
25 F, JALAN RAJA SYED ALWI,
01000, KANGAR,
PERLIS

Alamat Tetap:

ck
(TANDAfANGAN PENULIS)

ADDlE IRAWAN BIN HASHIM

(Nama Penyelia)

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESLS
PID CONTROL SYSTEM IMPLEMENTATION IN

JUDUL:	 EMBEDDED SYSTEM FOR DC MOTOR SPEED
CONTROL

SESI PENGAllAN:2008/2009

Saya	 ARIFF BIN CHE MOHD NOOR (850725-09-5029)
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana MudaiSarjana /Doktpr Falsafah)* mi disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salman untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salman tesis mi sebagai bahan pertukaran antara institusi

pengajian tinggi.
4 **Silatandakan(1)

(Mengandungi makiumat yang berdarjah keselamatan L] SULIT	 atau kepentingan Malaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)

TERHAD	 (Mengandungi makiumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Tarikh: 23 OCTOBER 2008	 Tarikh: : 23 OCTOBER 2008

*	 Potong yang tidak berkenaan.
**	 Jika tesis mi SULIT atau TERHAD, sila Jampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ml perlu
dikelaskan sebagai atau TERHAD.

•	 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjána secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

CATATAN:

"I hereby acknowledge that the scope and quality of this thesis is qualified for the award

of the Bachelor Degree of Electrical Engineering (Electronics)"

Signature

Name	 ADI IRA WAN HASHIM

Date	 :23 OCTOBER 2008

PID CONTROL SYSTEM IMPLEMENTATION IN EMBEDDED SYSTEM FOR DC

MOTOR SPEED CONTROL

ARIFF BIN CHE MOHD NOOR

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2008

PERPUSTAKAAN
SIT! MALAYSIA PAHANG

	

No. PerOI1fl I 	 '•

Tarkt	 Qc,5

	

2 JUN 200B	 14 oo

"All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author."

Signature	 :

Author	 : ARIFF BIN CHE MOHD NOOR

Date	 :23 OCTOBER 2008

To my beloved mother and father

ACKNOWLEDGEMENTS

In preparing this thesis, I was in contact with many people, researchers,

academicians, and practitioners. They have contributed towards my understanding and

thoughts. In particular, I wish to express my sincere appreciation to my supervisor, En

Addie Irawan Hashim, for encouragement, guidance, critics and friendship. Without his

continued support and interest, this thesis would not have been the same as presented

here.

I am also indebted to the all the lecturers and staff of Faculty of Electrical &

Electronics Engineering, Universiti Malaysia Pahang for their assistance in supplying

the relevant equipment and also lending their knowledge for me to complete this project.

My fellow undergraduate students should also be recognized for their support

and my sincere appreciation also extends to others who have provided assistance at

various occasions. Unfortunately, it is not possible for me to list all of them in this limited

space.

Thank you.

ABSTRACT

This project is focused on implementation of the Proportional (P), Integral (I) and

Derivative (D) control system algorithms in microcontroller unit (MCU) for direct

current (DC) Motor speed control. The PlC series, PIC181`2331 has been used to

perform the processing of PID algorithms for DC motor control purpose. The focus is

on 12 volt DC motor with 30 revolutions per minute (rpm) maximum speed. No-load

case and loaded case are the scope for this research. Three experiments have been done

to look how much PID control algorithms affect the performances on driving actual DC

motor; P1 algorithm experiment, PD algorithm experiment and PID algorithm

experiment. The result shows that, implementation of PID algorithm in small scale

MCU is possible. PID algorithm that has been implemented in MCU inside the DC

motor controller module system can eliminate the steady state error and overshoot

problem including settling time. By creating real time data acquisition software, the

performance of the system is monitored and later on analyzed. It is later found out that

the PID algorithm has been able to create faster settling time while the overshoot has

been reduced to 5% and the steady-state has been successfully reduced. The impact of

the load and no load application of the PID algorithm can be clearly seen by how the

PID algorithm has helped the controller to drive a loaded DC motor to the desired speed

which could not be achieved without the PID algorithm.

Iv

ABSTRAK

Projek mi memfokuskan kepada implementasi algoritma system kawalan

"Proportional", "Integral" dan "Derivative" di dalam mikropengawal untuk mengawal

kelajuan motor arus terus. Mikropengawal yang kecil dan murah telah diprogramkan

dengan sejenis algoritma untuk membetulkan masalah "steady-state error" untuk motor

arus terus yang beroperasi menggunakan 12 Voltan arus terus dan dengan kelajuan 30

revolusi per minit (rpm). Skop projek mi adalah kawalan kelajuan terhadap kes tanpa

beban. Tiga eksperimen dijalankan untuk melihat sejauh mana algoritma "PID"

memainkan peranan dalam pemacuan motor arus terus. la terdiri dari pengawal "PT",

pengawal "PD" dan juga pengawal "PID". Keputusan eksperimen menunjukkan,

implementasi algoritma "PID" dalam mikropengawal adalah sesuatu yang boleh

dilaksanakan. Algoritma "PID" yang telah dihasilkan diaplikiasikan kedalam

mikropengawal yang terdapat didalam modul pengawal kelajuan mampu melenyapkan

"steady-state error" dan "overshoot" termasuk "settling time". Dengan menghasilkan

perisian "real time data acquisition" prestasi sistem boleh diawasi dan dianalisis.

Didapati bahawa algoritma "PID" yang dihasilkan mampu mempercepatkan "settling

time" dan juga mengurangkan masalah "overshoot" sebanyak 5 % dan "steady-state

error" berjaya dikurangkan. Kesan algoritma "PID" tersebut dalam aplikasi yang

rnenggunakan beban jelas kelihatan apabila algoritma tersebut berjaya membantu sistem

pengawal untuk memacu motor arus terus ke tahap kelajuan yang diingini.

