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ABSTRACT 

This project is focused on implementation of the Proportional (P), Integral (I) and 

Derivative (D) control system algorithms in microcontroller unit (MCU) for direct 

current (DC) Motor speed control. The PlC series, PIC181`2331 has been used to 

perform the processing of PID algorithms for DC motor control purpose. The focus is 

on 12 volt DC motor with 30 revolutions per minute (rpm) maximum speed. No-load 

case and loaded case are the scope for this research. Three experiments have been done 

to look how much PID control algorithms affect the performances on driving actual DC 

motor; P1 algorithm experiment, PD algorithm experiment and PID algorithm 

experiment. The result shows that, implementation of PID algorithm in small scale 

MCU is possible. PID algorithm that has been implemented in MCU inside the DC 

motor controller module system can eliminate the steady state error and overshoot 

problem including settling time. By creating real time data acquisition software, the 

performance of the system is monitored and later on analyzed. It is later found out that 

the PID algorithm has been able to create faster settling time while the overshoot has 

been reduced to 5% and the steady-state has been successfully reduced. The impact of 

the load and no load application of the PID algorithm can be clearly seen by how the 

PID algorithm has helped the controller to drive a loaded DC motor to the desired speed 

which could not be achieved without the PID algorithm.
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ABSTRAK 

Projek mi memfokuskan kepada implementasi algoritma system kawalan 

"Proportional", "Integral" dan "Derivative" di dalam mikropengawal untuk mengawal 

kelajuan motor arus terus. Mikropengawal yang kecil dan murah telah diprogramkan 

dengan sejenis algoritma untuk membetulkan masalah "steady-state error" untuk motor 

arus terus yang beroperasi menggunakan 12 Voltan arus terus dan dengan kelajuan 30 

revolusi per minit (rpm). Skop projek mi adalah kawalan kelajuan terhadap kes tanpa 

beban. Tiga eksperimen dijalankan untuk melihat sejauh mana algoritma "PID" 

memainkan peranan dalam pemacuan motor arus terus. la terdiri dari pengawal "PT", 

pengawal "PD" dan juga pengawal "PID". Keputusan eksperimen menunjukkan, 

implementasi algoritma "PID" dalam mikropengawal adalah sesuatu yang boleh 

dilaksanakan. Algoritma "PID" yang telah dihasilkan diaplikiasikan kedalam 

mikropengawal yang terdapat didalam modul pengawal kelajuan mampu melenyapkan 

"steady-state error" dan "overshoot" termasuk "settling time". Dengan menghasilkan 

perisian "real time data acquisition" prestasi sistem boleh diawasi dan dianalisis. 

Didapati bahawa algoritma "PID" yang dihasilkan mampu mempercepatkan "settling 

time" dan juga mengurangkan masalah "overshoot" sebanyak 5 % dan "steady-state 

error" berjaya dikurangkan. Kesan algoritma "PID" tersebut dalam aplikasi yang 

rnenggunakan beban jelas kelihatan apabila algoritma tersebut berjaya membantu sistem 

pengawal untuk memacu motor arus terus ke tahap kelajuan yang diingini.

LVA 



TABLE OF CONTENTS 

CHAPTER	 TITLE PAGE 

DECLARATION i 

DEDICATION  

ACKNOWLEDGEMENTS  

ABSTRACT iv 

ABSTRAK v 

TABLE OF CONTENTS vi 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF SYMBOLS xiv 

LIST OF APPENDICES xv

INTRODUCTION	 1 

1.1	 Background	 1 

1.2	 Objectives	 2 

1.3	 Scopes	 2 



Vii 

2	 LITERATURE REVIEW 3 

2.1 DC Motor Characteristic 3 

2.2 PID Implementation on DC Motor Close 5 

Loop Control 

2.3 Adaptive PID 10 

2.4 PID Tuning 11 

2.4.1	 Manual Tuning 12 

2.5 Implementing a PID Controller Using a 13 

PIC18 MCU 

3	 IMPLEMENTATION OF ND CONTROLLER 15 

ALGORITHMS IN MICROCONTROLLER 

UNIT 

3.1 Introduction 15 

3.2 Encoder Configuration 16 

3.3 DC Motor 18 

3.3.1	 Pulse Width Modulation 19 

3.4 PID Algorithm 20 

3.4.1	 Error Calculations 22 

3.4.2	 Proportional Terms 23 

3.4.3	 Integral Terms 23 

3.4.4	 Derivative Terms 24 

3.4.5	 PID Output 25 

3.5 Adaptive PID 25



VIII 

4	 GRAPHICAL USER INTERFACE	 28 

4.1	 Introduction	 28 

4.2	 ND Motor Control Panel	 29 

4.2.1 Data Transmission to the Controller 	 29 

4.2.2 Performance Monitoring	 32 

5	 RESULT, PERFORMANCE & ANALYSIS 33 

5.1 Introduction 33 

5.2 PID Tuning 34 

5.3 Performance Without PID Controller 37 

Under No Load 

5.4 Performance With PID Controller 39 

Under No Load 

5.4.1	 PI Controller 39 

5.4.2 PD Controller 41 

5.4.3 PID Controller 43 

5.5 Performance Without PID Controller 46 

Under Load 

5.6 Performance With PID Controller Under Load 49 

5.6.1 P1 Controller 49 

5.6.2 PD Controller 51 

5.6.3 PID Controller 53



Ix 

6	 CONCLUSION & RECOMMENDATIONS 56 

6.1	 Conclusion 56 

6.2	 Costing & Commercialization 57 

6.3	 Recommendations 59 

6.3.1	 Real time sampling 59 

6.3.2	 Application of Better Tuning Method 59 

6.3.3	 Handling of Decimal Number 60 

6.3.4	 Application of Universal Serial Bus 60 

Interface (USB)

