National Conference for Postgraduate Research
Universiti Malaysia PAHANG, Kuantan

Jan/2015

AFRICAN BUFFALO OPTIMIZATION (ABO): A NEW META-

HEURISTIC ALGORITHM

Julius Beneoluchi Odili*, Mohd Nizam Mohmad Kahar

Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia

*Corresponding author. Tel: +60102384948
E-mail address: odili_julest@yahoo.com

Abstract

Keywords:

Optimization

Soft computing

Travelling salesman problem
African Buffalo
Meta-heuristic

Accepted: 26 Dec2014

This paper proposes a new meta-heuristic approach to solving numerical and
graph-based problems. The African buffalo algorithm evolved from an
understanding of the animal’s survival instincts and the search techniques they
utilize in the African forests and savannahs; the search for the optimal path to
pasture is aligned to their cooperative, intelligent, and social nature. The African
Buffalo Optimization (A.B.O) algorithm simulates the African buffalos’ behaviour
by encapsulation in a mathematical model; which solves a number of discrete
optimization problems using graph-based route planning, job scheduling and it
extends Swarm Intelligence paradigms. When compared to the Ant Colony
Optimization algorithm, Simulated Annealing and Genetic Algorithm, the results
obtained from African Buffalo Optimization show that the algorithm works well
and can be extended to solving problems like: path planning, scheduling, vehicle
routing in addition to other constraint-driven problems.

© NCON-PGR 2014. All rights reserved.

1. Introduction

salesman’s problem [3], job scheduling [2] and

The demands for an intelligent system in today’s
world have attracted many researchers to
explore the area of soft computing. Some of the
very popular studies include the Ant Colony
Optimization [6], Artificial Bee Colony [3],
Algorithm [2],

Optimization [1]1. and Differential Evolution

Genetic Particle Swarm
(DE) [5] amongst many others. These techniques
have been successfully applied to many

combinatorial problems such as the travelling

vehicle routing [2].
A critical evaluation of these algorithms
revealed several flaws ranging from premature
convergence [5] to complicated fitness function
[3], inefficiency in the exploration of the search
space [3], the use of several parameters [2].
weakness in refining the search space at a later
stage [1] and complex implementation strategies
[4]. Some of these weaknesses informed the

development of the African Buffalo

Odili and Kahar / NCON-PGR 2015

Optimization algorithm. This algorithm is
derived from the observation of the African
buffalos in documentaries on the National
Geographic Television network. This animal has
some unique intelligence, cooperative and
navigational characteristics that enable it to
sustain itself in the African forests and
savannahs in spite of several competitors and a
couple of predators [10]. These works models
this beast’s navigational ingenuity and apply the
same to solve optimization problems ranging
from Travelling Salesman’s Problem, PID
controller parameter tuning to Knapsack

problem.

African Buffalo Optimization attempts to
develop a totally-new algorithm that will
demonstrate exceptional capacity in the
exploitation and exploration of the search space.
ABO solves the problem of - pre-mature
convergence or stagnation by making sure the
position of the best buffalo is updated regularly
and in the case where the best buffalo location is
not improved in a number of iterations, the
entire herd is re-initialised. Tracking the maaa
(stay on to exploit) signals ensures adequate
exploitation of the search space. In the same
vein, tracking the waaa (move ahead) signal as
well as tapping into the experience of other
buffalos as well as that of the best buffalq
enables the ABO to achieve adequate
exploration. Similarly ABO ensures fast

convergence with its use of very few parameters.

The first part of this paper highlights the
motivation for this research, the second
introduces the African Buffalo Optimization
(ABO) algorithm. This is followed by an
explanation of the basic flow of the algorithm
indicating the general working and movements
of the buffalos in search for a solution. The third
section of the paper presents the experimental
results and a detailed analysis of the results
obtained. This is followed by the conclusion.
recommendation for future research endeavours

with the new algorithm and references.