LVA

TABLE OF CONTENTS

CHAPTER	 TITLE PAGE

DECLARATION i

DEDICATION

ACKNOWLEDGEMENTS

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

LIST OF APPENDICES xv

INTRODUCTION	 1

1.1	 Background	 1

1.2	 Objectives	 2

1.3	 Scopes	 2

Vii

2	 LITERATURE REVIEW 3

2.1 DC Motor Characteristic 3

2.2 PID Implementation on DC Motor Close 5

Loop Control

2.3 Adaptive PID 10

2.4 PID Tuning 11

2.4.1	 Manual Tuning 12

2.5 Implementing a PID Controller Using a 13

PIC18 MCU

3	 IMPLEMENTATION OF ND CONTROLLER 15

ALGORITHMS IN MICROCONTROLLER

UNIT

3.1 Introduction 15

3.2 Encoder Configuration 16

3.3 DC Motor 18

3.3.1	 Pulse Width Modulation 19

3.4 PID Algorithm 20

3.4.1	 Error Calculations 22

3.4.2	 Proportional Terms 23

3.4.3	 Integral Terms 23

3.4.4	 Derivative Terms 24

3.4.5	 PID Output 25

3.5 Adaptive PID 25

VIII

4	 GRAPHICAL USER INTERFACE	 28

4.1	 Introduction	 28

4.2	 ND Motor Control Panel	 29

4.2.1 Data Transmission to the Controller 	 29

4.2.2 Performance Monitoring	 32

5	 RESULT, PERFORMANCE & ANALYSIS 33

5.1 Introduction 33

5.2 PID Tuning 34

5.3 Performance Without PID Controller 37

Under No Load

5.4 Performance With PID Controller 39

Under No Load

5.4.1	 PI Controller 39

5.4.2 PD Controller 41

5.4.3 PID Controller 43

5.5 Performance Without PID Controller 46

Under Load

5.6 Performance With PID Controller Under Load 49

5.6.1 P1 Controller 49

5.6.2 PD Controller 51

5.6.3 PID Controller 53

Ix

6	 CONCLUSION & RECOMMENDATIONS 56

6.1	 Conclusion 56

6.2	 Costing & Commercialization 57

6.3	 Recommendations 59

6.3.1	 Real time sampling 59

6.3.2	 Application of Better Tuning Method 59

6.3.3	 Handling of Decimal Number 60

6.3.4	 Application of Universal Serial Bus 60

Interface (USB)

REFERENCES	 61

Appendices A - D	 62-65

LIST OF TABLES

TABLE NO.	 TITLE	 PAGE

2.1	 Choosing a Tuning Method	 11

2.2	 Effect of Increasing Parameters	 12

3.1	 SPGH-150 DC Motor Specifications 	 18

5.1	 Results for Finding Value of Kp	 35

5.2	 Results of the Three Controllers Working Under	 45

No Load

5.3	 Results of the Three Controllers Working Under	 55

Load

6.1	 Components Price List for Commercialization Purpose 	 58

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Step Response of Open Loop System 4

2.2 Step Response With Proportional Control 7

2.3 PID Control With Small Ki and Kd 8

2.4 PID Control With Large Ki 9

2.5 PID Control 10

2.6 181`2331 Pin Diagram 13

3.1 Hardware Design 16

3.2 Sample of Output from Encoder 17

3.3 SPGH-150 DC Motor 18

3.4 Sample of a PWM Waveform 19

3.5 Flowchart of PID Algorithm Implemented 21

In the MCU

3.6 Flowchart of the Adaptive PID Algorithm 27

Implemented In the MCU

4.1 Data Transmission Panel 30

xi

4.2 Flowchart of the Data Transmission Panel 31

4.3 Data Plotting Platform 32

5.1 Gain Tuning For Kp = 5, Ki	 0 and Kd = 0 34

5.2 Gain Tuning For Kp	 10, Ki = 0 and Kd = 0 34

5.3 Gain Tuning For Kp = 20, Ki 	 0 and Kd = 0 35

5.4 Gain Tuning For Kp	 10, Ki = 0 and Kd	 1 36

5.5 Gain Tuning For Kp = 10, Ki	 04 and Kd = 2 36

5.6 Free Run on 10 RPM without Load 37

5.7 Free Run on 20 RPM without Load 38

5.8 Free Run on 30 RPM without Load 38

5.9 P1 Controller for 10 RPM without Load 39

5.10 P1 Controller for 20RPM without Load 40

5.11 PT Controller for 30 RPM without Load 40

5.12 PD Controller for 10 RPM without Load 41

5.13 PD Controller for 20 RPM without Load 42

5.14 PD Controller for 30 RPM without Load 42

5.15 PID Controller for 10 RPM without Load 43

5.16 PID Controller for 20 RPM without Load 44

5.17 PID Controller for 30 RPM without Load 44

5.18 Figure Displaying How the Motor Is Connected 46

To The Load

5.19 Free Run onl0 RPM with Load 47

5.20 Free Run on 20 RPM with Load 48

XII

5.21 Free Run on 30 RPM with Load 48

5.22 P1 Controller for 10 RPM with Load 49

5.23 PT Controller for 20 with Load 50

5.24 PT Controller for 30 RPM with Load 50

5.25 PD Controller for 10 RPM with Load 51

5.26 PD Controller for 20 RPM with Load 52

5.27 PD Controller for 30 RPM with Load 52

5.28 PID Controller for 10 RPM with Load 53

5.29 PID Controller for 20 RPM with Load 54

5.30 PID Controller for 30 RPM with Load 54

XIII

LIST OF SYMBOLS

-	 Moment of inertia

Ke	 -	 Electromotive force constant

-	 Electric resistance, ohm

L	 -	 Electric inductance

V	 -	 Voltage

xlv

LIST OF APPENDICES

APPENDIX	 TITLE	 PAGE

A	 Flowchart of the Implemented PID algorithms for 	 62

DC Motor speed control application

B	 Complete Circuit Diagram	 63

C	 Screenshots of PID Motor Control Panel 	 64

D	 Snapshots of the Hardware with the DC Motor	 65

xv

CHAPTER 1

INTRODUCTION

1.1 Background

In many industrial and general applications it is desired that the speed of a motor

is restored and maintained during any disturbances to a set value. A scaled down model of

this controlling scenario is created by inducing disturbances in this scaled down model

and by taking feedback from the output, we will restore the system to a set value by using

the Proportional Integral Derivative (PID) control scheme.

 The PID controller calculation involves three separate parameters; the

Proportional(P), the Integral(I) and Derivative(D) values. The Proportional value

determines the reaction to the current error, the Integral determines the reaction based on

the sum of recent errors and the Derivative determines the reaction to the rate at which the

error has been changing. The weighted sum of these three actions is used to adjust the

speed of the dc motor via the microcontroller.

2

1.2 Objective

The objective of this project is to design a firmware PID sub-routine in

microcontroller for computer-based speed control. The PID algorithm written as a

computer program will be embedded in a hardware device which is the microcontroller.

This firmware is intended to be used to any kind of dc motor that needs to operate under

PID control system.