REFERENCES	 61 

Appendices A - D	 62-65 



LIST OF TABLES 

TABLE NO.	 TITLE	 PAGE 

2.1	 Choosing a Tuning Method	 11 

2.2	 Effect of Increasing Parameters	 12 

3.1	 SPGH-150 DC Motor Specifications 	 18 

5.1	 Results for Finding Value of Kp	 35 

5.2	 Results of the Three Controllers Working Under	 45 

No Load 

5.3	 Results of the Three Controllers Working Under	 55 

Load 

6.1	 Components Price List for Commercialization Purpose 	 58

x 



LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

2.1 Step Response of Open Loop System 4 

2.2 Step Response With Proportional Control 7 

2.3 PID Control With Small Ki and Kd 8 

2.4 PID Control With Large Ki 9 

2.5 PID Control 10 

2.6 181`2331 Pin Diagram 13 

3.1 Hardware Design 16 

3.2 Sample of Output from Encoder 17 

3.3 SPGH-150 DC Motor 18 

3.4 Sample of a PWM Waveform 19 

3.5 Flowchart of PID Algorithm Implemented 21 

In the MCU 

3.6 Flowchart of the Adaptive PID Algorithm 27 

Implemented In the MCU 

4.1 Data Transmission Panel 30

xi 



4.2 Flowchart of the Data Transmission Panel 31 

4.3 Data Plotting Platform 32 

5.1 Gain Tuning For Kp = 5, Ki	 0 and Kd = 0 34 

5.2 Gain Tuning For Kp	 10, Ki = 0 and Kd = 0 34 

5.3 Gain Tuning For Kp = 20, Ki 	 0 and Kd = 0 35 

5.4 Gain Tuning For Kp	 10, Ki = 0 and Kd	 1 36 

5.5 Gain Tuning For Kp = 10, Ki	 04 and Kd = 2 36 

5.6 Free Run on 10 RPM without Load 37 

5.7 Free Run on 20 RPM without Load 38 

5.8 Free Run on 30 RPM without Load 38 

5.9 P1 Controller for 10 RPM without Load 39 

5.10 P1 Controller for 20RPM without Load 40 

5.11 PT Controller for 30 RPM without Load 40 

5.12 PD Controller for 10 RPM without Load 41 

5.13 PD Controller for 20 RPM without Load 42 

5.14 PD Controller for 30 RPM without Load 42 

5.15 PID Controller for 10 RPM without Load 43 

5.16 PID Controller for 20 RPM without Load 44 

5.17 PID Controller for 30 RPM without Load 44 

5.18 Figure Displaying How the Motor Is Connected 46 

To The Load 

5.19 Free Run onl0 RPM with Load 47 

5.20 Free Run on 20 RPM with Load 48

XII 



5.21 Free Run on 30 RPM with Load 48 

5.22 P1 Controller for 10 RPM with Load 49 

5.23 PT Controller for 20 with Load 50 

5.24 PT Controller for 30 RPM with Load 50 

5.25 PD Controller for 10 RPM with Load 51 

5.26 PD Controller for 20 RPM with Load 52 

5.27 PD Controller for 30 RPM with Load 52 

5.28 PID Controller for 10 RPM with Load 53 

5.29 PID Controller for 20 RPM with Load 54 

5.30 PID Controller for 30 RPM with Load 54

XIII 



LIST OF SYMBOLS 

-	 Moment of inertia 

Ke	 -	 Electromotive force constant 

-	 Electric resistance, ohm 

L	 -	 Electric inductance 

V	 -	 Voltage

xlv 



LIST OF APPENDICES 

APPENDIX	 TITLE	 PAGE 

A	 Flowchart of the Implemented PID algorithms for 	 62 

DC Motor speed control application 

B	 Complete Circuit Diagram	 63 

C	 Screenshots of PID Motor Control Panel 	 64 

D	 Snapshots of the Hardware with the DC Motor	 65

xv 



 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

In many industrial and general applications it is desired that the speed of a motor 

is restored and maintained during any disturbances to a set value. A scaled down model of 

this controlling scenario is created by inducing disturbances in this scaled down model 

and by taking feedback from the output, we will restore the system to a set value by using 

the Proportional Integral Derivative (PID) control scheme. 

  The PID controller calculation involves three separate parameters; the 

Proportional( P ), the Integral( I ) and Derivative( D ) values. The Proportional value 

determines the reaction to the current error, the Integral determines the reaction based on 

the sum of recent errors and the Derivative determines the reaction to the rate at which the 

error has been changing. The weighted sum of these three actions is used to adjust the 

speed of the dc motor via the microcontroller. 
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1.2 Objective 

 

 

The objective of this project is to design a firmware PID sub-routine in 

microcontroller for computer-based speed control. The PID algorithm written as a 

computer program will be embedded in a hardware device which is the microcontroller. 

This firmware is intended to be used to any kind of dc motor that needs to operate under 

PID control system. 

 

 

 

 

1.3 Scope 

 

 

 The project consists of 3 scopes. The first scope is DC motor steady-state error 

correction under no load case and loaded case. Steady-state error is defined as the 

difference between the input and output of a system in the limit as the response has 

reached the steady state. Steady-state error determines the stability of a system and it is 

important that the steady-state error is kept at minimum as possible. The second scope is 

DC motor overshoot control under no load case and loaded case. Overshoot refers to an 

output exceeding its final, steady-state value. Once the motor start running, its momentum 

will drive it pass the speed it should be. Overshoot should be reduced by the controller at 

the expense of a longer rise time. The third scope is the creation of a Control Panel that 

allows data monitoring for performance analysis. It is important that these project features 

user friendly interface. By using a control panel, the user can simply insert the PID gains 

and the performance of the motor can be monitored from the control panel. 

 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 DC Motor Characteristic  

 

 

  A common actuator in control systems is the DC motor. It directly provides 

rotary motion and, coupled with wheels or drums and cables to provide transitional 

motion. Some of it characteristics that can be addressed are: 

 

1. Moment of inertia of the rotor (J)  :0.01 kg.m^2/s^2 

2. Damping ratio of the mechanical system (b) :0.1 Nms 

3. Electromotive force constant (Ke)  :0.01 Nm/Amp 

4. Electric resistance I    :1 Ω  

5. Electric inductance (L)    :0.5 H 

6. Input (V)     :Source Voltage 

7. Output (theta)     :Position of shaft 

8. The rotor and shaft are assumed to be rigid 
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  To meet with the design requirements, first the motor can only rotate at 0.1 

rad/sec with an input voltage of 1 Volt. Since the most basic requirement of a motor is 

that it should rotate at the desired speed, the steady-state error of the motor speed should 

be less than 1%. The other performance requirement is that the motor must accelerate to 

its steady-state speed as soon as it turns on. In this case, the motor should have a settling 

time of 2 seconds. Since a speed faster than the reference may damage the equipment, it 

also need to have an overshoot of less than 5%.Using MATLAB, the original open-loop 

performances can be plotted as figure below. 

