SIMULATION TEST OF AUTOMOTIVE ALLOY WHEEL USING COMPUTER AIDED ENGINEERING SOFTWARE

MOHD IZZAT FALIQFARHAN BIN BAHAROM

UNIVERSITI MALAYSIA PAHANG
I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature : ..
Supervisor : Mohd Rashidi Bin Maarof
Date : ..

Signature : ..
Panel : ..
Date : ..
SIMULATION TEST OF AUTOMOTIVE ALLOY WHEEL USING COMPUTER AIDED ENGINEERING SOFTWARE

MOHD IZZAT FALIQFARHAN BIN BAHAROM

A report submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering
University Malaysia Pahang

OCTOBER 2008
ABSTRACT

This paper will present and discuss the use of finite element technique for simulation test of functionality of automotive allow wheel nature during operation. Computer Aided Engineering Software is used to simulate the wheel trough loading method. Several common design of wheel that is been used in the automotive industry is used. The load for stress distribution and displacement data subjected to loading on alloy wheel is viable trough the finite element model. The result shows critical point takes places at certain point of the alloy wheel component.

ABSTRAK

STUDENT'S DECLARATION

I hereby declare that the work in this report is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : MOHD IZZAT FALIQFARHAN BIN BAHAROM
ID Number : MH05065
Date : 6 NOVEMBER 2008
ACKNOWLEDGEMENT

Alhamdulillah,

I would like to take this opportunity to express my sincere gratitude and appreciation especially to my supervisor, Mr Mohd Rashidi Maarof for his constant guidance, invaluable knowledge, and constructive idea in leading me to accomplish this project.

I also would like to express my sincere appreciation to all my friends, lecturers, faculty member and others whose comment and help most in preparing this project. Last but not least my parent for giving me full support and encouragement for me to do my best in this project. Thank you
To my beloved mother and father

Mr. Baharom Bin Abdul Ghani
Mrs. Norma Bt Taib

And my brother and sisters
ABSTRACT

This paper will present and discuss the use of finite element technique for simulation test of functionality of automotive allow wheel nature during operation. A specific design wheel is used. The load for stress distribution and displacement data subjected to loading on alloy wheel is viable through the finite element model. The result and how wheel performed is discussed.

ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1
1.2 Problem Definition 4
1.3 Objectives 5
1.4 Scopes 5

2 LITERATURE REVIEW

2.1 Loading Methods Of Automotive Wheel 6
2.2 Material Properties And Manufacturing for Cast Aluminum 11
3 METHODOLOGY
3.1 Introduction 13
3.2 Project Methodology 13
3.4 Determining the alloy wheel design and specifications 15
3.5 Measuring and 3 dimensional design of alloy wheel 16
3.6 Stage 1: measuring 16
3.7 Stage 2: 3 dimensional drawing in Solid Works 18
3.8 Finite element analysis 20

4 RESULT AND DISCUSSION
4.1 Mesh sensitivity 23
4.2 Stress and displacement result 26
4.3 Interpretation of Stress values 29
4.4 Interpretation of displacement values 31
4.5 Critical locations for the stress analysis result 35
4.6 Critical locations of no spokes wheel design 36
4.7 Critical locations of multispokes design 38