1.3 Scope

 The project consists of 3 scopes. The first scope is DC motor steady-state error

correction under no load case and loaded case. Steady-state error is defined as the

difference between the input and output of a system in the limit as the response has

reached the steady state. Steady-state error determines the stability of a system and it is

important that the steady-state error is kept at minimum as possible. The second scope is

DC motor overshoot control under no load case and loaded case. Overshoot refers to an

output exceeding its final, steady-state value. Once the motor start running, its momentum

will drive it pass the speed it should be. Overshoot should be reduced by the controller at

the expense of a longer rise time. The third scope is the creation of a Control Panel that

allows data monitoring for performance analysis. It is important that these project features

user friendly interface. By using a control panel, the user can simply insert the PID gains

and the performance of the motor can be monitored from the control panel.

CHAPTER 2

LITERATURE REVIEW

2.1 DC Motor Characteristic

 A common actuator in control systems is the DC motor. It directly provides

rotary motion and, coupled with wheels or drums and cables to provide transitional

motion. Some of it characteristics that can be addressed are:

1. Moment of inertia of the rotor (J) :0.01 kg.m^2/s^2

2. Damping ratio of the mechanical system (b) :0.1 Nms

3. Electromotive force constant (Ke) :0.01 Nm/Amp

4. Electric resistance I :1 Ω

5. Electric inductance (L) :0.5 H

6. Input (V) :Source Voltage

7. Output (theta) :Position of shaft

8. The rotor and shaft are assumed to be rigid

4

 To meet with the design requirements, first the motor can only rotate at 0.1

rad/sec with an input voltage of 1 Volt. Since the most basic requirement of a motor is

that it should rotate at the desired speed, the steady-state error of the motor speed should

be less than 1%. The other performance requirement is that the motor must accelerate to

its steady-state speed as soon as it turns on. In this case, the motor should have a settling

time of 2 seconds. Since a speed faster than the reference may damage the equipment, it

also need to have an overshoot of less than 5%.Using MATLAB, the original open-loop

performances can be plotted as figure below.

 Figure 2.1 Step Response of Open Loop System

 If the reference input is simulated by an unit step input, then the motor speed

output should have:

1. Settling time less than 2 seconds

2. Overshoot less than 5%

3. Steady-state error less than 1% [1]

5

2.2 PID Implementation on DC Motor Close Loop Control

The closed-loop controller is a very common means of keeping motor speed at

the required set point under varying load conditions. It is also able to keep the speed at the

set point value where for example, the set point is ramping up or down at a defined rate.

In the closed loop speed controller, a signal proportional to the motor speed is

fed back into the input where it is subtracted from the set point to produce an error signal.

This error signal is then used to work out what the magnitude of controller output should

be to make the motor run at the required set point speed. For example, if the error speed is

positive, the motor is running too fast so that the controller output should be reduced and

vice-versa.

If a load is applied, the motor slows down so that a positive error speed is

produced. The output increases by a proportional amount to try and restore the speed.

However, as the motor speed recovers, the error reduces and so therefore does the drive

level. The result is that the motor speed will stabilize at some speed below the set point at

which the load is balanced by the error speed times the gain. If the gain is very high so

that even the smallest change in motor speed causes a significant change in drive level,

the motor speed may oscillate. This basic strategy is known as “proportional control” and

on its own has only limited use as it can never force the motor to run exactly at the set

point speed.

The next improvement is to introduce a correction to the output which will keep

adding or subtracting a small amount to the output until the motor reaches the set point, at

which point no further changes are made. In fact a similar effect can be had by keeping a

running total of the error speed speeds observed for instance, every 25ms and multiplying

this by another gain before adding the result the proportional correction found above. This

new term is based on what is effectively the integral of the error speed.

The proportional term is a fast-acting correction which will make a change in the

output as quickly as the error arises. The integral takes a finite time to act but has the

ability to remove all the steady-state speed error.

6

A further refinement uses the rate of change of error speed to apply an additional

correction to the output drive. This means that a rapid motor deceleration would be

counteracted by an increase in drive level for as long as the fall in speed continues. This

final component is the “derivative” term and it is a useful means of increasing the short-

term stability of the motor speed. A controller incorporating all three strategies is the

well-known Proportional-Integral-Derivative, or “PID” controller.

Creating PID algorithm involves lots of concern in terms of the programming.

The main issue on implementing PID control system is on how to program the algorithm

and correctly functioning as true PID behavior. For the error calculation results, the plant

variables might be bigger than Set point value and gives negative Error result. As a

solution, the program must have conversion subroutine to ensure the Error result is in

positive value. Another aspect to consider is the Integral Windup. Integral term is based

on the sum of all previous observed error speeds. However the integral can continuous to

integrate indefinitely, thus the microcontroller program must check for overflow on the

resulting integral term. [2]

For best performance, the proportional and integral gains need careful tuning.

For example, too much integral gain and the control will tend to over-correct for any

speed error resulting in oscillation about the set point speed. Integral gains ensure that

under steady state conditions that the motor speed almost exactly matches the set point

speed. A low gain can make the controller slow to push the speed to the set point but

excessive gain can cause hunting around the set point speed. In less extreme cases, it can

cause overshoot whereby the speed passes through the set point and then approaches the

required speed from the opposite direction. Unfortunately, sufficient gain to quickly

achieve the set point speed can cause overshoot and even oscillation but the other terms

can be used to damp this out. Proportional gains gives fast response to sudden load

changes and can reduce instability caused by high integral gain. This gain is typically

many times higher than the integral gain so that relatively small deviations in speed are

corrected while the integral gain slowly moves the speed to the set point. Like integral

gain, when set too high, proportional gain can cause an oscillation of a few Hertz in motor

speed.

7

There are many ways for an initial setting of the gains. One of it is to set the set

point to maximum speed and with the integral and derivative gains at zero, increase the

proportional gain so that the speed reaches the maximum possible before a speed

oscillation sets in. Reduce the set point to zero. Repeatedly apply a step change in set

point to 75% of full speed and increase the integral gain gradually until the speed starts to

overshoot.

The speed should rise quickly with the step change and settle at the set point

without significant overshoot. The integral gain setting will be particularly influenced by

the moment of inertia of the load and some experimentation will be required. The

controller is configured as a proportional-integral controller which should quickly correct

speed errors without oscillation. [3]

A simulation of how PID controller works can be done through MATLAB. First,

the proportional control was put to the test. By using a gain of 100, and by using

MATLAB m-file, the following plot is generated.