 

                        

    Figure 2.1 Step Response of Open Loop System 

 

  If the reference input is simulated by an unit step input, then the motor speed 

output should have: 

1. Settling time less than 2 seconds 

2. Overshoot less than 5%  

3. Steady-state error less than 1%   [1] 
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2.2 PID Implementation on DC Motor Close Loop Control 

 

 

The closed-loop controller is a very common means of keeping motor speed at 

the required set point under varying load conditions. It is also able to keep the speed at the 

set point value where for example, the set point is ramping up or down at a defined rate.  

In the closed loop speed controller, a signal proportional to the motor speed is 

fed back into the input where it is subtracted from the set point to produce an error signal. 

This error signal is then used to work out what the magnitude of controller output should 

be to make the motor run at the required set point speed. For example, if the error speed is 

positive, the motor is running too fast so that the controller output should be reduced and 

vice-versa.  

If a load is applied, the motor slows down so that a positive error speed is 

produced. The output increases by a proportional amount to try and restore the speed. 

However, as the motor speed recovers, the error reduces and so therefore does the drive 

level. The result is that the motor speed will stabilize at some speed below the set point at 

which the load is balanced by the error speed times the gain. If the gain is very high so 

that even the smallest change in motor speed causes a significant change in drive level, 

the motor speed may oscillate. This basic strategy is known as “proportional control” and 

on its own has only limited use as it can never force the motor to run exactly at the set 

point speed. 

The next improvement is to introduce a correction to the output which will keep 

adding or subtracting a small amount to the output until the motor reaches the set point, at 

which point no further changes are made. In fact a similar effect can be had by keeping a 

running total of the error speed speeds observed for instance, every 25ms and multiplying 

this by another gain before adding the result the proportional correction found above. This 

new term is based on what is effectively the integral of the error speed. 

The proportional term is a fast-acting correction which will make a change in the 

output as quickly as the error arises. The integral takes a finite time to act but has the 

ability to remove all the steady-state speed error. 
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A further refinement uses the rate of change of error speed to apply an additional 

correction to the output drive. This means that a rapid motor deceleration would be 

counteracted by an increase in drive level for as long as the fall in speed continues. This 

final component is the “derivative” term and it is a useful means of increasing the short-

term stability of the motor speed. A controller incorporating all three strategies is the 

well-known Proportional-Integral-Derivative, or “PID” controller. 

Creating PID algorithm involves lots of concern in terms of the programming. 

The main issue on implementing PID control system is on how to program the algorithm 

and correctly functioning as true PID behavior. For the error calculation results, the plant 

variables might be bigger than Set point value and gives negative Error result. As a 

solution, the program must have conversion subroutine to ensure the Error result is in 

positive value. Another aspect to consider is the Integral Windup. Integral term is based 

on the sum of all previous observed error speeds. However the integral can continuous to 

integrate indefinitely, thus the microcontroller program must check for overflow on the 

resulting integral term. [2] 

For best performance, the proportional and integral gains need careful tuning. 

For example, too much integral gain and the control will tend to over-correct for any 

speed error resulting in oscillation about the set point speed. Integral gains ensure that 

under steady state conditions that the motor speed almost exactly matches the set point 

speed. A low gain can make the controller slow to push the speed to the set point but 

excessive gain can cause hunting around the set point speed. In less extreme cases, it can 

cause overshoot whereby the speed passes through the set point and then approaches the 

required speed from the opposite direction. Unfortunately, sufficient gain to quickly 

achieve the set point speed can cause overshoot and even oscillation but the other terms 

can be used to damp this out. Proportional gains gives fast response to sudden load 

changes and can reduce instability caused by high integral gain. This gain is typically 

many times higher than the integral gain so that relatively small deviations in speed are 

corrected while the integral gain slowly moves the speed to the set point. Like integral 

gain, when set too high, proportional gain can cause an oscillation of a few Hertz in motor 

speed.  
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There are many ways for an initial setting of the gains. One of it is to set the set 

point to maximum speed and with the integral and derivative gains at zero, increase the 

proportional gain so that the speed reaches the maximum possible before a speed 

oscillation sets in. Reduce the set point to zero. Repeatedly apply a step change in set 

point to 75% of full speed and increase the integral gain gradually until the speed starts to 

overshoot. 

The speed should rise quickly with the step change and settle at the set point 

without significant overshoot. The integral gain setting will be particularly influenced by 

the moment of inertia of the load and some experimentation will be required. The 

controller is configured as a proportional-integral controller which should quickly correct 

speed errors without oscillation. [3] 

A simulation of how PID controller works can be done through MATLAB. First, 

the proportional control was put to the test. By using a gain of 100, and by using 

MATLAB m-file, the following plot is generated. 

 

 

                

Figure 2.2 Step Response with Proportional Control 
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From the plot above, the steady-state error and the overshoot are too large. 

Adding an integral term will eliminate the steady-state error and a derivative term will 

reduce the overshoot. Inserting a small Ki and Kd to the system and the plot as figure 

below is obtained. 

              

Figure 2.3 PID Control with Small Ki and Kd 

 

 

  From the figure above, it is seen that the settling time is too long. Increasing Ki 

will reduce the settling time as the figure below. 
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Figure 2.4 PID Control with Large Ki  

 

 

  From the figure above, it is seen that the response is much faster than before, but 

the large Ki has worsened the transient response and result in big overshoot. Increasing 

Kd will reduce the overshoot and figure as below is obtained. From the figure above, the 

design requirements has been achieved. [4] 
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Figure 2.5 PID Control  

 

 

 

 

2.3 Adaptive PID 

 

 

The term adaptive system implies that the system is capable of accommodating 

unpredictable environmental changes, whether these changes arise within the system or 

external to it. The adaptive control scheme consists of two parts. The first part is using 

initial or updated PID parameters, the controller will be taking in input samples, 

processing them, and sending them out to the motor. The second part is updating the 

controller parameters. This process continues until the error signal approach zero. [5] 
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2.4  PID Tuning 

 

 

Tuning a PID is the adjustment of its control parameters to the optimum values 

for the desired control response. The optimum behavior of a process varies depending on 

the application. There are several methods for tuning a PID. The most effective methods 

generally involve the development of some form of process model, then choosing P, I and 

D based on the dynamic model parameters. 