2. Introducing the African Buffalo
Optimization (ABO)

African Buffalo Optimization (ABO) is an
attempt to simulate the alert ‘maaa’ sounds
urging the buffalos to stay on to exploit and
alarm ‘waaaa’ sounds urging the buffalos to
move on to explore behaviour of African
buffalos in its foraging assignments. With these
sounds, the buffalos are able to optimize their
The ABO is a

population-based algorithm in which individual

search for food source.

buffalos work together to solve a given problem.
Each buffalo within the ABO algorithm

represents a solution within the search space.

2.1 The Basic Flow of the ABO

The algorithm begins by initializing the
population of buffalos. It does this by allocating
a random location to each buffalo within the
solution space. Next, it updates each buffalo’s

fitness within the search space. If the fitness is

Odili and Kahar / NCON-PGR 2015

better than the individual buffalo’s maximum
fitness (bpmas), it saves the location vector for

the particular buffalo. If the fitness

Referring to Figure 1, it should be observed that
the algorithm’s Democratic equation has three

parts: the first w., represents the memory of the

Stepl.
Step?2.

Objective function f(x) x=(xI, x2, xn)T
Initialization: randomly place buffalos to nodes at the

solution space;

Step3. Update the buffalos fitness values using Equation (1)
Step4.
Wi+l =wy +Ipri(bgmai— ma) + Ipra(bpmaxi - m) (1)
where w. and m, represents the exploration and
exploitation moves respectively of the k" buffalo
([i B e — N) ; lp;and lp, are learning factors; r; and
1, are random numbers between [0,1];
bgnax is the herd’s best fitness and bp,, , the individual
buffalo’s best
Step5. Update the location of buffalo k in relation to bpy.i and
bgmax.k uSing (2)
m.k+1 =k (W.k+ m.k). (2)

A is a unit of time

buffalos past location. The memory of
each buffalo is a list of solutions that can
be used as an alternative for the current
local maximum location. There is a
probability of choosing one of the target
list of solutions of the buffalo’s memory
instead of the present herd’s maximum
point. The second Ilpr(bgmar — m.z) is
concerned with the cooperative part of
the buffalos and is a pointer to the
buffalo’s social and information-sharing
experience and then the third part
Iprs(bpmecy — m.;) indicates the
intelligence part of the buffalos. So the
ABO exploits the memory, intelligent

Step6. Is bgn., updating. Yes, go to 6. No, go to 2

Step7. If the stopping criteria is not met, go back to algorithm step
3

Step8. Output best solution.

and caring capabilities of the buffalos in

arriving at solutions.

Figure 1. ABO algorithm

is better than the herd’s overall maximum, it
saves it as the herd’s maximum (bg,.,). Finally
it checks if the best buffalo is updating. If it is
updating, it moves on to validate the stopping
criteria. At this point, if our global best fitness
meets our exit criteria, it ends the run and
provides the location vector as the solution to
the given problem. The ABO algorithm is shown

is Figure 1.

2.2 Buffalo Movement

Two main equations control the movement of
buffalos within the solution space. These are
Equations (1) and (2) (refer figure 1). The
movement equation (1) provides for the actual
movement of the herd using their specific speed.
The maaa update (stay on to exploit) equation
(2) provides movement adjustment given the
two competing forces (bpmax and bgma). The A
parameter which defines the discrete time
interval over which the buffalo must move is
usually set to 1.0. The result is a new location

for the animal.

