Insulin sensitivity and sepsis score: A correlation between model-based metric and sepsis scoring system in critically ill patients

Fatanah M. Suhaimi, J. Geoffrey Chase, Christopher G. Pretty, Geoffrey M. Shaw, Normy N. Razak, Ummu K. Jamaludin

a Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas Penang, Malaysia
b Department of Mechanical Engineering, University of Canterbury, Christchurch 8054, New Zealand
c Department of Intensive Care, Christchurch Hospital, Christchurch 8054, New Zealand
d Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
e Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

Article history:
Received 19 January 2016
Received in revised form 12 July 2016
Accepted 10 August 2016
Available online 21 August 2016

Keywords:
Glucose-insulin model
ICU
Insulin sensitivity
Sepsis
Sepsis score

Abstract

Sepsis is highly correlated with mortality and morbidity. Sepsis is a clinical condition demarcated as the existence of infection and systemic inflammatory response syndrome, SIRS. Confirmation of infection requires a blood culture test, which requires incubation, and thus results take at least 48 h for a syndrome that requires early direct treatment. Since sepsis has a strong inflammatory component, it is hypothesized that metabolic markers affected by inflammation, such as insulin sensitivity, might provide a metric for more rapid, real-time diagnosis. This study uses clinical data from 30 sepsis patients (7624 h in ICU) of whom 60% are male. Median age and median Apache II score are 63 years and 19, respectively. Model-identified insulin sensitivity (SI) profiles were obtained for each patient, and insulin sensitivity and its hourly changes were correlated with modified hourly sepsis scores (SSH_1). SI profiles and values were similar across the cohort. The sepsis score is highly variable and changes rapidly. The modified hourly sepsis score, SSH_1, shows a better relation with insulin sensitivity due to less fluctuation in the SIRS element. Median SI and median ΔSI of the cohort is 0.4193×10^{-3} and 0.004253×10^{-3} L/mU.min, respectively. Additionally, median SI are 4.392×10^{-4} L/mU min ($SSH_1 = 0$), 4.153×10^{-4} L/mU min ($SSH_1 = 1$), 3.752×10^{-4} L/mU min ($SSH_1 = 2$) and 2.353×10^{-4} L/mU min ($SSH_1 = 3$). Significant relationship between insulin sensitivity across different SSH_1 groups was observed ($p < 0.05$) even when corrected for multiple comparisons. CDF of SI indicates that insulin sensitivity is more significant when comparing an hourly sepsis score at a very distinguished level.

© 2016 Elsevier Ltd. All rights reserved.