Figure 2.2 Step Response with Proportional Control

8

From the plot above, the steady-state error and the overshoot are too large.

Adding an integral term will eliminate the steady-state error and a derivative term will

reduce the overshoot. Inserting a small Ki and Kd to the system and the plot as figure

below is obtained.

Figure 2.3 PID Control with Small Ki and Kd

 From the figure above, it is seen that the settling time is too long. Increasing Ki

will reduce the settling time as the figure below.

9

Figure 2.4 PID Control with Large Ki

 From the figure above, it is seen that the response is much faster than before, but

the large Ki has worsened the transient response and result in big overshoot. Increasing

Kd will reduce the overshoot and figure as below is obtained. From the figure above, the

design requirements has been achieved. [4]

10

Figure 2.5 PID Control

2.3 Adaptive PID

The term adaptive system implies that the system is capable of accommodating

unpredictable environmental changes, whether these changes arise within the system or

external to it. The adaptive control scheme consists of two parts. The first part is using

initial or updated PID parameters, the controller will be taking in input samples,

processing them, and sending them out to the motor. The second part is updating the

controller parameters. This process continues until the error signal approach zero. [5]

11

2.4 PID Tuning

Tuning a PID is the adjustment of its control parameters to the optimum values

for the desired control response. The optimum behavior of a process varies depending on

the application. There are several methods for tuning a PID. The most effective methods

generally involve the development of some form of process model, then choosing P, I and

D based on the dynamic model parameters.

Table 2.1: Choosing a Tuning Method

Choosing a Tuning Method

Method Advantages Disadvantages

Manual

Tuning
No math required. Online Method

Requires experienced

personnel

Ziegler-

Nichols
Proven method. Online method

Process upset, some trial-

and-error, very aggressive

tuning

Software

Tools

Consistent tuning. Online or offline

method. May include valve and sensor

analysis. Allow simulation before

downloading

Some cost and training

involved

Cohen-

Coon
Good process model

Some math. Offline

method. Only good for

first-order processes.

12

 2.4.1 Manual Tuning

If the system must remain online, one tuning method is to first set the I and D

values to zero. Increase P until the output of the loop oscillates, then the P should be left

set to be approximately half of that value. Then increase D until any offset is correct

insufficient time for the process. However, too much D will cause instability. Finally,

increase I, if required, until the loop is acceptably quick to reach its reference after a load

disturbance. However, too much I will cause excessive response and overshoot. A fast

PID tuning usually overshoots slightly to reach the set point more quickly; however, some

systems cannot accept overshoot, in which case an over-damped closed- loop system is

required, which will require a P setting significantly less than half of that of the P setting

causing oscillation.[6]

Table 2.2: Effect of Increasing Parameters

Effects of increasing parameters

Parameter Rise Time Overshoot Settling Time Steady-state error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Decrease Decrease Decrease None

13

2.5 Implementing a PID Controller Using a PIC18 MCU

As the controller for the system, the microprocessor is chosen due to its

simplicity in designing and also interfacing with other input or output devices. Below is

the pin diagram of the microprocessor.

 Figure 2.6 18F2331 pin Diagram

The microprocessor consists of 28 pin. At an economical price, with the addition

of high endurance enhanced Flash program memory and a high speed 10-bit A/D

converter. On top of these features, the PIC18F2331/2431/4331/4431 family introduces

design enhancements that make these microcontrollers a logical choice for many high

performance, power control and motor control applications. These special peripherals

include 14-bit resolution Power Control PWM Module (PCPWM) with programmable

dead time insertion Motion Feedback Module (MFM), including a 3-channel Input

Capture (IC) Module and Quadrature Encoder Interface (QEI) High-speed 10-bit A/D

Converter (HSADC) The PCPWM can generate up to eight complementary PWM

outputs with dead-band time insertion. The MFM Quadrature Encoder Interface provides

precise rotor position feedback and velocity measurement.

14

The PID routine is configured in a manner that makes it modular. It is intended

to be plugged into an existing piece of firmware, where the PID routine is passed the 8-

bit or 16-bit error value. Therefore, the actual error value is calculated outside of the PID

routine. If necessary, the code could be easily modified to do this calculation within the

PID routine. The PID can be configured to receive the error in one of two ways, either as

a percentage with a range of 0 to 100% (8-bit), or a range of 0 to 4000 (16-bit). PID

source code with the PID’s variable declarations. The gains for proportional, integral

and derivative all have a range of 0 to 15. For resolution purposes, the gains are scaled

by a factor of 16 with an 8-bit maximum of 255. A general flow showing how the PID

routine would be implemented in the main application code is presented in Figure 2.

There were two methods considered for handling the signed numbers. The first method

was to use signed math routines to handle all of the PID calculations. The second was to

use unsigned math routines and maintain a sign bit in a status register. [7]

CHAPTER 3

IMPLEMENTATION OF PID CONTROLLER ALGORITHMS IN

MICROCONTROLLER UNIT

3.1 Introduction

 In this system, the PID controller is designed using PIC microcontroller

18F2331. This microcontroller provide motion feedback module that is useful in

designing a close loop control system. Furthermore the microcontroller also provide up

to 4 PWM channels that allow the user to control more motor. To provide feedback to

the microcontroller, a quadrature encoder is used. The quadrature encoder will provide

the actual speed references to allow the microcontroller to calculate the error. The full

hardware diagram is as below.

16

Quadrature

Encoder

Microcontroller

Unit

(PID Algorithm)

Full Bridge

Driver

DC Motor

Control

Bus

Desired RPM

Current RPM

Control

Panel

Current RPM

Duty Cycle

of Desired

RPM

Figure 3.1 Hardware Design

From the figure above, it should not be confused that the computer does not work

as a controller, instead it just a monitoring device that allow the user to monitor the

performance. Furthermore, the computer is also used to upload the PID algorithm into

the 18F2331 firmware. The computer is connected to the microcontroller using RS-232

serial data communication. The motor driver works as an actuator in providing the

desired duty cycle to the motor.

3.2 Encoder configuration

The feedback module consists of a quadrature encoder and a flexible

coupling.The quadrature encoder will enable the system to acquire the feedback and

later performing the required operations to effectively use the information coming from

the encoder. The two quadrature encoder output signals channel A and channel B. The

position counter can be used either for position or speed measurement. To measure

motor position, we must know the relationship between the displacement and the

number of phase pulses we get from the encoder. This relation can be known in advance,

17

or can be measured during initialization by accumulating the total count for the

maximum allowed displacement by using the formula below.