 

 

Table 2.1: Choosing a Tuning Method 

Choosing a Tuning Method 

Method Advantages Disadvantages 

Manual 

Tuning 
No math required. Online Method 

Requires experienced 

personnel 

Ziegler-

Nichols 
Proven method. Online method 

Process upset, some trial-

and-error, very aggressive 

tuning 

Software 

Tools 

Consistent tuning. Online or offline 

method. May include valve and sensor 

analysis. Allow simulation before 

downloading 

Some cost and training 

involved 

Cohen-

Coon 
Good process model 

Some math. Offline 

method. Only good for 

first-order processes. 
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 2.4.1 Manual Tuning 

 

 

If the system must remain online, one tuning method is to first set the I and D 

values to zero. Increase P until the output of the loop oscillates, then the P should be left 

set to be approximately half of that value. Then increase D until any offset is correct 

insufficient time for the process. However, too much D will cause instability. Finally, 

increase I, if required, until the loop is acceptably quick to reach its reference after a load 

disturbance. However, too much I will cause excessive response and overshoot. A fast 

PID tuning usually overshoots slightly to reach the set point more quickly; however, some 

systems cannot accept overshoot, in which case an over-damped closed- loop system is 

required, which will require a P setting significantly less than half of that of the P setting 

causing oscillation.[6]  

 

 

Table 2.2: Effect of Increasing Parameters 

Effects of increasing parameters 

Parameter Rise Time Overshoot Settling Time Steady-state error 

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small Decrease Decrease Decrease None 
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2.5 Implementing a PID Controller Using a PIC18 MCU 

 

 

As the controller for the system, the microprocessor is chosen due to its 

simplicity in designing and also interfacing with other input or output devices. Below is 

the pin diagram of the microprocessor. 

 

                   

    Figure 2.6  18F2331 pin Diagram 

 

 

The microprocessor consists of 28 pin.  At an economical price, with the addition 

of high endurance enhanced Flash program memory and a high speed 10-bit A/D 

converter. On top of these features, the PIC18F2331/2431/4331/4431 family introduces 

design enhancements that make these microcontrollers a logical choice for many high 

performance, power control and motor control applications. These special peripherals 

include 14-bit resolution Power Control PWM Module (PCPWM) with programmable 

dead time insertion Motion Feedback Module (MFM), including a 3-channel Input 

Capture (IC) Module and Quadrature Encoder Interface (QEI) High-speed 10-bit A/D 

Converter (HSADC) The PCPWM can generate up to eight complementary PWM 

outputs with dead-band time insertion. The MFM Quadrature Encoder Interface provides 

precise rotor position feedback and velocity measurement.  
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The PID routine is configured in a manner that makes it modular. It is intended 

to be plugged into an existing piece of firmware, where the PID routine is passed the 8-

bit or 16-bit error value. Therefore, the actual error value is calculated outside of the PID 

routine. If necessary, the code could be easily modified to do this calculation within the 

PID routine. The PID can be configured to receive the error in one of two ways, either as 

a percentage with a range of 0 to 100% (8-bit), or a range of 0 to 4000 (16-bit). PID 

source code with the PID’s variable declarations. The gains for proportional, integral 

and derivative all have a range of 0 to 15. For resolution purposes, the gains are scaled 

by a factor of 16 with an 8-bit maximum of 255. A general flow showing how the PID 

routine would be implemented in the main application code is presented in Figure 2. 

There were two methods considered for handling the signed numbers. The first method 

was to use signed math routines to handle all of the PID calculations. The second was to 

use unsigned math routines and maintain a sign bit in a status register. [7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

IMPLEMENTATION OF PID CONTROLLER ALGORITHMS IN   

MICROCONTROLLER UNIT 

 

 

 

 

3.1 Introduction 

 

 

 In this system, the PID controller is designed using PIC microcontroller 

18F2331. This microcontroller provide motion feedback module that is useful in 

designing a close loop control system. Furthermore the microcontroller also provide up 

to 4 PWM channels that allow the user to control more motor. To provide feedback to 

the microcontroller, a quadrature encoder is used. The quadrature encoder will provide 

the actual speed references to allow the microcontroller to calculate the error. The full 

hardware diagram is as below. 
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Full Bridge 
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Control 
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Control 
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Figure 3.1 Hardware Design 

 

 

From the figure above, it should not be confused that the computer does not work 

as a controller, instead it just a monitoring device that allow the user to monitor the 

performance. Furthermore, the computer is also used to upload the PID algorithm into 

the 18F2331 firmware. The computer is connected to the microcontroller using RS-232 

serial data communication. The motor driver works as an actuator in providing the 

desired duty cycle to the motor.  

 

 

 

 

3.2 Encoder configuration 

 

 

The feedback module consists of a quadrature encoder and a flexible 

coupling.The quadrature encoder will enable the system to acquire the feedback and 

later performing the required operations to effectively use the information coming from 

the encoder. The two quadrature encoder output signals channel A and channel B. The 

position counter can be used either for  position or speed measurement. To measure 

motor position, we must know the relationship between the displacement and the 

number of phase pulses we get from the encoder. This relation can be known in advance, 
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or can be measured during initialization by accumulating the total count for the 

maximum allowed displacement by using the formula below. 

 

 

       

Figure 3.2  Sample of Output From Encoder 

 

 

To calculate the angular velocity under a fixed time interval, the value of encoder 

pulses and pulses per revolution of the encoder need to be known. Mathematically, it can 

be derived from the formula above. By running the motor at full speed and record the 

number of pulses under 1 second sampling time, the value of pulses per revolution can 

be obtained. Below is the sample of output from the encoder. 

 

                              

 

By using flexible coupling, the single joint allows for minor misalignments such 

as installation errors and changes in shaft alignment due to operating conditions. 
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3.3 DC Motor  

 

 

In this system, the dc motor will be run under no load. The dc motor used is a 

brushless geared dc motor. The specification is as below. 

 

Table 3.1: SPGH-150 DC Motor Specification 

 

.  

 

 

   Figure 3.3    SPGH-150 DC Motor 

 

 

 

 

 

 

 

 

Rated 

Voltage 

(V) 

 

No Load Load Maximum  

Efficiency 

 
Number 

of gear 

trains 

 

Gearbox 

length 

(mm) 

Output 

Power(W) 
Current 

(Ma) 

Speed 

(RPM) 

Current 

(Ma) 

Speed 

(RPM) 

Torque 

Kgf·cm N·m Kgf·cm N·m 

12 ≤220 30 ≤900 23 10 0.98 30 2.94 3.4 4 26 
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3.3.1 Pulse Width Modulation 

 

 

 Pulse-width modulation (PWM) or duty-cycle variation methods are commonly 

used in speed control of DC motors. The duty cycle is defined as the percentage of 

digital ‘high’ to digital ‘low’ plus digital ‘high’ pulse-width during a PWM period. 

