Structural, Optical and Electrical Properties of Sol–Gel Prepared Mesoporous Co₃O₄/SiO₂ Nanocomposites

Gomaa A.M. Ali^{a, b}, Osama A. Fouad^c, Salah A. Makhlouf^{d, e}

^aChemistry Department, Faculty of Science, Al–Azhar University, Assiut branch, Assiut 71524, Egypt ^bFaculty of Industrial Science and Technology, University Malaysia Pahang (UMP), 26300 Kuantan, Pahang, Malaysia

^cCentral Metallurgical Research and Development Institute, CMRDI, P.O. Box 87, Helwan 11421, Egypt

^dPhysics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt ^eDeanship of Scientific Research, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11463, Saudi Arabia

ABSTRACT

Structures, optical and electrical properties of Co_3O_4/SiO_2 nanocomposites are reported. Well crystalline Co_3O_4 nanoparticles embedded in an amorphous SiO_2 matrix is formed, and confirmed by XRD and FTIR measurements upon calcination of gel precursors up to 800 °C. The obtained nanocomposites have high surface area ~126–312 m² g⁻¹, and the Co_3O_4 particle size was ~7–15 nm. The optical properties of the Co_3O_4/SiO_2 nanocomposites indicate the presence of two energy gaps; both of them are smaller than those reported for the Co_3O_4 bulk phase. The first is varied from 1.32 to 1.44 eV and the second one is varied from 1.76 to 1.87 eV depending on the particles size. DC conductivity was measured in the temperatures range 300–673 K. The activation energy for DC conduction varies with particle size. The conduction mechanism was suggested to be through small polarons and variable range hopping mechanisms, at high and low temperatures respectively.

KEYWORDS: Cobalt oxide/silica; Nanocomposite; Mesoporous structure; Optical properties; Electrical conductivity

DOI: 10.1016/j.jallcom.2013.07.095