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ABSTRACT 

 

This thesis deals with the wear of coated carbide insert in machining of mild steel. 
Machineability of mild steel is considered good although the cutting temperature is 
high. The characteristic of mild steel like high strength, high resistance to breakage and 
high modulus of elasticity has increased the tool wear of the coated carbide when it is 
used to machining the mild steel for long period. As a result, tool wear of the coated 
carbide inserts in machining of mild steel still need to be improved. The main objective 
of this project is to examine the progress of tool wear and determine the crater wear and 
flank wear of the tool in machining the mild steel in turning process. In this project, 33 
full factorial design of experiments (DOE) was employed in STATISTICA software to 
plan and perform the experiment systematically so that any possible experimental error 
would be minimized. Machining variables considered are cutting length, cutting speed 
and feed rate. The variables for three levels were 90,120 and 150 m/min for cutting 
speed, 0.05, 0.1 and 0.15 mm/rev for feed rate and 60, 120 and 180 mm for cutting 
length respectively. Machining of mild steel was carried out by using the conventional 
lathe machine. After each experiment, flank and crater wear of the coated carbide 
inserts was investigated and measured by using optical microscope integrated with 
Image Analyzer. Experimental data was analyzed in STATISTICA. Flank and crater 
wear curves were then plotted using Minitab software. The result indicates that feed rate 
is the most significant parameter that influencing both the flank and crater wear 
compared to cutting speed and cutting length. Optical micrograph of tool wear shows 
the crater wear progressed faster than flank wear. Tool wear curves shows that when the 
number of experiments increases, the flank and crater wear increase monotonically.  
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ABSTRAK 

 

Tesis ini membentangkan kehausan mata alat pemotong diselaputi karbide dalam 
memesinkan besi rendah karbon. Kebolehmesinan besi rendah karbon dimesinkan 
adalah baik walaupun suhu memotong yang sangat tinggi. Ciri-ciri besi rendah karbon 
seperti kekuatan yang tinggi, keupayaan menahan dari patah, dan nilai modulus 
kekenyalan yang tinggi ini menyebabkan mata alat pemotong diselaputi karbide akan 
cepat haus. Ini menunjukkan tahap kehausan mata alat pemotong diselaputi karbide 
masih perlu dibaikpulih. Objektif utama projek ini ialah untuk memeriksa tahap 
kehausan mata alat pemotong dan menentukan kehausan atas dan sisi mata alat semasa 
ianya digunakan untuk memesinkan besi rendah karbon dengan proses larikan. Dalam 
projek ini, rekaan eksperimen pemfaktoran penuh 33 dijanakan dalam perisian 
STATISTICA untuk mengatur dan menjalankan eksperimen ini secara sistematik untuk 
mengurangkan apa-apa ralat eksperimen yang mungkin berlaku. Parameter yang 
dipertimbangkan ialah panjang pemotongan, kelajuan pemotongan dan kadar kelajuan 
bahan dipotong. Tiga tahap parameter yang digunakan ialah 90, 120 dan 150 m/min 
untuk kelajuan pemotongan, 0.05, 0.1 dan 0.15 mm/rev untuk kadar kelajuan bahan 
dipotong serta 60, 120 dan 180mm untuk panjang pemotongan. Proses memesinkan besi 
rendah karbon dijalankan dengan menggunakan mesin larikan konvensional. Selepas 
setiap eksperimen, kehausan atas dan sisi mata alat pemotong diselaputi karbide dikaji 
dan diukur dengan menggunakan mikroskop optikal yang dilengkapi dengan 
penganalisis imej. Data eksperimen dianalisis menggunakan perisisan STATISTICA. 
Graf kehausan atas dan sisi mata alat dilukis dengan menggunakan perisian Minitab. 
Hasil daripada eksperimen ini menunjukkan kadar kelajuan bahan dipotong memberi 
kesan yang paling utama terhadap kehausan atas dan sisi mata alat dibandingkan dengan 
kelajuan pemotongan dan panjang pemotongan. Mikrograf optikal untuk kehausan mata 
alat menunjukkan kadar kehausan atas mata alat adalah lebih cepat daripada sisi mata 
alat. Graf untuk kehausan mata alat menunjukkan apabila nombor eksperimen 
meningkat, kehausan sisi dan atas mata alat juga meningkat secara serentak. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
1.1    INTRODUCTION 

 

     This chapter provides a short introduction of the project background including 

several approaches on machining of mild steel. Then the problem statement, objectives, 

and the scopes of this project on wear of coated carbide insert in machining of mild steel 

will be introduced. 

 

1.2 PROJECT BACKGROUND  

 

Mild steel have played an important role in bullets, automotive industries, nuts 

and bolts, chain, hingers, knives, armours, pipes, magnets and many other applications. 