5 CONCLUSION
5.1 Conclusions 40
5.2 Recommendations 41
5.3 Contributions 42

REFERENCES 43
APPENDIX 44
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical composition of AlSi7Mg (in %)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanical properties for Aluminum A356-T6</td>
<td>12</td>
</tr>
<tr>
<td>4.1</td>
<td>Mesh percentage vs stress and displacement</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Result of Von mises stress for 40mm spoke wheel</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>Nodal displacement for 40mm spoke wheel</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Result of Von mises stress for 50mm spoke wheel</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>Nodal displacement for 50mm spoke wheel</td>
<td>27</td>
</tr>
<tr>
<td>4.6</td>
<td>Result of Von mises stress for 60mm spoke wheel</td>
<td>28</td>
</tr>
<tr>
<td>4.7</td>
<td>Nodal displacement for 60mm spoke wheel</td>
<td>28</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Wheel assembly</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Radial load on wheel</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Project development activities phase</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Actual 7 spokes wheel design</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Actual 6 spokes wheel design</td>
<td>15</td>
</tr>
<tr>
<td>3.4</td>
<td>Steps to create 3D model for an alloy wheel</td>
<td>16</td>
</tr>
<tr>
<td>3.5</td>
<td>Alloy wheel bead seat design</td>
<td>17</td>
</tr>
</tbody>
</table>
3.6 Masking tape is used to determine the width of the bead seat of the alloy wheel
3.7 Front and side of 2 dimensional designs for 8 spokes wheel
3.7.1 40mm spokes
3.7.2 50mm spokes
3.7.3 60mm spokes
3.8 5 spokes wheel
3.9 6 spokes wheel
3.10 7 spokes wheel
3.11 8 spokes wheel
3.12 No spoke wheel
3.13 Alloy wheel design in Solid Works
3.14 Alloy wheel design in Algor Fempro V16
3.15 Free body diagram of alloy wheel in Algor Fempro V16
4.1 Nodal displacement vs mesh percentage graph
4.2 Stress vs mesh percentage graph
4.3 Stress vs force for 40mm spokes wheel graph
4.4 Displacement vs force for 40mm spokes wheel graph
4.5 Stress vs force for 50mm spokes wheel graph
4.6 Displacement vs force for 50mm spokes wheel graph
4.7 Stress vs force for 60mm spokes wheel graph
4.8 Displacement vs force for 60mm spokes wheel graph
4.9 Front view of no spoke wheel stress distribution
4.10 Back view of no spoke wheel stress distribution
4.11 Overall view of 8 spokes wheel stress distribution
4.12 Front view of 8 spoke wheel stress distribution
4.13 Back view of 8 spoke wheel stress distribution
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>Computational Added Design</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascal</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>kN</td>
<td>Kilo Newton</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal</td>
</tr>
<tr>
<td>W</td>
<td>Work</td>
</tr>
<tr>
<td>Rb</td>
<td>Bead radius</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

The wheel is a device that enables efficient movement of an object across a surface where there is a force pressing the object to the surface. Early wheels were simple wooden disks with a hole for the axle. Because of the structure of wood a horizontal slice of a trunk is not suitable, as it does not have the structural strength to support weight without collapsing; rounded pieces of longitudinal boards are required. The spoke wheel was invented more recently, and allowed the construction of lighter and swifter vehicles. Alloy wheels are automobile wheels which are made from an alloy of aluminum or magnesium metals (or sometimes a mixture of both). Alloy wheels differ from normal steel wheels because of their lighter weight, which improves the steering and the speed of the car, however some alloy wheels are heavier than the equivalent size steel wheel. Alloy wheels are also better heat conductors than steel wheels, improving heat dissipation from the brakes, which reduces the chance of brake failure in more demanding driving conditions. Over the years, achieving success in mechanical design has been made possible only after years of experience coupled with rigorous field-testing. Recently the procedures have significantly improved with the emergence of innovative method on experimental and analytical analysis. Alloy wheels intended for normal use on passenger cars have to pass three tests before going into production: the dynamic cornering fatigue test, the dynamic radial fatigue test, and the impact test. Many alloy wheels manufacturing company had done numerous amount of testing of their product but their method on simulation test on alloy wheel information often kept limited.

Historically, successful designs was arrived after years of experience well aided worth extensive field-testing. Since the 1970's several innovative methods of testing and experimental stress measurements have been initiated. In more recent
years, the procedures have significantly improved by the emergence of a variety of experimental and analytical methods for structural analysis. Durability analysis, that is: fatigue life prediction and reliability methods, for dealing with various inherent in engineering structures has been used for the study of automotive rims.

In its basic form a wheel is a transfer element between the tire and the vehicle. The function of a wheel can be further broken up into simple verb-noun combinations to describe its purpose. A wheel;

i. ♦ Transfers torque, (braking and acceleration)
ii. ♦ Support mass, (support the mass of the motor vehicle)
iii. ♦ Adds mass, (damped mass for driving comfort)
iv. ♦ Dissipates heat, (from braking)
v. ♦ Adds value, (aesthetically pleasing)
vi. ♦ Absorbs impact, (road hazards)
vii. ♦ Conserves energy, (potential energy in momentum)
i. **Hub**
This forms the interface between the hub of the vehicle’s drive train and the wheel. This part will have the bolt holes to facilitate in the fastening of the wheel to the vehicle.

ii. **Wheel disc or spokes**
This is the part of the wheel that transfers all of the loads.

iii. **Rim flange or lips**
These lips retain the tire and also act as a strength-rib to protect the wheel against impact loads.

iv. **Bead seat**
The tire bead will rest against this area.
v. **Humps**

These humps will ensure that the tire stays against the rim flange in the deflated condition.

vi. **Rim well**

This area facilitates in the assembling and disassembling of the tire.