Figure 3.2 Sample of Output From Encoder

To calculate the angular velocity under a fixed time interval, the value of encoder

pulses and pulses per revolution of the encoder need to be known. Mathematically, it can

be derived from the formula above. By running the motor at full speed and record the

number of pulses under 1 second sampling time, the value of pulses per revolution can

be obtained. Below is the sample of output from the encoder.

By using flexible coupling, the single joint allows for minor misalignments such

as installation errors and changes in shaft alignment due to operating conditions.

18

3.3 DC Motor

In this system, the dc motor will be run under no load. The dc motor used is a

brushless geared dc motor. The specification is as below.

Table 3.1: SPGH-150 DC Motor Specification

.

 Figure 3.3 SPGH-150 DC Motor

Rated

Voltage

(V)

No Load Load Maximum

Efficiency

Number

of gear

trains

Gearbox

length

(mm)

Output

Power(W)
Current

(Ma)

Speed

(RPM)

Current

(Ma)

Speed

(RPM)

Torque

Kgf·cm N·m Kgf·cm N·m

12 ≤220 30 ≤900 23 10 0.98 30 2.94 3.4 4 26

19

3.3.1 Pulse Width Modulation

 Pulse-width modulation (PWM) or duty-cycle variation methods are commonly

used in speed control of DC motors. The duty cycle is defined as the percentage of

digital ‘high’ to digital ‘low’ plus digital ‘high’ pulse-width during a PWM period.

The average DC voltage value for 0% duty cycle is zero; with 25% duty cycle

the average value is 3V (25% of 12V). With 50% duty cycle the average value is 6V,

and if the duty cycle is 75%, the average voltage is 9V and so on. The maximum duty

cycle can be 100%, which is equivalent to a DC waveform. Thus by varying the pulse-

width, we can vary the average voltage across a DC motor and hence its speed.

Figure 3.4 Sample of a PWM Waveform

20

3.4 PID Algorithms

 PID algorithms consist of three parameters which are Proportional, Integral and

Derivative terms. All this three terms later on added to create an output which will be

inserted into the plant or in this case the motor. From previous chapter, it is known that

the motor run on a generated PWM from the microcontroller and this PWM waveform is

controlled through its duty cycle. The duty cycle plays an important role in the whole

system. The PID output itself will be inserted together with the duty cycle to create an

adjustment so that the motor can be brought back to its desired speed. To do this, the

system need to know the rated speed, or the maximum speed the motor can handle. This

rated speed value is used with the desired speed value so that it can be converted into a

duty cycle.

Duty Cycle = (Desired Speed / Rated Speed) x 255

This formula is converted into a PICBasic language as below:

Duty = Setpoint * 255

Duty = Duty/Rated Speed

HPWM 2,Duty,10000

 Once the motor already run on the desired speed, it will be left to the PID

algorithm to correct its speed by adjusting the output of PID into the duty cycle. The

flowchart below explains how the PID algorithm works.

21

Err = 0

P = Err * Kp

D = Err - LastErr

Total PID=P + I + D

Current error minus previous error

to get error changes

LastErr = Err Store current error for next

calculation

NO

YES

Err = Err * Ki

I = I + Err

Multipy error with Kp gain

D = D * Kd
Multipy D with Kd gain

Multipy accumulate error with Ki

gain

Add I to accumulate error

I = I Min 30 Limit I to avoid Integral windup

Add all terms

Get Current Speed

From Encoder

Send Current Speed

To Control Panel

Err = Setpoint – Current Speed

Duty Cycle = Duty Cycle + PID

Motor Run On

Current Duty Cycle

Motor Run On Current

Duty Cycle

PID Algorithm

 Figure 3.5 Flowchart of PID Algorithm Implemented In the MCU

22

3.4.1 Error Calculation

 The error calculation is basically the difference between the desired speed or

setpoint and the actual speed of the motor. The actual speed from encoder will be used

as Current speed.In the programming, a subroutine is used to calculate the error.

Error = Setpoint - actual RPM

 However, under certain condition, the actual speed might be bigger than the set

point. Thus, the controller must be made to ensure that it know the sign of the error. This

can be done by checking the highest bit of the error variable.

Error = ABS error

IF Error.15 = 1 THEN error = -error

 Furthermore, it is important to use the absolute value off error in all the

calculations later on.

23

3.4.2 Proportional Terms

 Proportional parameter is simply the multiplication between the proportional

gain, Kp with the Error. The proportional gain is inserted into the program since it is not

an auto tuning PID routine.

P = Error * Kp

IF Error.15 = 1 THEN P=-P

3.4.3 Integral Terms

 Unlike proportional control, which looks at the present error, integral control

looks at past errors. This is the accumulative error (sum of all past errors) which is used

to calculate the integral term, but at fixed time intervals. By using a program, the

program simply records the value of E at fixed time interval of T (sampling time). Since

Integral terms looks at past errors, the new integral term is obtained by adding the old

integral term with accumulated errors which has been multiplied by the integral gain.

However, to prevent integral windup, a limit must be used for calculating the

accumulated errors to avoid the accumulated errors to keep on adding.

24

IF Err.15 =1 THEN Err_2 = -Err_2

Ei = Ei + Err_2

Sign = Ei.15

Ei_2 = (ABS Ei) * Ki

IF Sign = 1 THEN Ei_2 = -Ei_2

I = I + Ei_2

Sign = I.15

I = ABS I

I = I MIN 100

IF Sign = 1 THEN I = -I

 In the code snippet above, the current error, Ei_2 will be added to accumulated

error, Ei. The accumulated error is then multiplied by Ki. Later on the result of the

multiplication is added with the I terms.

3.4.5 Derivative Terms

 The derivative term works on the present errors to forecast a future response of

the system. The derivative term makes an adjustment based on the rate at which the

Plant output is changing from its Setpoint. A notable characteristic in this type of control

is when the error is constant, or at the maximum limit, the effect is minimal. To get the

derivative term, the previous error is subtracted from the current error and multiplied by

the derivative gain, Kd. Then the program must save the current error so that at next

time, it will be the old error.

25

D = (Error-LastError)

D = ABS D * Kd

IF D.15 = 1 THEN D = -D

LastError = Error

IF Error.15 =1 THEN LastError = -LastError

3.4.6 PID Output

 The PID output is calculated after the proportional, integral and derivative terms

have been determined. It is done by adding the current motor duty cycle with the PID.