These materials are used extensively because they possess several excellent properties 

including extremely brittle and ductile, can be forged when heated, and the price are 

very low relative to other common material. However, tool wear imposes a major 

problem in machining mild steel, because of their high thermal conductivity, high 

chemical reactivity and high modulus of elasticity. (Richard et al., 2001).  

 

Widely used cutting tools in machining these materials are solid carbide in 

earlier days and now coated carbide are used. In order to improve tool life, carbide tool 

coated with variety of materials were introduced more than a decade back. Coating 

materials were chosen to enhance chemical stability, oxidation resistance and thermal 

conductivity as these factors significantly affect their wear behavior in machining 

applications, but tool wear has not improved as it should be. 
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Usually, wear of coated carbide tools when machining mild steel increased when 

the substrate is exposed through the loss of the coating material. Subsequently loss of 

coating weakens the cutting tool, increases the forces used in cutting and causes a lack 

of consistency in material removal. Meanwhile, some researchers had investigated the 

effect of machining parameters on tool wear and tried to optimize machining parameters 

to minimize tool wear and to improve machineability. Those machining parameters are 

cutting speed, feed rate and depth of cut. In addition, tool wear is one of the most 

important parameters in the machining research area. Most researchers have dealt the 

effect of cutting variables on tool life by the one-variable-at-a-time method. This 

approach needs a separate set of tests for each combination of cutting condition and 

cutting tool. The approach required large amount of cost and cannot consider the 

combined effect of cutting conditions on response (Sundaram et al., 2008). 

 

In this project, titanium nitride (TiN) coated carbide insert produced by Pramet 

Pvt. Ltd. will be tested for its performance in machining mild steel. For this research, 

the experiment will be performed by using pure mild steel and turning process by using 

Conventional Lathe machine will be performed to investigate tool wear which take 

account the combined effect of cutting variables using design of experiment including 

cutting speed, feed rate, and cutting length. 

 

1.3 PROBLEM STATEMENT 

 

 Machineability of mild steel considered good although the cutting temperature is 

high. The characteristic of mild steel like high strength, high resistance to breakage and 

high modulus of elasticity has increased the tool wear of the coated carbide when it is 

used to machining the mild steel for long period. As a result, optimization of the 

parameters used when machining of mild steel still need to be improved.  Study of tool 

wear is still need to be done in order reduce the tool wear of the coated carbide insert. 
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1.4  OBJECTIVE 

 

The objectives of this project are: 

(i) To investigate the progress of tool wear and determine the crater wear and flank 

wear of the tool in machining mild steel. 

(ii) To determine the machining parameters that influence the tool wear. 

(iii) To establish tool wear curves in machining mild steel. 

 

1.5  PROJECT SCOPE 

 

In order to achieve the objectives of the project, the following scopes are listed: 

 

(i) Turning operation is done by using conventional lathe machine. 

(ii) STATISTICA software is used to create the design of experiment (DOE) for this 

experiment. 

(iii) Machining variables considered are cutting length, cutting speed and feed rate. 

(iv) The independent variables will be varied up to three levels. The cutting speed, 

Vc used are 90, 120 and 150 m/min, feed rate, f used are 0.05, 0.10 and 0.15 

mm/rev and the cutting length, L used are 60, 120 and 180 mm. 

(v) Flank and crater wear of the coated carbide inserts will be investigated and 

measured by using optical microscope with Image Analyzer. 

(vi) Flank wear and crater wear curves will be plotted in Minitab Software.  
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1.6 SUMMARY 

 

Chapter 1 discussed generally about project background, problems statement, 

objectives and scopes of the project in order to complete the investigation of wear of 

coated carbide insert in machining of mild steel. This chapter is a fundamental for this 

project and as a guideline to complete this project research. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

This chapter will introduce and explain about the mild steel, including types of 

carbon steel available in the market and machineability of mild steel. Then types of tool 

material and its geometry will be explained. Next, the literature review of the coated 

carbide insert and types of coated carbide insert will be discussed. Finally the types of 

tool wear occurred in the inserts, stages of tool wear and the effects of tool wear on 

performance measurement will be included in this chapter. 

 

2.2  CARBON STEEL 

 

 Carbon steels generally are classified by their proportion (by weight) of carbon 

content. They are classified by three major categories, which are low-carbon steel, 

medium-carbon steel and high-carbon steel (Kalpakjian et al., 2006). 

 

2.2.1   Low Carbon Steel 

 

 Low carbon steel, also known as mild steel, contains 0.05 % to 0.26 % of carbon 

(e.g. AISI 1018, AISI 1020  steel). These steels are ductile and have properties similar 

to iron. They are cheap, but engineering applications are restricted to non-critical 

components and general paneling and fabrication work. These steels cannot be 

effectively heat treated. Consequently, there are usually no problems associated with 

heat affected zones in welding process.  