1.2 Problem Definition

This project will be focus on simulating the nature of alloy wheel during operation on road. A range of variables and parameter will be accounted in the simulation. These testing methods provide information on the stress analysis of the alloy wheel in different situation when loads are acted on different design of alloy wheels. Stress occur on the rim under radial load determine the performance characteristic of an alloy wheel for structural integrity. A wheel should maintain structural integrity without any cracks or plastic deformation. Under a radial load, the strength of the rim usually determines the fatigue life of a wheel, so the stress evaluation is mainly focused on the rim.
1.3 Objectives

Objectives of the project are:

i. To simulate the stress analysis of alloy wheel using computer aided engineering software

ii. To studies the stress analysis distribution occurs of an alloy wheel when static force is acted on.

1.4 Scopes

The scopes of the project are:-

i. Design of the automotive alloy wheel using CAD software product is generally used in automotive industry (14, 15, 16 inch alloy wheel, 6 inch wide, 5~8 spokes)

ii. Simulation data collection using FEA software

iii. Analysis of stress analysis of alloy wheel
CHAPTER 2

LITERATURE REVIEW

2.1 Loading Methods on Automotive Wheel.

Presented here are several methodologies for modeling the effect of the vehicle weight as it is transferred to the rim. Methods explained are referenced in the published literature and analogies taken from thick ring theory in stress analysis in the development of loadings on links and eyebars. As stated, the modeling of the tire on the rim is extremely complex and involves both non linear analysis (tire portion) coupled with linear static stress analysis (rim). The interface of the two components would be achieved by the use of gap or contact elements. This work has been done at The Goodyear Tire and Rubber Company. Results indicate that the loading shape is in the form of a cosine function about a central angle of about 30° from either side of the point of contact with the ground.

Others assumed this 30° angle is developed from the contact patch geometry of the tire. Meaning that when the tire is loaded there is flat at the point of contact with the ground, this is the so called contact patch, and the length of this patch is then converted to an angle swept by the bead seat area in contact with the rim. The other bead seat areas tend to be pulled away from the rim, so no loading is present in the areas or is considered negligible.

Finally, a method proposed assumes the area in contact with the rim spans half of the tire or 90° symmetrical about the point of loading. The loading method is similar to a cylindrical bar in a clevis, assuming no gap exists.
The total weight of a car is balanced with a vertical reaction force from the road through the tire. This load constantly compresses the wheel radially. While the car is running, the radial load becomes a cyclic load with the rotation of the wheel. Hence, the evaluation of wheel fatigue strength under radial load is an important performance characteristic for structural integrity. According to the SAE, a wheel should maintain structural integrity without any cracks or plastic deformation for more than 4 x 10^9 rotations under a radial load, Q, expressed by the following equation.

\[Q S_r \cdot W = (1) \]

where, \(S_r \) means acceleration test factor (\(S_r = 2.2 \)) and \(W \) means maximum tire load. For this application \(W = 4316 \) N, thus \(Q = 9496 \) N.

Under a radial load, the strength of the rim usually determines the fatigue life of a wheel, so the stress evaluation is mainly focused on the rim. In this analysis also, the contact condition between the discs spoke flange and the rim well is assumed to be tightly closed, and the contact area is modeled by one element with the summed thickness of the disc and the rim.

In an actual wheel, since a radial load is applied to the wheel on the bead seats with the tire, the distributed pressure is loaded directly on the bead seats of the model in this analysis. The pressure is assumed to have a cosine function distribution mode within a central angle of 40° in a circumferential direction as shown in Figure 3. The 40° was chosen based on previous literature, in which some determined this angle by strain gauge experiments or some researchers assuming the angle from the contact patch area. Using the idea of the contact patch width corresponds to the area of contact over the bead seats as shown in Figure 2.
This may not be valid for the run flat tire due to its stiff side walls, which would reduce the contact patch area. According to the manufacturer, a run flat tire deflects about 12 mm for every 4448 newtons of force; The P22560R16 tire under the load of 10.45 kN, the tire should deflect 29.71 mm. This is in good agreement with the experimental tests that predicted 8.9 mm at 3113 N load. For a corresponding height of 29.71 mm and based on a tire diameter of 663 mm, the angle θ, swept out is 48 degrees. The calculations were based on segments of circle geometry. This analysis however did not prove to be entirely accurate and was later found to be almost 90°. This can be rationalized, because of the additional strength needed in the bead seat area of the tire. By using the cosine function accordingly, the distributed pressure, W_r, is given by the following equation:

$$W_r = W_0 \times \cos \left(\frac{\pi \times \theta}{2 \times \theta_0} \right) \ldots \ldots (2)$$