The average DC voltage value for 0% duty cycle is zero; with 25% duty cycle 

the average value is 3V (25% of 12V). With 50% duty cycle the average value is 6V, 

and if the duty cycle is 75%, the average voltage is 9V and so on. The maximum duty 

cycle can be 100%, which is equivalent to a DC waveform. Thus by varying the pulse-

width, we can vary the average voltage across a DC motor and hence its speed.  

 

 

 

Figure 3.4  Sample of a PWM Waveform  
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3.4 PID Algorithms 

 

 

 PID algorithms consist of three parameters which are Proportional, Integral and 

Derivative terms. All this three terms later on added to create an output which will be 

inserted into the plant or in this case the motor. From previous chapter, it is known that 

the motor run on a generated PWM from the microcontroller and this PWM waveform is 

controlled through its duty cycle. The duty cycle plays an important role in the whole 

system. The PID output itself will be inserted together with the duty cycle to create an 

adjustment so that the motor can be brought back to its desired speed. To do this, the 

system need to know the rated speed, or the maximum speed the motor can handle. This 

rated speed value is used with the desired speed value so that it can be converted into a 

duty cycle.  

 

Duty Cycle = (Desired Speed / Rated Speed ) x 255 

 

This formula is converted into a PICBasic language as below: 

Duty = Setpoint * 255 

Duty = Duty/Rated Speed 

HPWM 2,Duty,10000 

 

 Once the motor already run on the desired speed, it will be left to the PID 

algorithm to correct its speed by adjusting the output of PID into the duty cycle. The 

flowchart below explains how the PID algorithm works. 
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Err = 0

P = Err * Kp

D = Err - LastErr

Total PID=P + I + D

Current error minus previous error 

to get error changes

LastErr = Err Store current error for next 

calculation

NO

YES

Err = Err * Ki

I = I + Err

Multipy error with Kp gain

D = D * Kd
Multipy D with Kd gain

Multipy accumulate error with Ki 

gain

Add I to accumulate error

I = I Min 30 Limit I to avoid Integral windup

Add all terms

Get Current Speed 

From Encoder

Send Current Speed 

To Control Panel

Err = Setpoint – Current Speed

Duty Cycle = Duty Cycle + PID

Motor Run On 

Current Duty Cycle

Motor Run On Current 

Duty Cycle

PID Algorithm

 

           Figure 3.5 Flowchart of PID Algorithm Implemented In the MCU 
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3.4.1 Error Calculation 

 

 The error calculation is basically the difference between the desired speed or 

setpoint and the actual speed of the motor. The actual speed from encoder will be used 

as Current speed.In the programming, a subroutine is used to calculate the error.  

Error = Setpoint - actual RPM 

 

 However, under certain condition, the actual speed might be bigger than the set 

point. Thus, the controller must be made to ensure that it know the sign of the error. This 

can be done by checking the  highest bit of the error variable. 

 

Error = ABS error  

IF Error.15 = 1 THEN error = -error  

 

 Furthermore, it is important to use the absolute value off error in all the 

calculations later on. 
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3.4.2 Proportional Terms 

 

 

 Proportional parameter is simply the multiplication between the proportional 

gain, Kp with the Error. The proportional gain is inserted into the program since it is not 

an auto tuning PID routine. 

 

P = Error * Kp 

IF Error.15 = 1 THEN P=-P 

 

 

 

 

3.4.3 Integral Terms 

 

 

 Unlike proportional control, which looks at the present error, integral control 

looks at past errors. This is the accumulative error (sum of all past errors) which is used 

to calculate the integral term, but at fixed time intervals. By using a program, the 

program simply records the value of E at fixed time interval of T (sampling time). Since 

Integral terms looks at past errors, the new integral term is obtained by adding the old 

integral term with accumulated errors which has been multiplied by the integral gain. 

However, to prevent integral windup, a limit must be used for calculating the 

accumulated errors to avoid the accumulated errors to keep on adding.  
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IF Err.15 =1 THEN Err_2 = -Err_2 

Ei = Ei + Err_2  

Sign = Ei.15    

Ei_2 = (ABS Ei) * Ki      

IF Sign = 1 THEN Ei_2 = -Ei_2    

I = I + Ei_2 

Sign = I.15 

I = ABS I 

I = I MIN 100              

IF Sign = 1 THEN I = -I 

 

 

 In the code snippet above, the current error, Ei_2 will be added to accumulated 

error, Ei. The accumulated error is then multiplied by Ki. Later on the result of the 

multiplication is added with the I terms. 

 

 

 

 

3.4.5 Derivative Terms 

 

 

 The derivative term works on the present errors to forecast a future response of 

the system. The derivative term makes an adjustment based on the rate at which the 

Plant output is changing from its Setpoint. A notable characteristic in this type of control 

is when the error is constant, or at the maximum limit, the effect is minimal. To get the 

derivative term, the previous error is subtracted from the current error and multiplied by 

the derivative gain, Kd. Then the program must save the current error so that at next 

time, it will be the old error.  
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D = (Error-LastError)  

D = ABS D * Kd 

IF D.15 = 1 THEN D = -D   

LastError = Error  

IF Error.15 =1 THEN LastError = -LastError 

 

 

 

 

3.4.6 PID Output 

 

 

 The PID output is calculated after the proportional, integral and derivative terms 

have been determined. It is done by adding the current motor duty cycle with the  PID. 

This result will later be inserted in the duty cycle variable of the motor.  