Odili and Kahar / NCON-PGR 2015

The first equation, otherwise called the
Democratic equation, has three major parts,
namely, w,+1 (the animals’ memory) indicating
that animals are able to tell that they are in a new
location distinct from location w,; the global
maximum and the personal maximum positions:
each defining the representative influence over

the animal’s choices. The algorithm subtracts the

maaa element (asking the animal to move ahead

and explore) m., from the maximum vector and

(Ip). (Using the random numbers between 0.0 to
0.6 has so far proved effective in obtaining fast
convergence. Further investigation is ongoing to
get figures that may yield better results). The
sum of these products is then added to the waaa
element (asking the animals to move on; to
explore) for the given dimension of the sector. It
should be emphasized that the random numbers
give an amount of randomness in the path to
help the animals move throughout. the solution

space. It does this by giving more or less

then multiplies this by a random number (¥; ;) emphasis to global
usually between 0.0 to 0.6 and a learning factor
Table 1 Comparative experimental result
Algorithms Performance | Oliver30 Att48 | Eil51 KroA200
TSPLIB Value | TSPLIB Value | TSPLIB Value TSPLIB Value
423.74 33522 426 29368
ABO Best 425.44 33524 426 29370
Average 427.20 33579 427 30152
Rel. Error 0.4% 0.2% 0.2% 2.66%
GA Best 423.74 33818 445.80 30168
Average 423.74 36649 458 -
Rel. Error 0% 8.3% 2.7% -
ACO Best 452.96 39931 447.59 30082
Average 479.57 41374.88 471.27 31057.02
Rel. Error 5.8% 3.6% 5.3% 3.24%
SA Best 425 34980 1275 -
Average 438 35746 1392 -
Rel. Error 3.0% 2.2% 9.1% -

Rel. Error = Relative Error; Best = Best result obtained; Average = Average result after a number of runs

or personal maximum solutions depending on

the need for more exploration or exploitation

Odili and Kahar / NCON-PGR 2015

respectively as the algorithm progresses. The
primary difference between ABO and some
related algorithm like the Artificial Bee Colony
(ABC), Ant Colony Optimization (ACO) and
the Particle Swarm Optimization (PSO) is that
while the ABC exploits the sense of sight
(watching closely the dance steps of the
employed and scout bees); the ACO tracks the
sense of smell (of pheromones); the PSO tracks
the velocity and position of other the particles:
the ABO tracks the sense of sound of other

buffalos (waaa and maaa signals).

3. Experiments and Discussion of the
Results

The ABO algorithm was used to solve the
Travelling Sélesman’s Problem in order to
validate its performance and the results obtained
were compared with that of other meta-heuristic
algorithms like the Ant Colony Optimization
(ACO) [6], Genetic Algorithm (GA) [2] and the
Simulated Annealing (SA) [9]. The dataset for
the TSP test cases are available in TSPLIB95 [6]
for Oliver30, Att48, Eil51and KroA200 [6] and
the experiments were performed using Intel Duo
Core ™ 2.00Ghz, 2.00Ghz, 1GB RAM on a
Window?7. To obtain the results in Tablel above,
we used a population size of 40 and 50
iterations. The Relative Error (‘Rel. Error’) was
obtained by calculating (Average (‘Avg’)-
Best)/Best x 100/1

As can be seen in Table 1, the GA outperformed

the ABO in realizing the optimal solution in

Oliver30. Another great performer in Oliver30 is
the Simulated Annealing that has just 3.0%
relative error and then the African Buffalo
Optimization. The worst performer here is the
Ant Colony Optimization (ACO). However, the
ABO outperformed the GA, ACO and the SA in

" other test cases, namely the Att48, Eil51 and the

KroA200. It is important to note that the ABO
was able to get the optimal result in Eil51. The
GA and the ACO had fairly good performance in
Eil51 in spite of their poor comparative
performance in Att48. It was difficult obtaining
experimental results about the Average results
involving Genetic Algorithms for 200 cities,
same with Simulated Annealing for 200 cities. In
any case, we included the available results
involving GA in order to prove the extremely
good performance of the ABO above the GA in

the available instances.