 



6 
 

The surface properties can be enhanced by carburizing and then heat treating the 

carbon-rich surface. High ductility characteristic results in poor machinability 

(Kalpakjian et al., 2006). 

 

2.2.2   Medium Carbon Steel 

 

 Medium carbon steel contains 0.29 % to 0.54 % of carbon (e.g. AISI 1040, AISI 

1045 steel). These steels are highly susceptible to thermal treatments and work 

hardening. They easily flame harden and can be treated and worked to yield high tensile 

strengths provided that low ductility can be tolerated. The corrosion resistance of these 

steels is similar to low carbon steel, although small additions of copper can lead to 

significant improvements when weathering performance is important. Medium carbon 

steels are still cheap on market and command mass production. They are general 

purpose but can be specified for use in stressed applications such as rails and rail 

products, couplings, crankshafts, axles, bolts, rods, gears, forgings, tubes, plates and 

constructional steel (Kalpakjian et al., 2006). 

 

2.2.3   High Carbon Steel 

 

 High carbon steel contains 0.55 % to 0.95 % carbon (e.g. AISI 1086, AISI 

1090). Cold working is not possible with any of these steels, as they fracture at very low 

elongation. They are highly sensitive to thermal treatments. Machinability is good, 

although their hardness requires machining in the normalized condition. Welding is not 

recommended and these steels must not be subjected to impact loading. They are 

normally used for components that require high hardness such as cutting tools and 

blades (Kalpakjian et al., 2006). 
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2.3   LATHE MACHINE 

 

Lathes are generally considered as the oldest machine tools. Wood-working 

lathes originally were developed during the period 1000-1001 B.C. However 

metalworking lathes with leadscrew were only built during late 1700s. The most 

common laths originally was called an engine lathes, because it was powered with 

overhead pulleys and belts from nearby engines on the factory floor. Today, these lathes 

are all equipped with individual electric motors (Kalpakjian et al., 2006). 

 

Lathe machine is considered as the backbone of machine shop, and a through 

knowledge of it is essential for machinist. Lathe machine is a machine which work is 

held so that it can be rotated about an axis while the cutting tool is traversed past the 

work from one end to the other thereby forming it to the required shape (Stephenson et 

al., 1997). 

Common operations performed on a lathe are: facing, parallel turning, taper 

turning, knurling, thread cutting, drilling, reaming, and boring. The spindle is the part of 

the lathe that rotates. Various workholding attachments such as three jaw chucks, 

collets, and centers can be held in the spindle. The spindle is driven by an electric motor 

through a system of belt drives and/or gear trains. Spindle speed is controlled by 

varying the geometry of the drive train. The main function of lathe is to provide a means 

of rotating a workpiece against a cutting tool, thereby removing metal. All lathes, 

regardless of size and design are basically the same and serve 3 functions: 

 

(i) A support for the lathe accessories or the workpiece  

(ii) A way of holding and revolving the workpiece  

(iii) A means of holding and moving the cutting tool 
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Size of the engine lathe is determined by the max diameter of work which may 

be revolved or swung over the bed, and the longest part that can be held between lathe 

centers. Lathes found in training programs generally have swing of 9.0 to 13.0 in (230-

330 mm) and bed length from 20.0 to 60.0 in (500-1500 mm). Lathes used in industry 

may be much larger, doubling in swing and capacity. Bed is a heavy rugged casting 

made to support the working parts of the lathe. On its top section are major parts of 

lathe. Commonly, lathes are made with flame-hardened and ground ways to reduce 

wear and to maintain accuracy (Stephenson et al., 1997). 

 

Headstock is attached to the left side of the bed. The headstock spindle is a 

hollow cylindrical shaft supported by bearing. It provides a drive from the motor to 

workholding devices. Live center, sleeve, face plate or a chuck can be fitted to the 

spindle nose to hold and drive the work. The live center has spaces that provides a 

bearing surface for the work to turn between centers. Most modern lathes are geared-

head and the spindle is driven by series of gears in the headstock. Through a series of 

levers, different gears can be engaged to set various spindle speeds for different types of 

sizes of work. The types of speed-change levers or controls used on each lathe machine 

are varying, depending on the manufacturers. The feed-reverse lever can be place in 

three positions. One position provides forward direction; the center position is neutral 

while the other position reverses the feed rod direction and leadscrew (Stephenson et al., 

1997). 

 

Tailstock is made up of two units. The top half can be adjusted on the base by 

two adjusting screws for aligning the tailstock and headstock center for parallel  turning. 