This result will later be inserted in the duty cycle variable of the motor.

Duty = actual RPM * 255/Maximum Motor RPM

Duty = Duty + (P + I + D)

Duty = Duty MIN 255

HPWM 2,Duty,10000

3.5 Adaptive PID

 By understanding how PID algorithm works, it is later found out that each of the

three gains can be created by increasing them to their ratio. This understanding however

is obtained after the Manual Tuning of PID algorithm had been working perfectly. The

flowchart below explains how the gains are increased up to a certain value. The term

Adaptive PID means that the gains will be increased to meet the performance

requirement until steady-state error has been fully corrected from the system.

26

IF RPM = Setpoint THEN RETURN

Accept_Value = RPM

Automin_value = Setpoint - 1

Automax_value = Setpoint + 1

IF (Accept_Value <= Automin_Value OR Accept_value >=

Automax_value)THEN

Kp = Kp + 1

Kp = Kp MIN 10

Ki = Ki + 1

Ki = Ki MIN 2

Kd = Kd + 1

Kd = Kd MIN 2

27

System Start

Err = 0

PID = P + I + D

NO

YES

Kp + 1

Ki + 1

Kd + 1

Kd MIN 2

Ki MIN 2

Kp MIN 10 Limit Kp to 10

Limit Ki to 2

Limit Kd to 10

Figure 3.6 Flowchart of the Adaptive PID Algorithm Implemented In the

 MCU

CHAPTER 4

GRAPHICAL USER INTERFACE DESIGN

4.1 Introduction

Real-time performance monitoring to identify performances has become an

integral part of process control solutions. Nowadays automatic process control solutions

that incorporate real-time monitoring and performance analysis are fulfilling the market

need. By applying real time performance monitoring, the project will gain several

advantages. It will allow the build up to data collection that can create statistics that can

be applied to improve the performance.

29

4.2 PID Motor Control Panel

 The control panel is built on two purposes;

i) Data transmission to the controller

ii) Performance monitoring

4.2.1 Data Transmission to the Controller

 For the controller to work perfectly, it needs to know the environment it is

working on. Thus, the control panel needs to send all the information related for the

controller. This information are:

i) Rated Speed

ii) Desired Speed

iii) Kp gains

iv) Ki gains

v) Kd gains

All this data can be inserted through a dedicated text box for each of it as shown from

figure below.

30

 Figure 4.1 Data Transmission Panel

The screenshot of the PID Motor Control Panel is shown in Appendix C.

31

System Start

Adaptive TuningManual Tuning Free Run

User Insert Rated Speed

User Insert Desired Speed

User Insert Rated Speed User Insert Rated Speed

Data Transmitted

To Microcontroller

User Insert Desired Speed User Insert Desired Speed

User Insert Kp Gain

User Insert Ki Gain

User Insert Kd Gains

 Figure 4.2 Flowchart of the Data Transmission Panel

 The microcontroller unit and the PID Motor Control Panel communicate through

RS232 serial data communication. The control panel will send the required data to the

microcontroller unit continuously until all the required data needed is gathered. As

shown, the control panel allows the user to choose three types of mode. The first is the

Auto Tune mode that will cause the motor to run under adaptive PID control system.

The later is the Manual Tune mode which requires the user to insert the value of Kp, Ki,

and Kd. The last mode is the Free Run mode that will set the motor to run on a desired

set point without any control system affecting it.

32

4.2.2 Performance Monitoring

 The analysis of percentage of overshoot and steady-state error is important in this

system as it is the objectives of this project to control the DC motor overshoot and

steady-state error. Thus, data plotting is important as it allow visual monitoring of the

performance of the system. The control panel plots any data coming from the

microcontroller through a graph as shown below.

 Figure 4.3 Data Plotting Platform

 As stated before, the reason of the motor performance analysis is to come up

with the analysis of:

i) Percentage of overshoot

ii) Steady-state error

 CHAPTER 5

RESULTS, PERFORMANCES AND ANALYSIS

5.1 Introduction

Performance analysis is crucial in determining the response of a close-loop

control system. For a PID control system, it is important in determining which part of it

that affects the response of the system. Thus, performance analysis is done graphically

by using the DC Motor Speed vs Time graph that was plotted by PID Motor Control

Panel.

34

5.2 PID Tuning

 To find the Kp gain, the derivative and integral part is turned off. Then Kp is

increased to max or until oscillation occurs. If system oscillates, Kp is divided by 2.

 Figure 5.1 Gain Tuning For Kp = 5, Ki = 0 and Kd = 0

Figure 5.2 Gain Tuning For Kp = 10, Ki = 0 and Kd = 0

35

Figure 5.3 Gain Tuning For Kp = 20, Ki = 0 and Kd = 0

 From the graph plotted, it is discovered that oscillation occurred when Kp is set

to 20. Table below shows the results.

Table 5.1: Results for Finding Value of Kp

10
2

20

2

'


Kp
Kp

 Then, Kd is increased and its behavior as desired speed changed by about 5% is

observed. Value Kd is choose from which it gives a fast damped response.

Kp 5 10 20

Oscillation No No Yes

36

Figure 5.4 Gain Tuning For Kp = 10, Ki = 0 and Kd = 1

 To find the value of Ki gains, its value is increased until oscillation occurs. This

value will then be divided by 2 or 3 to obtain the real Ki value.

Figure 5.5 Gain Tuning For Kp = 10, Ki = 04 and Kd = 2

37

5.3 Performance without PID Under No Load

 Before a control system is integrated into a system, the user must first know what

type of control loop that should be implemented and which part of the system that need

to be repaired. Thus it is important the performance of the system without close-loop

control system is obtained first.

%Overshoot: 0%

Steady-state error: System does not even reached steady-state

Figure 5.6 Free Run on 10 RPM

38

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.7 Free Run on 20 RPM

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.8 Free Run on 30 RPM

39

5.4 Performance With PID Under No Load

 Under no load, the system is tested through three controllers which are PI, PD

and also PID.

5.4.1 PI Controller

 PI Controller is a special case in which the Derivative term is not used. The

integral is used to react to any occurrence of error in the system. In other words, if the

occurrence of error is getting rapid, the integral output will grow.

 %Overshoot: 0%

 Steady-state error: Still occur

 Figure 5.9 PI Controller for 10 RPM

40

%Overshoot: 5%

Steady-state error: Eliminated

Figure 5.10 PI Controller for 20RPM

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.11 PI Controller for 30 RPM

41

5.4.2 PD Controller

 PD controller is useful in reacting to sudden changes throughout the system.

