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ABSTRACT

This study focuses on the parameter estimation and outlier detection for some 

types of the circular model.  We first look at the concentration parameter of von Mises 

distribution.  The von Mises distribution is the most commonly used probability 

distribution of a circular random variable, and the concentration of a circular data set is 

measured using the mean resultant length.  We propose a new and efficient 

approximation of the concentration parameter estimates using two approaches, namely, 

the roots of a polynomial function and minimizing the negative value of the log-

likelihood function in this study.

Secondly, we consider the construction of confidence interval for the unknown 

parameter of a type of circular regression model, namely the model by Down and 

Mardia (2002).  The parameters being considered in this study is the error concentration 

parameter.  The confidence interval of the error concentration parameter is not straight 

forward due to the complexity of getting a closed form and the wrap-around nature of 

the data.  In this study, we propose an alternative method of constructing a confidence 

interval based from the distribution of the estimated value of error concentration 

parameter obtained from the Fisher information matrix. 

Thirdly, a new functional relationship model for circular variables, which is an 

extended version of a circular regression model as proposed by Down and Mardia 

(2002), is developed in this study.   Both the dependent and independent variables in the 

model are subjected to errors.  We derive the maximum likelihood estimation of 

parameters as well as the variance-covariance of parameters.  Later, we assess the 
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performance of confidence interval for error concentration parameter for the new 

functional relationship model via simulation study. 

Lastly, we consider the problem of detecting multiple outliers in circular 

regression models based on the clustering algorithm.  We develop the clustering-based 

procedure for the predicted and residual values obtained from the Down and Mardia 

model fit of a circular-circular data set.  Here, we introduce a measure of similarity 

based on the circular distance and obtain a cluster tree using the single linkage 

clustering algorithm.  Then, a stopping rule for the cluster tree based on the mean 

direction and circular standard deviation of the tree height is proposed.  We classify the 

cluster group that exceeds the stopping rule as potential outliers.  

Model verification of all method and model proposed in this study are examined 

using the simulation study.  As illustration, applications are displayed using wind and 

wave circular data sets.
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ABSTRAK

Kajian ini memberi tumpuan kepada penganggaran parameter dan ujian 

pengesanan titik terpencil dalam beberapa jenis model bulatan. Pertama, kita akan 

melihat parameter menumpu bagi taburan von Mises. Taburan von Mises adalah 

taburan kebarangkalian yang paling kerap digunakan bagi pemboleh ubah rawak bulat 

dan penumpuan bagi set data bulatan dikira menggunakan min paduan panjang. Dalam 

kajian ini, nilai anggaran yang baharu dan efisien bagi parameter menumpu data 

membulat tersebut telah dicadangkan dengan menggunakan dua pendekatan iaitu, nilai 

punca fungsi polinomial dan meminimumkan nilai negatif bagi fungsi log-

kemungkinan.

Kedua, kami mempertimbangkan pembinaan selang keyakinan untuk parameter 

yang tidak diketahui bagi sejenis model regresi membulat, iaitu model Down dan 

Mardia (2002). Parameter yang dipertimbangkan dalam model ini adalah parameter

menumpu bagi ralat. Selang keyakinan parameter menumpu bagi ralat tidak boleh 

ditulis secara langsung kerana kerumitan mendapatkan bentuk yang tertutup dan 

membalut sekitar sifat data. Dalam kajian ini, kami mencadangkan satu kaedah 

alternatif dalam membina selang keyakinan berasaskan taburan bagi nilai anggaran

parameter menumpu ralat yang diperolehi daripada Matriks Fisher Bermaklumat.

Ketiga, satu model hubungan berfungsi yang baharu bagi pembolehubah 

bulatan, yang mana merupakan lanjutan daripada model regresi bulatan yang 

dicadangkan oleh Down dan Mardia (2002) dibangunkan dalam kajian ini. Kedua-dua 

pembolehubah bersandar dan tak bersandar dalam model ini adalah tertakluk kepada 

ralat. Kami memperoleh nilai anggaran kemungkinan maksimum bagi parameter 
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beserta parameter varians-kovarians.  Seterusnya, kami juga menilai prestasi selang 

keyakinan untuk parameter menumpu nilai ralat bagi model hubungan berfungsi yang 

baharu ini melalui kajian simulasi.

Akhir sekali, kami mempertimbangkan masalah mengesan titik terpencil 

berganda dalam model regresi bulatan berdasarkan algoritma berkelompok. Kami 

membangunkan prosedur berasaskan kelompok ini untuk nilai ramalan dan reja yang

diperoleh daripada penyuaian model Down dan Mardia bagi set data bulatan. Di sini, 

kami memperkenalkan ukuran persamaan berasaskan jarak bulatan, dan seterusnya 

membina pokok kelompok dengan menggunakan algoritma hubungan kelompok 

tunggal.  Kemudian, kami mencadangkan satu nilai potongan untuk pokok kelompok 

berdasarkan min terarah dan sisihan piawai bulatan bagi ketinggian pokok tersebut.

Kami mengklasifikasikan kumpulan data yang melebihi titik potongan ini sebagai titik 

terpencil.