These screws can also be used to offset the tailstock for taper turning between centers. 

Tailstock can be lock at any position along the bed of lathe by clamping the lever or 

tighten the nut (Stephenson et al., 1997). 
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At one end of dead center is tapered to fit into the tailstock spindle, while the 

other end has spaces to provide a bearing support for work turned between the  centers. 

A spindle-binding-lever or  lock handle  is used to hold the tailstock spindle  in a fixed 

position. The tailstock handwheel moves the spindle in and out of the tailstock casting. 

It can also use to provide a hand feed for drilling and reaming operation. 

 

2.3.1   Operations That Can Be Done Using Lathe Machine 

 

 Turning is one of the general machining processes. That is, the part is rotated 

while a single point cutting tool is moved parallel to the axis of rotation. Turning  can 

be done either on the external or internal surface of the part. It is to produce straight, 

conical, curved, or grooved workpieces. Following are some of the operations that can 

be done using Lathe Machine: 

 

(i) Facing is part of the turning process. It is to produce a flat surface at the end of 

the part and perpendicular to its axis. It is useful for parts that are assembled 

with other components.   

(ii) Parting is also called cutting off. It is used to create deep grooves which will 

remove a completed or part-complete component from its parent stock into 

discrete products.  

(iii) Grooving is like parting, except that grooves are cut to a specific depth by a  

form tool instead of severing a completed/part-complete component from  the  

stock. Grooving can be performed on internal and external surfaces, as well as 

on the face of the part.  

(iv) Drilling is used to remove material from the inside of a workpiece, producing a 

hole. It may follow by boring to improve its dimensional accuracy and surface 

finish.  
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2.3.2   Turning of Low-Carbon-Steels 

 

 As the steel progressively deformed, microvoids starts to form at the ferrite grain 

boundaries and at any inclusions that present. Turning of low-carbon steels produce 

long  chips. Built-up edge will form on an indexable insert if a chipbreaker doesn’t 

create a sufficient shear  angle to curl  the  chip away from the insert’s rake face. Low 

cutting speed is another cause of built up edge, (BUE) which acts as an extension of the 

cutting tool, changing part  dimensions and imparting rough surface finishes. When  that 

is  the case, the cutting  speed should be increased 15 to 20 percent or more until the 

surface finish improves (Isakov et al., 2007). 

 

2.4   CUTTING TOOL 

 

Cutting tool is any tool that is used to remove metal from the workpiece by 

means of shear deformation and they are generally made of tool steels. The selection of 

cutting-tool materials for a particular application is among the most important factors in 

machining operations. The cutting tool is subjected to high temperatures, high contact 

stresses, and rubbing along the tool–chip interface and along the machined surface. 

Consequently, the cutting-tool material must possess the following characteristics 

(Kalpakjian et al.,  2006): 

 

(i) Hot hardness:  

The hardness, strength, and wear resistance of the tool are maintained at the 

temperatures encountered in machining operations. This ensures that the tool 

does not undergo any plastic deformation and, thus, retains its shape and 

sharpness.  

(ii) Toughness and impact strength (mechanical shock):  

Impact forces on the tool encountered repeatedly in interrupted cutting 

operations (such milling, turning on a lathe, or due to vibration and chatter 

during machining) do not chip or fracture the tool. 

(iii) Thermal shock resistance:  

To withstand the rapid temperature cycling encountered in interrupted cutting. 
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(iv) Wear resistance:  

An acceptable tool life is obtained before the tool has to be replaced. 

(v) Chemical stability and inertness:  

With respect to the material being machined, to avoid or minimize any adverse 

reactions, adhesion, and tool–chip diffusion that would contribute to tool wear. 

 

2.4.1   Tool Material 

 

Various cutting tool materials with a wide range of mechanical, physical, and 

chemical properties have been developed over the years. The desirable tool-material 

characteristics are chosen based on the criteria below:  

 

(i) Hardness and strength are important with regard to the hardness and strength of 

the workpiece material to be machined. 

(ii) Impact strength is important in making interrupted cuts in machining, such as 

milling. 

(iii) Melting temperature of the tool material is important versus the temperatures 

developed in the cutting zone. 

(iv) The physical properties of thermal conductivity and coefficient of thermal 

expansion are important in determining the resistance of the tool materials to 

thermal fatigue and shock. 

 

Tool materials generally are divided into the following categories, including: 

 

(i) High-speed steels 

(ii) Cast-cobalt alloys 

(iii) Carbides 

(iv) Coated tools 

(v) Alumina-based ceramics 

(vi) Cubic boron nitride 

(vii) Silicon-nitride-based ceramics 

(viii) Diamond 

(ix) Whisker-reinforced materials and nanomaterials 
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