From the figure below, however when the derivative term is working alone without the

integral term, it does not have the ability to overcome the occurrence of the same error

and thus we could see that large amount of steady-state occurrence.

%Overshoot: 0%

Steady-state error: Eliminated

 Figure 5.12 PD Controller for 10 RPM

42

%Overshoot: 5%

Steady-state error: System does not even reach steady-state.

 Figure 5.13 PD Controller for 20 RPM

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.14 PD Controller for 30 RPM

43

5.4.3 PID Controller

 When all the three terms are put together, it is hoped that the best result can be

achieved. From the figure below it is seen that the output of all the three terms cause

overshoot on all the three tested speed. However we can clearly see that the steady-state

error is eliminated as the system goes. This is due to the effect of integral and derivative

that counters any occurrence of error and also changes in error.

%Overshoot: 5%

Steady-state error: Still occur but eliminated through time

Figure 5.15 PID Controller for 10 RPM

44

%Overshoot: 5%

Steady-state error: Still occur but eliminated through the time

 Figure 5.16 PID Controller for 20 RPM

%Overshoot: 6.67%

Steady-state error: Still occur but eliminated through time

Figure 5.17 PID Controller for 30 RPM

45

Table 5.2: Results of the Three Controllers Working Under No Load

Controller PI PD PID

Speed (RPM) 10 20 30 10 20 30 10 20 30

% Overshoot 0 % 5 % 5 % 5 % 5 % 0 % 5 % 5 % 6.67%

Steady-State Error Yes No Yes No Yes Yes No No No

 From the table above, the PID algorithm that was used was able eliminate

steady-state erro but only after a few seconds once the system has reached steady-state.

One conclusion that can be made of this is due to the buildup of integral terms that has

been able to detect the trend or occurrence of error as the system works. As a result, after

a few seconds, steady-state error is totally eliminated.

46

5.5 Performance Without PID Controller Under Load

 For more analysis on the effect of PID on the system, it is tested under load. The

load used is another DC motor which has a lower torque than the main motor. The

reason is so that the main motor will be capable to drag the load.

Figure 5.18 Figure Displaying How The Motor Is Connected To The Load

47

As tried on no load, the system is then tested to run freely under the influences of load

without the PID controller.

%Overshoot: 0%

Steady -state error: System does not even reach steady-state condition

Figure 5.19 Free Run on 10 RPM

 From the figure above, we can see that without any PI, PD or PID controller, the

system could not even achieve the desired speed. Even if the system reach the desired

speed, the occurrence of steady-state error is so huge and out of control. This happened

to the other system tested on 20 rpm and 30 rpm.

48

%Overshoot: 0%

Steady -state error: Still occur

Figure 5.20 Free Run on 20 RPM

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.21 Free Run on 30 RPM

49

5.6 Performance With PID Controller Under Load

 Once the system is inserted with load, it is later tested with the PI, PD and PID

controller.

5.6.1 PI Controller

 PI Controller is a special case in which the Derivative term is not used. The

integral is used to react to any occurrence of error in the system. In other words, if the

occurrence of error is getting rapid, the integral output will grow.

%Overshoot: 0%

Steady-state error: Still occur but reduced

 Figure 5.22 PI Controller for 10 RPM With Load

50

%Overshoot: 0%

Steady-state error: Still Occur

 Figure 5.23 PI Controller for 20 RPM With Load

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.24 PI Controller for 30 RPM With Load

51

5.6.1 PD Controller

 PD controller is useful in reacting to sudden changes throughout the system.

From the figure below, however when the derivative term is working alone without the

integral term, it does not have the ability to overcome the occurrence of the same error

and thus we could see that large amount of steady-state occurrence.

% Overshoot: 0%

Steady-state error: System does not even reached steady-state

 Figure 5.25 PD Controller for 10 RPM With Load

52

%Overshoot: 0%

Steady-state error: System does not even reached steady-state error

 Figure 5.26 PD Controller for 20 RPM With Load

%Overshoot:6.67%

Steady-state error: Still occur

 Figure 5.27 PD Controller for 30 RPM With Load

53

5.6.2 PID Controller

 When all the three terms are put together, the best result can be achieved. From

the figure below it is seen that the output of all the three terms cause overshoot on all the

three tested speed. However we can clearly see that the steady-state error is eliminated

as the system goes. This is due to the effect of integral and derivative that counters any

occurrence of error and also changes in error.

%Overshoot: 0%

Steady-state error: Still occur

 Figure 5.28 PID Controller for 10 RPM With Load

54

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.29 PID Controller for 20 RPM With Load

%Overshoot: 0%

Steady-state error: Still occur

Figure 5.30 PID Controller for 30 RPM With Load

55

Table 5.3: Results of the Three Controller Working Under Load

Controller PI PD PID

Speed (RPM) 10 20 30 10 20 30 10 20 30

% Overshoot 0 % 0 % 0 % 5 % 5 %
6.67

%
0 % 0% 0%

Steady-State Error Yes Yes Yes - - - Yes Yes Yes

 From the table above, it is clearly understood that under the effect of load, the

PD controller does not seems to be working at all. This is proved by the fact that the

motor could not even reach steady-state. However, the PID controller has been able to

drive the motor up to steady-state but still not been able to keep the motor stays at that

steady condition. One reason for this is because of the disturbance in the mechanical

connection between the load and the motor that caused the load to variant and thus it is

hard for the PID algorithm to keep the motor at a steady-state.

 CHAPTER 6

CONCLUSION & RECOMMENDATIONS

6.1 CONCLUSION

 From all the experiment conducted on the implementation of the PID algorithm,

there were several conclusions that can be made. The first is that the algorithm created

all has played their effect on the system although it is the overshoot or the steady-state

error. The steady-state error has been reduced or eliminated throughout the system while

the overshoot has also been reduced. However, some of the experiment shows that the

overshoot has been increased to 6.67% which is not meeting the exact requirement.

However, for no load case, all the steady-state error has been eliminated as the system

works.

 Furthermore, from Table 5.2 above, the PID algorithm that was used was able

eliminate steady-state error but only after a few seconds once the system has reached

steady-state. One conclusion that can be made of this is due to the buildup of integral

terms that has been able to detect the trend or occurrence of error as the system works.

As a result, after a few seconds, steady-state error is totally eliminated.