Pengesahan model bagi semua kaedah dan model yang dicadangkan dalam 

kajian ini diuji menggunakan kajian simulasi.   Sebagai contoh, aplikasi dipaparkan 

menggunakan data arah angin dan gelombang.
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CHAPTER 1 : RESEARCH FRAMEWORK

1.1 Background of the Study

Circular statistics is a branch of statistics that involve circular data in the form of

direction or cyclic time.  Circular data are measured in degree  0 , 360  or radian

 0, 2 .   Examples of circular data include the days of the week and compass direction.  

Since the data are cyclic, Monday is said to be closer to Sunday than to Wednesday,

while 350o closer to 1o than to 300o.  We can found the applications of circular statistics 

in various areas such as in biology, geology, geography and medical.  For example, 

biologist used circular statistics to study the orientation of an animal while 

meteorologist used this method to study the direction of the wind.  Mardia and Jupp 

(2000) stated that circular data can also be identified in waves of sound, the human 

perception under various conditions, the orientation of ridges of fingerprints, the 

orientation of sand grains from a beach, the death due to a disease at various times in a 

year, and astronomical observations.  

Circular data are usually measured using a compass, clock, protractor or other 

circular measuring instruments.  We represent a single circular observation θ˚ as a point 

on a circle of unit radius or unit vector.  Generally, the researchers will choose an initial 

direction and an orientation of the circle based on the needs and nature of the studies.  

This situation is described and illustrated in Figure 1.1.  The idea is to choose an 

orthogonal coordinate system on the plane.  Then, each circular observation can be 

specified by the angle from the initial direction to a point on the circle corresponding to 

the observation (Mardia and Jupp, 2000).
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Some examples include Gould (1969) who proposed an angular response regression 

model and applied the model to a set of data arising from a study of movements of 

intertidal gastropods.  Mardia (1975) developed a nonparametric rank correlation 

coefficient for circular data.  

In particular, the circular functional relationship model is known as errors-in-

variables models or measurement errors models which account for measurement errors

in the independent variables.  The problem of estimating the parameters are usually 

considered for both types of the statistical model. One of the parameters being 

considered in the circular model is the error concentration parameter.  

In most model building, the presence of influential observation, outliers and 

missing values cannot be ignored.  Outliers may occur in circular data and become 

unnoticed.  It may be a result of keypunch errors, misplaced decimal points, recording 

or transmission error, or exceptional phenomena such as earthquakes and natural 

disasters.  If outliers in circular regression model remain undetected, it can lead to 

erroneous parameter estimates and inferences from the model.  In this study, our focus 

is on multiple outlier detection procedures in circular regression models.  

1.2 Problem Statement

In this study, our main focus is on circular regression model and circular 

functional relationship model for von Mises distribution.  For the von Mises 

distribution, procedures for obtaining the parameter estimates are not straight forward as 

it is mathematically intractable.  In particular, the maximum likelihood estimation of the 

concentration parameter  involves inverting the mean resultant length.  In the 

literature, some estimates of the concentration parameter are better for small  values 
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CHAPTER 3 : A NEW EFFICIENT APPROXIMATION OF 

CONCENTRATION PARAMETER

3.1 Introduction

The aim of this chapter is to propose an efficient approximation for mean 

resultant length  A  and concentration parameter ̂ .  For that reason, a brief 

discussion on the general construction of mean resultant length  A  is given in 

Section 3.2, and the existence approximation solution of the concentration parameter is 

listed for large and small  in Section 3.3.  A new formula of  A  is constructed 

using the reconstruction of summation series of  0I  using two approaches namely,

piecewise approximation and maximum likelihood estimator. The new approximation 

method is given in Section 3.4. 

Furthermore, new approximation solutions of ̂ is also proposed using two 

approaches in Section 3.5.  First, we consider the power series expansion of the mean 

resultant length and the estimate of the concentration parameter may be obtained by the 

roots of a polynomial function.  Detailed description is given in Section 3.6. Secondly, 

we consider the power series expansion of the reciprocal of a Bessel function in the log-

likelihood function of the concentration parameter and the estimate of concentration 

parameter may be obtained by minimizing the negative value of the log-likelihood 

function.  Detailed description is given in Section 3.7. 

The concentration parameter from both approaches may be estimated, for 

example, using the polyroot function and minimum sum function in the SPlus
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package.  The efficiency of new proposed method is then tested using a simulation 

study with random data, and again with applications data.  Detailed descriptions are

given in Section 3.8 to Section 3.10.  Result, discussion and conclusion of new proposed 

method are provided at the end of this chapter.

3.2 The General Construction of Mean Resultant Length 

A brief discussion on the general construction of mean resultant length of von 

Mises distribution can be found in Mardia and Jupp (2000), and Jammalamadaka and 

SenGupta (2001).  Recall that, the von Mises distribution is symmetrical about mean 

direction  and has pdf

   
 cos

0

1
; , , 0 2

2
f e

I
      

 
   , (2.12)

where 0 2   and 0  are parameters.  Thus, the distribution is invariant under 

the transformation

,   (3.1)

and its density has the following property,

   .f f      (3.2)

Generally, the value of mean direction  and mean resultant length R are 

obtained from the first trigonometric moment about zero direction.  The pth

trigonometric moment about zero direction is given by
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
            (3.3)
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where
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Also, the pth trigonometric moment about mean direction is defined by
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