Generally, the ABO results are closer to
discovering the optimal solution to the test cases
than the other algorithms. This is due to the fact
that the ABO uses fewer parameters in achieving
its solutions. Aside the random numbers whose
values range from 0-1, the main parameters are
the Ipl and Ip2. This is unlike the Genetic
Algorithm that makes use of Evolution,
Selection, Crossover and Mutations and the ACO
that need_s‘proper choice qf its several parameters
such as the pheromone update, pheromone
evaporation rate, ant construction capabilities etc.
Unlike GA whose performance is questionable in

dynamic sets and is poor in constrained-based

Odili and Kahar / NCON-PGR 2015

optimization problems [8] or the ACO that has
issues with convergence [9] and which has the
disadvantage of falling into local minima due to
its pheromone updates [9], the ABO has stable
convergence, capacity to search large spaces,
uses just two main parameters and is very simple
to implement. The ABO performed well when
compared to the SA, GA and ACO in terms of
rate of convergence, the ABO was able to obtain
optimal results within 40 iterations except in
KroA200 that obtained the optimal result in the
90th iteration.

4. Conclusion

In general, this paper introduces the novel
algorithm, the African Buffalo Optimization and
shows its capacity to solve the Travelling
Salesman’s Problem. The performance obtained
from using the ABO is weighed against the
performance of the Genetic Algorithm (GA),
Ant Colony Optimization (ACO) [6] and the
Simulated Annealing [9]. The results showed
amazing performance of the ABO and is a
testimony that the ABO has immense potentials

in solving optimization problems

5. Future work

To further validate this novel algorithm, further
applications of the African Buffalo Optimization
(ABO) to solve Job scheduling problems,
knapsack problem and tuning PID Controller

parameters are recommended

Acknowledgements

The authors are grateful to the Faculty of
Computer Systems and Software Engineering
for providing the facilities and the conducive

environment to carry out this research.

References

[1] Angeline P. Evolutionary Optimization
versus Particle Swarm Optimization: Philosophy
and Performance Differences. Evolutionary
programming VII. 1998; 601-610.

[2] Bin Y, Zhong.Zhen Y, Baozhen Y. An
improved ant colony optimization for vehicle
routing. European Journal of Operational
Research 2009; 196, 171-176

[3] M. Dorigo M, L. Gambardella, L. Ant
colonies for the salesman
problem. Biosystems. 1997.43, 73-81.

[4] Karaboga D., Akay B. A Modified Artificial
Bee Colony (ABC) Algorithm for Constrained

Traveling

Optimization Problems. Apple Soft Computing
2011, 11(3), 3021-3031 7
[5] Mezura-Montes E., Velazquez-Reyes J,
Coello C.A. A comparative study of differential
evolution variants for global optimization.
Proceedings of the 8th annual conference on
Genetic and evolutionary computation. 2006;
485492

[6] Reinelt G. TSPLIB - A Travelling Salesman
Problem Library, ORSA Journal on Computing,
1991, 3(4), Fall, 376-384

[7] Shi Y., Eberhart R. Parameter Selection in
Particle Swarm Optimization. Evolutionary

programming VIIL. 1998; 591-600

Odili and Kahar / NCON-PGR 2015

[8] Khaze S.R., Maleki I, Hojjatkhah S, A
Bagherinia A. Evaluation of the Efficiency of
Artificial Bee Colony and the Firefly Algorithm
in Solving the Continuous Optimization.
International Journal on Computational Science
& Applications 2013; 3, 23-35

[9] Yan, X (et al). Solve Travelling
Salesman’s Problem using Particle Swarm
Optimization. International Journal of
Computer Science Issues. 2012. 9 6(2) 264-
271

[10] Wilson D.S. Altruism and Organism:
Disentangling the themes of multi-level
selection theory. The American Naturalist.
1997. 150 (S1) pp122-134
[11] Stochastic Global Optimization Algorithms
Workshop, University of Canterbury,
Christchurch, New Zealand, June, 2005
[12]. Dorigo M, Gambardella L M. Ant colony
system: a cooperative learning

approach to the traveling salesman problem.
IEEE Trans. On Evolutionary Computation,
1(1), pp-53-66, 1997.

[13] Karaboga, D., Akay B. A comparative
study of Artificial Bee Colony algorithm.
Applied Mathematics and Computation 214
(2009) 108-132