Duty = actual RPM * 255/Maximum Motor RPM  

Duty = Duty + (P + I + D) 

Duty = Duty MIN 255      

HPWM 2,Duty,10000 

 

 

 

 

3.5 Adaptive PID 

 

 

 By understanding how PID algorithm works, it is later found out that each of the 

three gains can be created by increasing them to their ratio. This understanding however 

is obtained after the Manual Tuning of PID algorithm had been working perfectly. The 

flowchart below explains how the gains are increased up to a certain value. The term 

Adaptive PID means that the gains will be increased to meet the performance 

requirement until steady-state error has been fully corrected from the system. 
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IF RPM = Setpoint THEN RETURN 

Accept_Value = RPM 

Automin_value = Setpoint - 1 

Automax_value = Setpoint + 1 

IF (Accept_Value <= Automin_Value OR Accept_value >= 

Automax_value)THEN 

Kp = Kp + 1  

Kp = Kp MIN 10 

Ki = Ki + 1 

Ki = Ki MIN 2 

Kd = Kd + 1 

Kd = Kd MIN 2 
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System Start

Err = 0 

PID = P + I + D

NO

YES

Kp + 1

Ki + 1

Kd + 1

Kd MIN 2

Ki MIN 2

Kp MIN 10 Limit Kp to 10

Limit Ki to 2

Limit Kd to 10

 

 

Figure 3.6 Flowchart of the Adaptive PID Algorithm Implemented In the 

  MCU 

 



 

 

 

 

CHAPTER 4 

 

 

 

 

GRAPHICAL USER INTERFACE DESIGN 

 

 

 

 

4.1 Introduction 

 

 

Real-time performance monitoring to identify performances has become an 

integral part of process control solutions. Nowadays automatic process control solutions 

that incorporate real-time monitoring and performance analysis are fulfilling the market 

need. By applying real time performance monitoring, the project will gain several 

advantages. It will allow the build up to data collection that can create statistics that can 

be applied to improve the performance. 
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4.2 PID Motor Control Panel 

 

 

 The control panel is built on two purposes;  

 

i) Data transmission to the controller  

ii) Performance monitoring 

 

 

 

 

4.2.1 Data Transmission to the Controller 

 

 

 For the controller to work perfectly, it needs to know the environment it is 

working on. Thus, the control panel needs to send all the information related for the 

controller. This information are: 

 

i) Rated Speed 

ii) Desired Speed 

iii) Kp gains  

iv) Ki gains 

v) Kd gains 

 

All this data can be inserted through a dedicated text box for each of it as shown from 

figure below. 
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                           Figure 4.1       Data Transmission Panel 

 

 

The screenshot of the PID Motor Control Panel is shown in Appendix C. 

 

 

 

 



31 

 

System Start

Adaptive TuningManual Tuning Free Run

User Insert Rated Speed

User Insert Desired Speed

User Insert Rated Speed User Insert Rated Speed

Data Transmitted 

To Microcontroller

User Insert Desired Speed User Insert Desired Speed

User Insert Kp Gain

User Insert Ki Gain

User Insert Kd Gains

 

                Figure 4.2       Flowchart of the Data Transmission Panel 

 

 

 The microcontroller unit and the PID Motor Control Panel communicate through 

RS232 serial data communication. The control panel will send the required data to the 

microcontroller unit continuously until all the required data needed is gathered. As 

shown, the control panel allows the user to choose three types of mode. The first is the 

Auto Tune mode that will cause the motor to run under adaptive PID control system. 

The later is the Manual Tune mode which requires the user to insert the value of Kp, Ki, 

and Kd. The last mode is the Free Run mode that will set the motor to run on a desired 

set point without any control system affecting it. 
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4.2.2 Performance Monitoring 

 

 

 The analysis of percentage of overshoot and steady-state error is important in this 

system as it is the objectives of this project to control the DC motor overshoot and 

steady-state error. Thus, data plotting is important as it allow visual monitoring of the 

performance of the system. The control panel plots any data coming from the 

microcontroller through a graph as shown below.  

 

            

                  Figure 4.3       Data Plotting Platform 

 

 As stated before, the reason of the motor performance analysis is to come up 

with the analysis of: 

i) Percentage of overshoot  

ii) Steady-state error 

 



 

 

 

 

     CHAPTER 5 

 

 

 

 

RESULTS, PERFORMANCES AND ANALYSIS 

 

 

 

 

5.1 Introduction 

 

 

Performance analysis is crucial in determining the response of a close-loop 

control system. For a PID control system, it is important in determining which part of it 

that affects the response of the system. Thus, performance analysis is done graphically 

by using the DC Motor Speed vs Time graph that was plotted by PID Motor Control 

Panel. 
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5.2 PID Tuning 

 

 

 To find the Kp gain, the derivative and integral part is turned off. Then Kp is 

increased to max or until oscillation occurs. If system oscillates, Kp is divided by 2. 

 

 

 Figure 5.1    Gain Tuning For Kp = 5, Ki = 0 and Kd = 0 

 

 

 

Figure 5.2   Gain Tuning For Kp = 10, Ki = 0 and Kd = 0 
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Figure 5.3    Gain Tuning For Kp = 20, Ki = 0 and Kd = 0 

 

 From the graph plotted, it is discovered that oscillation occurred when Kp is set 

to 20. Table below shows the results. 

 

 

Table 5.1: Results for Finding Value of Kp 

 

 

 

 

10
2

20

2

'


Kp
Kp  

      

 

 Then, Kd is increased and its behavior as desired speed changed by about 5% is 

observed. Value Kd is choose from which it gives a fast damped response.  

 

Kp 5 10 20 

Oscillation No No  Yes 
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Figure 5.4    Gain Tuning For Kp = 10, Ki = 0 and Kd = 1 

 

 

 To find the value of Ki gains, its value is increased until oscillation occurs. This 

value will then be divided by 2 or 3 to obtain the real Ki value. 

 

 

 

Figure 5.5    Gain Tuning For Kp = 10, Ki = 04 and Kd = 2 
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5.3 Performance without PID Under No Load  

  

 

 Before a control system is integrated into a system, the user must first know what 

type of control loop that should be implemented and which part of the system that need 

to be repaired. Thus it is important the performance of the system without close-loop 

control system is obtained first. 

 

 

 

%Overshoot: 0% 

Steady-state error: System does not even reached steady-state 

Figure 5.6    Free Run on 10 RPM 
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%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.7    Free Run on 20 RPM 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.8    Free Run on 30 RPM 
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5.4 Performance With PID Under No Load  

 

 

 Under no load, the system is tested through three controllers which are PI, PD 

and also PID.  

 

 

 

 

5.4.1 PI Controller  

 

 

 PI Controller is a special case in which the Derivative term is not used. The 

integral is used to react to any occurrence of error in the system. In other words, if the 

occurrence of error is getting rapid, the integral output will grow.  

