the use of seatbelt might guarantee the stability of the wheelchair when traversing on any obstacles.

Torres et al. (2000) implemented a level sensor to detect the seat height and maintain level while the wheelchair traverse on untreated surfaces through extension and retraction control mechanism. A commercialized iBOT wheelchair utilized the balance mode throughout the wheelchair operation which operates on two-wheeled mode using inverted pendulum principle. It controls the (COG) of the wheelchair system by bringing the rear wheels at the upright vertical position. It uses the on board sensors system; gyroscope and encoder to measure the tilt angle of the seat, angular velocity and base linear velocity to drive and balance the iBOT system through the motor voltage and current (Kamen et al., 2002). Cooper et al. (2006) conducted a study to report the various types of wheelchair activities at home and in the community. The tasks include performing eye-to-eye level discussion with people and reaching items at higher shelves at home and library.

Similar to iBOT design principle with the ability to transform from four wheeled to two wheeled mode with additional capabilities to lift the seat to a higher position has been introduced by Ahmad et al. (2011, 2014). They used the two-links inverted pendulum concept for lifting both the front wheels and stabilizing the overall wheelchair body on its rear wheels at the upright two wheeled position. However, the front wheels dimension, called caster wheels in this design were much smaller than the rear wheels which contribute to easy transformation processes. Moreover, the wheelchair produced initial high torque at the wheels and tilt motors (Link 1 and Link 2) to lift the overall mechanism to two-wheeled upright position. This will produce big tilt angle at the beginning of the transformation process as the overall system need to be tilted with such high power. The comfort issue of the user is important in this case especially for a disabled person and elderly.

1.2.2 Stair climbing wheelchair

Stair climbing wheelchair provides a facility to the user to utilize the same assistive mobility equipment to move on a flat surface and on the stairs. There is no reliance on the elevator or an assistance to perform stair climbing, thus leading to independent life. A number of stair-climbing wheelchair mechanisms have been developed and these include crawler type, leg type, hybrid type and wheeled type; as described below.

Chapter 3

3 Modular Fuzzy Logic Control

3.1 Introduction

In this work, a reconfigurable wheelchair is developed based on the two-wheeled inverted pendulum concept and intended for use in narrow and confined domestic environments. The subtle operation involves a transformation from standard fourwheeled wheelchair to two-wheeled mode using a link rotation mechanism in order to lift the whole wheelchair system to the upright position, which is referred to as stabilizing on two-wheeled process. This mechanism also allows the wheelchair to perform stair climbing (ascending and descending), sit-to-stand and stand-to-sit operations using the stabilizing concept. Stabilizing a wheelchair in a two-wheeled mode is not an easy task as it needs to take into account the whole weight of the system and the user. The two-wheeled wheelchair system uses the same concept as an inverted pendulum which has surfaced over the years for balancing control and is known to be an unstable system. At the same time, the seat and the whole wheelchair mechanism have to stay stable at the upright vertical position to ensure that the system does not collapse or slip while carrying a human load of 71kg. Due to the configuration and complexity of the task, the system was incorporated with an intelligent control approach to accomplish the goal.

Tremendous successes have been reported through the implementation of natural and biological intelligence, resulting in 'Intelligence System'. The intelligent algorithm form part of the field of 'Artificial Intelligence' in broad research disciplines, for example, computer science, physiology, philosophy, sociology and biology. Figure 3.1 shows paradigm of computational intelligence (Engelbrecth, 2007).

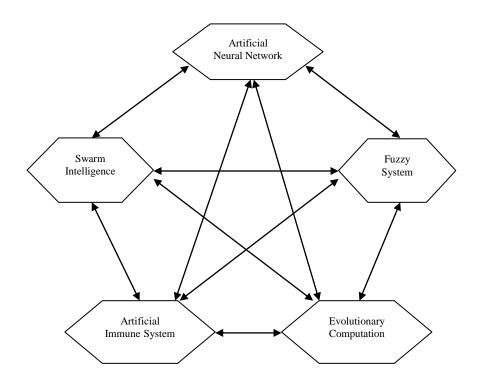


Figure 3.1: Computational Intelligence Paradigm (Engelbrecth, 2007)

Artificial Neural Network (ANN) is originated from nerve cells called neurons which are represented as artificial neurons, ANN and acting like data training machine where as Swarm Intelligence (SI) is adopted from swarm and colonies social organisms such as bird flocks and ant colony behaviours which prompted the design of efficient optimization and clustering algorithms. Natural behaviour and genetic were the main contributing factors to create evolutionary algorithm as one of the approach to evolve behaviour model. Meanwhile, Artificial Immune System (AIS) modelled human immune system to interact with foreign cells known as antigen which enters the body to be able to adapt and memorize the structure of these antigens for faster future response.

Fuzzy logic is with inherent property incorporating uncertainties and nonlinearities of a system (Engelbrecth, 2007). In this sense, fuzzy logic plays a vital role in executing rational decision making process in an uncertainty and imprecision environment by human (Zadeh, 1988). Fuzzy logic has significant advantages because it is one of the computational intelligence approaches which are

close to human reasoning and decision making. Fuzzy logic has found greatest successful in most fields and systems ranging from engineering to social studies due to its ability to construct rule of knowledge which is similar to human expression and thinking. Moreover, fuzzy logic is easy to implement in terms of interpreting the behaviour of environments and real systems. Fuzzy logic control (FLC) has become more favourable due to its significant superiority compared to conventional methods in terms of theory and practicality (Wang, 1993). The stability of fuzzy logic, considered as its disadvantage, is hard to establish and there is no standard approach to analyse its stability. However, the following attributes strongly motivate the adoption of a fuzzy logic approach in this work:

- Suitable for a system which is difficult to model and obtain the mathematical description and need linguistic vague information from human experts.
- The fuzzy control itself does not require mathematical equations as in most conventional controllers, just rely on the rule of knowledge based on the systems' requirement.
- Can be implemented to nonlinear systems due to the nonlinear elements in the fuzzy control in order to perform nonlinear control actions.
- Easy to understand by those who are not control specialists because it emulates human control strategy.
- Simple to implement in both software and hardware and inexpensive to develop.

A basic diagram for fuzzy logic approach is shown in Figure 3.2 which consists of fuzzification, inference mechanism based on the rule construction and defuzzification. Each element is described in detail in next section.