57

 In the Table 5.3, it can be concluded that under the effect of load, the PD

controller does not seems to be working at all. This is proved by the fact that the motor

could not even reach steady-state. However, the PID controller has been able to drive the

motor up to steady-state but still not been able to keep the motor stays at that steady

condition. One reason for this is because of the disturbance in the mechanical connection

between the load and the motor that caused the load to variant and thus it is hard for the

PID algorithm to keep the motor at a steady-state. This condition is similar to other

controller run with the speed of 30 RPM. One conclusion that can be made from this

problem is that the mechanical gear seems to be out of proportion when used under

bigger speed. This cause variation on the speed itself. This variation has caused the

algorithms problem in keeping the system to steady-state.

 Overall, it can be said that the PID algorithm can be created by using low-cost

MCU and applied to a system in controlling the speed of a loaded or unloaded DC

motor.

6.2 Costing & Commercialization

 The design of the PID Controller comes with the approach of simplicity and also

user friendly. The controller uses PIC 18F2331 from the 18F family series of

Microchip’s PIC which already widely used in application regarding motor control. By

using Printed Circuit Board (PCB) and also Surface-Mounted technology (SMT), it

gives better performance under shake and vibration conditions and also robust design by

its protective plastic container. Its small and lightweight design also allow the controller

to be more mobile while offering less work space it its usage. Furthermore, with its

simple and user friendly control panel the PID Controller can meets the demand of such

controller in the industry. By coming with its own Control Panel, the PID Controller can

be practically used on any system that needs the performance of its DC Motor to be

58

monitored and analyzed. Furthermore, the PID Controller also comes with a 30 A DC

Motor Driver that is capable of driving up a DC Motor of 30 Amp peak current. The

optional RS-232 interface feature also can provide full remote operation of the

controller. As any standard electronic component, it also consists of a DC Supply Input

and also a supply input for conventional power supply usage.

 For commercialization purpose, the price of the unit is created based on the

equipment or component used in the controller. This price list of components used in

important if the product need to be commercialized in the future. The complete list of

price is as below.

Table 6.1: Components Price List for Commercialization Purpose

Main Board Price/Unit (RM) Quantity Price (RM)

Voltage Regulator LM7805 1.00 1 1.00

Voltage Regulator LM7812 1.00 1 1.00

PIC 18F2331 45.00 1 45.00

Headers 0.50 8 4.00

Diode D1N4148 0.10 1 0.10

Capacitor 4.7uF 0.10 4 0.40

Capacitor 0.1uF 0.10 1 0.10

Resistor 10K 0.04 1 0.04

Crystal 20MHZ 1.50 1 1.50

Plastic Casing 15.00 1 15.00

Input & Output Port 1.00 6 6.00

Motor Driver

Cytron 30A DC Motor Driver 120.00 1 120.00

 Total Price (RM) 194.14

 The price above really meets the low-cost approach in the design of the

controller. It will allow the controller to be sold at a cheaper price comparing to most of

the PID Controller in the market. Furthermore, since the controller application is

computer based, it should have a significant advantage over other PID controller in the

market that relies on any other approach. This computer based application also allows

the performance analysis to be made easily.

59

6.3 Recommendations

 As previously stated, there are several improvement that can be made to the

system. Some of the improvement is additional while others is crucial in making the

system stay reliable in the future.

6.3.1 Real-time sampling

 The MCU has been working perfectly in sampling the speed and making

corrections. However, the PID Motor Control Panel works by displaying all the data sent

from the MCU without displaying the real-time of data received. As a result, the PID

Motor Control Panel will simply increased one second for any data received and later on

creates problems in data sampling.

6.3.2 Application of Better Tuning Method

 Better tuning method such as Ziegler- Nichols method can be applied to the

current algorithm. In this method, the I and D gains are first set to zero. The “P” gain is

increased until it reaches the “critical gain” Kc at which the output of the loop starts to

oscillate. Kc and the oscillation period, Pc are used to set the gains.

60

6.3.3 Handling of Decimal Number

 Currently, in the system, the sampling time used is only 500ms. However, this

can be increased as long as the accuracy of the system is also increased. This can be

done by allowing the controller to handle decimal number and not only integer.

6.3.4 Application of Universal Serial Bus Interface (USB)

 The PID controller interface with the computer by using RS 232 Serial

Communication protocol. However, nowadays, most computer manufacturers no longer

install the RS 232 port on their motherboard. The usage of USB to RS 232 converter

itself also sometimes create some error in accuracy of the data. One of the solution is to

have an USB connections between the controller and the computer. This is possible as

most PIC nowadays comes with features that allow USB interface.

61

REFERENCES

1. 14
th

 January 2008, Citing Internet Sources, PID Design Method for DC Motor

Speed Control,

URL http://www.library.cmu.edu/ctms/ctms/examples/motor/pid2.htm#pid

2. A.Irawan, M.F.Abas, M.S.Najib, S.Razali, N.Hasan, A.H.Mohd Hanafi,

M.S.Jadin, B.Muhammad & M.R.Md Rejab, RDU070330, Development of

Multiple Motor Drive System Module with Real-time Data Acquisition Channels,

1
st
 Cycle Report, Faculty of Electrical & Electronics Engineering, Universiti

Malaysia Pahang.

3. 21
st
 January 2008, Citing Internet Sources, Basic DC Motor Speed PID Control

with the Infineon C167 Family, URL www.hitex.co.uk/C166/pidex.html

4. 3
rd

 August 2008, Citing Internet Sources, DC Motor Speed Modeling,

URL

http://www.engin.umich.edu/group/ctm/examples/motor/motor.html#Problem

5. Jianxin Tang, Rulph Chassaing, Walter J. Gomes III, Real-Time Adaptive PID

Controller Using the TMS320C31 DSK, Dept. of Electrical and Computer

Engineering, University of Massachusetts Dartmouth, North Dartmouth.

6. 2
nd

 September 2008, Citing Internet Sources, PID controller

URL http://en.wikipedia.org/wiki/PID_loop

7. Chris Valenti, AN937 Implementing a PID Controller Using a PIC18 MCU,

Microchip Technology Inc.

62

APPENDIX A

Flowchart of the Implemented PID algorithms for DC Motor speed control

Application

63

APPENDIX B

Complete Circuit Diagram

64

APPENDIX C

Screenshots of PID Motor Control Panel

65

APPENDIX D

Snapshots of the Hardware with the DC Motor

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