 

                  

 

            %Overshoot: 0% 

 Steady-state error: Still occur 

   Figure 5.9    PI Controller for 10 RPM 
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%Overshoot: 5% 

Steady-state error: Eliminated 

Figure 5.10    PI Controller for 20RPM 

 

 

 

 

 

 

 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.11    PI Controller for 30 RPM 
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5.4.2 PD Controller 

 

 

 PD controller is useful in reacting to sudden changes throughout the system. 

From the figure below, however when the derivative term is working alone without the 

integral term, it does not have the ability to overcome the occurrence of the same error 

and thus we could see that large amount of steady-state occurrence. 

 

             

          

%Overshoot: 0% 

Steady-state error: Eliminated  

  Figure 5.12    PD Controller for 10 RPM  
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%Overshoot: 5% 

Steady-state error: System does not even reach steady-state. 

   Figure 5.13   PD Controller for 20 RPM 

 

 

 

 

 

 

 

 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.14   PD Controller for 30 RPM 
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5.4.3 PID Controller 

 

 

 When all the three terms are put together, it is hoped that the best result can be 

achieved. From the figure below it is seen that the output of all the three terms cause 

overshoot on all the three tested speed. However we can clearly see that the steady-state 

error is eliminated as the system goes. This is due to the effect of integral and derivative 

that counters any occurrence of error and also changes in error. 

                      

%Overshoot: 5% 

Steady-state error: Still occur but eliminated through time 

Figure 5.15    PID Controller for 10 RPM 
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%Overshoot: 5% 

Steady-state error: Still occur but eliminated through the time 

   Figure 5.16    PID Controller for 20 RPM 

 

 

 

 

 

 

 

 

 

 

 

%Overshoot: 6.67% 

Steady-state error: Still occur but eliminated through time  

Figure 5.17    PID Controller for 30 RPM 
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Table 5.2: Results of the Three Controllers Working Under No Load 

Controller PI PD PID 

Speed (RPM) 10 20 30 10 20 30 10 20 30 

% Overshoot 0 % 5 % 5 % 5 % 5 % 0 % 5 % 5 % 6.67% 

Steady-State Error Yes No Yes No Yes Yes No No No 

 

 

 From the table above, the PID algorithm that was used was able eliminate 

steady-state erro but only after a few seconds once the system has reached steady-state. 

One conclusion that can be made of this is due to the buildup of integral terms that has 

been able to detect the trend or occurrence of error as the system works. As a result, after 

a few seconds, steady-state error is totally eliminated. 
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5.5 Performance Without PID Controller Under Load 

  

 

  For more analysis on the effect of PID on the system, it is tested under load. The 

load used is another DC motor which has a lower torque than the main motor. The 

reason is so that the main motor will be capable to drag the load. 

   

 

Figure 5.18  Figure Displaying How The Motor Is Connected To The Load 
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As tried on no load, the system is then tested to run freely under the influences of load 

without the PID controller. 

 

 

 

%Overshoot: 0% 

Steady -state error: System does not even reach steady-state condition 

Figure 5.19    Free Run on 10 RPM 

 

 

 From the figure above, we can see that without any PI, PD or PID controller, the 

system could not even achieve the desired speed. Even if the system reach the desired 

speed, the occurrence of steady-state error is so huge and out of control. This happened 

to the other system tested on 20 rpm and 30 rpm. 
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%Overshoot: 0% 

Steady -state error: Still occur 

Figure 5.20    Free Run on 20 RPM 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.21   Free Run on 30 RPM 
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5.6 Performance With PID Controller Under Load 

 

 

 Once the system is inserted with load, it is later tested with the PI, PD and PID 

controller. 

 

 

 

 

5.6.1 PI Controller  

 

 

 PI Controller is a special case in which the Derivative term is not used. The 

integral is used to react to any occurrence of error in the system. In other words, if the 

occurrence of error is getting rapid, the integral output will grow.  

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur but reduced 

 Figure 5.22   PI Controller for 10 RPM With Load 
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%Overshoot: 0% 

Steady-state error: Still Occur 

     Figure 5.23   PI Controller for 20 RPM With Load 

 

 

 

 
 

%Overshoot: 0% 

Steady-state error: Still occur  

Figure 5.24    PI Controller for 30 RPM With Load 
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5.6.1 PD Controller 

 

 

 PD controller is useful in reacting to sudden changes throughout the system. 

From the figure below, however when the derivative term is working alone without the 

integral term, it does not have the ability to overcome the occurrence of the same error 

and thus we could see that large amount of steady-state occurrence. 

 

 

 

 

 

 

 

 

 

   

 

 

 

% Overshoot: 0% 

Steady-state error: System does not even reached steady-state 

 

 Figure 5.25    PD Controller for 10 RPM With Load 
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%Overshoot: 0% 

Steady-state error: System does not even reached steady-state error 

 

 Figure 5.26   PD Controller for 20 RPM With Load 

 

 

 

 
 

%Overshoot:6.67% 

Steady-state error: Still occur 

 Figure 5.27    PD Controller for 30 RPM With Load 
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5.6.2 PID Controller 

 

 

 When all the three terms are put together, the best result can be achieved. From 

the figure below it is seen that the output of all the three terms cause overshoot on all the 

three tested speed. However we can clearly see that the steady-state error is eliminated 

as the system goes. This is due to the effect of integral and derivative that counters any 

occurrence of error and also changes in error. 

 

 

 

 

 

 

 

 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

   Figure 5.28  PID Controller for 10 RPM With Load 
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%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.29  PID Controller for 20 RPM With Load 

 

 

 

 

 

 

 

 

 

 

 

 

 

%Overshoot: 0% 

Steady-state error: Still occur 

Figure 5.30  PID Controller for 30 RPM With Load 
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Table 5.3: Results of the Three Controller Working Under Load 

Controller PI PD PID 

Speed (RPM) 10 20 30 10 20 30 10 20 30 

% Overshoot 0 % 0 % 0 % 5 % 5 % 
6.67 

% 
0 % 0% 0% 

Steady-State Error Yes Yes Yes - - - Yes Yes Yes 

 

 

 From the table above, it is clearly understood that under the effect of load, the 

PD controller does not seems to be working at all. This is proved by the fact that the 

motor could not even reach steady-state. However, the PID controller has been able to 

drive the motor up to steady-state but still not been able to keep the motor stays at that 

steady condition. One reason for this is because of the disturbance in the mechanical 

connection between the load and the motor that caused the load to variant and thus it is 

hard for the PID algorithm to keep the motor at a steady-state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

     CHAPTER 6 

 

 

 

 

CONCLUSION & RECOMMENDATIONS 

 

 

 

 

6.1 CONCLUSION 

 

 

 From all the experiment conducted on the implementation of the PID algorithm, 

there were several conclusions that can be made. The first is that the algorithm created 

all has played their effect on the system although it is the overshoot or the steady-state 

error. The steady-state error has been reduced or eliminated throughout the system while 

the overshoot has also been reduced. However, some of the experiment shows that the 

overshoot has been increased to 6.67% which is not meeting the exact requirement. 

