Greenhouse Gases Mitigation by CO₂ Reforming of Methane to Hydrogen-Rich Syngas Using Praseodymium Oxide Supported Cobalt Catalyst

Bamidele V. Ayodele, Maksudur R. Khan, Chin Kui Cheng

¹Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
²Center of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang, Malaysia

ABSTRACT

This study focuses on the potential of hydrogen-rich syngas production by CO_2 reforming of methane over Co/Pr_2O_3 catalyst. The Co/Pr_2O_3 catalyst was synthesized via wet-impregnation method and characterized for physicochemical properties by TGA, XRD, BET, H₂-TPR, FESEM, EDX, and FTIR. The CO_2 reforming of methane over the as-synthesized catalyst was studied in a tubular stainless steel fixed-bed reactor at feed ratio ranged 0.1–1.0, temperature ranged 923–1023 K, and gas hourly space velocity (GHSV) of 30,000 h⁻¹ under atmospheric pressure condition. The catalyst activity studies showed that the increase in the reaction temperature from 923 to 1023 K and feed ratio from 0.1 to 1.0 resulted in a corresponding increase in the reactant's conversion and the product's yields. At 1023 K and feed ratio of 1.0, the activity of the Co/Pr_2O_3 catalyst climaxed with CH_4 and CO_2 conversions of 41.49 and 42.36 %. Moreover, the catalyst activity at 1023 K and feed ratio of 1.0 resulted in the production of H₂ and CO yields of 40.7 and 40.90 %, respectively. The syngas produced was estimated to have H₂:CO ratio of 0.995, making it suitable as chemical building blocks for the production of oxygenated fuel and other value-added chemicals. The used Co/Pr_2O_3 catalyst which was characterized by TPO, XRD, and SEM-EDX show some evidence of carbon formation and deposition on its surface.

KEYWORDS: Cobalt; CO₂ reforming of methane; Hydrogen; Praseodymium oxide; Syngas

DOI:<u>10.1007/s10098-016-1267-z</u>