The total radial load W is calculated by using Eq. (2) as follows.

$$W = b \int_{-\theta_0}^{\theta_0} W_r \times \rho \, d\theta \ldots \ldots (3)$$
\[W = b \int_{-\theta_0}^{\theta_0} W_0 \ast r_b \ast \cos \left(\frac{\pi}{2\theta_0} \ast \theta \right) d\theta \]

\[W = b \ast W_0 \ast r_b \ast \left[\frac{1}{\pi} \ast \sin \left(\frac{\pi}{2} \ast \frac{\theta}{\theta_0} \right) \right]_{-\theta_0}^{\theta_0} \]

\[W = 4 \ast b \ast r_b \ast \theta_0 \ast \frac{W_0}{\pi} \ldots \ldots (4) \]

or

\[W_0 = \frac{W \ast \pi}{b \ast r_b \ast 4 \ast \theta_0} \]

\[b=19.8 \text{ mm}, \ W=10.4 \text{ kN}, \ r_b=7202 \text{ mm}. \] Applying these yields \(W_0 = 2045 \text{ kPa}. \]

where, \(r_b \) is the radius of the bead seats and \(b \) means the total width of the bead seats. In this analysis, the total radial load \(W = 9496 \text{ N} \) is applied to the model, and the magnitude of the load is the same as applied to the actual wheel in the stress measurement experiment.

In this stress measurement experiment, the wheel is assembled with a Goodyear Eagle aqua steel tire (P22560R16) which is inflated to a pressure of 241 kPa and pressed against a flat plate with a load of 3113 N. Strain gages are attached to the wheel in circumferential direction. The central angle \(0^\circ \) of the pressure distribution is 80 degree.
Pressure is applied to two bead seats on the inboard side and the outboard side. In detail, half of the pressure on the inboard side is applied to the inboard rim flange, and the other half is applied to the inboard bead seat. The reason for this is that the inboard rim flange deflects easily due to the long inboard rim leg, and so it is susceptible to loading from the tire. The loading condition described above is determined from a comparison between the measured stress of the rim and the calculated stress under some tentative loading conditions.

The optimum dividing ratio of the applied load on the bead seat versus the applied load on the rim flange is thought to vary according to the contact condition between the tire and the rim. This, in turn, is affected by such factors as tire type (bias or radial), the tire air pressure, the reinforcement structure of the tire and the type of the rim [2]. In actual modeling the locations along the circumference were identified as element numbers (node numbers) and corresponding angle.

Previous experiment results on this subject have revealed that the actual load on the tire–rim unit takes the form of a cosine function having a central angle of about 40° measured from either side of the point of contact with the ground (Figure 2)[1-3]. Subsequent research efforts have confirmed the 40° angle and attributed it to contact patch geometry of the tire [4]. This essentially implied that when the tire is fully inflated there occurs a flat at the point of contact with the ground. This is referred to as the contact patch. The length of the contact patch is converted to an angle swept by the “bead seat” area in contact with the rim. Other bead seat areas tend to be pulled away from the rim, and no loading is assumed to be present in these areas. The method used in this study assumes that the area in contact with the rim spans half of the tire, i.e., 90° symmetrical about the point of loading. The loading method is quite similar to a cylindrical bar in a clevis and assuming the lack of a gap. This method is referred to as the eyebar loading method [5]. This stress and displacement of the experiment only limited to the bead seat of alloy wheel.
2.2 Material properties and manufacturing process for cast aluminum wheels

One of the leading aluminum alloys for wheels in use today is AlSi7Mg, with the chemical composition shown in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.5–7.5</td>
<td>0.15</td>
<td>0.03</td>
<td>0.10</td>
<td>0.3–0.45</td>
<td>0.07</td>
<td>0.10–0.18</td>
</tr>
</tbody>
</table>

Table 2.1: Chemical composition of AlSi7Mg (in %)