However, for no load case, all the steady-state error has been eliminated as the system 

works. 

 Furthermore, from Table 5.2 above, the PID algorithm that was used was able 

eliminate steady-state error but only after a few seconds once the system has reached 

steady-state. One conclusion that can be made of this is due to the buildup of integral 

terms that has been able to detect the trend or occurrence of error as the system works. 

As a result, after a few seconds, steady-state error is totally eliminated. 
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 In the Table 5.3, it can be concluded that under the effect of load, the PD 

controller does not seems to be working at all. This is proved by the fact that the motor 

could not even reach steady-state. However, the PID controller has been able to drive the 

motor up to steady-state but still not been able to keep the motor stays at that steady 

condition. One reason for this is because of the disturbance in the mechanical connection 

between the load and the motor that caused the load to variant and thus it is hard for the 

PID algorithm to keep the motor at a steady-state. This condition is similar to other 

controller run with the speed of 30 RPM. One conclusion that can be made from this 

problem is that the mechanical gear seems to be out of proportion when used under 

bigger speed. This cause variation on the speed itself. This variation has caused the 

algorithms problem in keeping the system to steady-state. 

 Overall, it can be said that the PID algorithm can be created by using low-cost 

MCU and applied to a system in controlling the speed of a loaded or unloaded DC 

motor.  

 

 

 

 

6.2 Costing & Commercialization 

 

 

 The design of the PID Controller comes with the approach of simplicity and also 

user friendly. The controller uses PIC 18F2331 from the 18F family series of 

Microchip’s PIC which already widely used in application regarding motor control. By 

using Printed Circuit Board (PCB) and also Surface-Mounted technology (SMT), it 

gives better performance under shake and vibration conditions and also robust design by 

its protective plastic container. Its small and lightweight design also allow the controller 

to be more mobile while offering less work space it its usage. Furthermore, with its 

simple and user friendly control panel the PID Controller can meets the demand of such 

controller in the industry. By coming with its own Control Panel, the PID Controller can 

be practically used on any system that needs the performance of its DC Motor to be 
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monitored and analyzed. Furthermore, the PID Controller also comes with a 30 A DC 

Motor Driver that is capable of driving up a DC Motor of 30 Amp peak current. The 

optional RS-232 interface feature also can provide full remote operation of the 

controller. As any standard electronic component, it also consists of a DC Supply Input 

and also a supply input for conventional power supply usage. 

 For commercialization purpose, the price of the unit is created based on the 

equipment or component used in the controller. This price list of components used in 

important if the product need to be commercialized in the future. The complete list of 

price is as below. 

 

 

Table 6.1: Components Price List for Commercialization Purpose 

Main Board Price/Unit (RM) Quantity Price (RM) 

Voltage Regulator LM7805 1.00 1 1.00 

Voltage Regulator LM7812 1.00 1 1.00 

PIC 18F2331 45.00 1 45.00 

Headers 0.50 8 4.00 

Diode D1N4148 0.10 1 0.10 

Capacitor 4.7uF 0.10 4 0.40 

Capacitor 0.1uF 0.10 1 0.10 

Resistor 10K 0.04 1 0.04 

Crystal 20MHZ 1.50 1 1.50 

Plastic Casing 15.00 1 15.00 

Input & Output Port 1.00 6 6.00 

Motor Driver  

Cytron 30A DC Motor Driver 120.00 1 120.00 

                                                                                     Total Price (RM) 194.14 

  

 

 The price above really meets the low-cost approach in the design of the 

controller. It will allow the controller to be sold at a cheaper price comparing to most of 

the PID Controller in the market. Furthermore, since the controller application is 

computer based, it should have a significant advantage over other PID controller in the 

market that relies on any other approach. This computer based application also allows 

the performance analysis to be made easily. 
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6.3 Recommendations 

 

 

 As previously stated, there are several improvement that can be made to the 

system. Some of the improvement is additional while others is crucial in making the 

system stay reliable in the future. 

 

 

 

 

6.3.1 Real-time sampling 

 

 

 The MCU has been working perfectly in sampling the speed and making 

corrections. However, the PID Motor Control Panel works by displaying all the data sent 

from the MCU without displaying the real-time of data received. As a result, the PID 

Motor Control Panel will simply increased one second for any data received and later on 

creates problems in data sampling.  

 

 

 

 

6.3.2 Application of Better Tuning Method 

 

 

 Better tuning method such as Ziegler- Nichols method can be applied to the 

current algorithm. In this method, the I and D gains are first set to zero. The “P” gain is 

increased until it reaches the “critical gain” Kc at which the output of the loop starts to 

oscillate. Kc and the oscillation period, Pc are used to set the gains. 
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6.3.3 Handling of Decimal Number 

 

 

 Currently, in the system, the sampling time used is only 500ms. However, this 

can be increased as long as the accuracy of the system is also increased. This can be 

done by allowing the controller to handle decimal number and not only integer. 

 

 

6.3.4 Application of Universal Serial Bus Interface (USB) 

 

 

 The PID controller interface with the computer by using RS 232 Serial 

Communication protocol. However, nowadays, most computer manufacturers no longer 

install the RS 232 port on their motherboard. The usage of USB to RS 232 converter 

itself also sometimes create some error in accuracy of the data. One of the solution is to 

have an USB connections between the controller and the computer. This is possible as 

most PIC nowadays comes with features that allow USB interface.  
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APPENDIX A 

Flowchart of the Implemented PID algorithms for DC  Motor speed control 

Application 
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APPENDIX B 

Complete Circuit Diagram 
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APPENDIX C 

Screenshots of PID Motor Control Panel 
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APPENDIX D 

 

Snapshots of the Hardware with the DC Motor 
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