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Abstract— World energy demand expected to increase as a result of blossoming urbanisation, better living standards and 

rising human population. Biodiesel becomes an important alternative energy as the price and demand of fossil fuel in the 

global market is increasing each day. It has become obvious that biodiesel can create a generous contribution to the future 

energy demands as it brings less pollution to environment if compared to fossil fuels. There are many different types of 

potential feedstock and catalyst for biodiesel production. Compared to edible oil and non-edible vegetable oils as a feedstock, 

natural waste is very much considered as a biodiesel feedstock because of the huge demand for edible oils as a food source. 

Moreover, the uses of natural waste oils as a feedstock and catalyst from wastes are more cost effective. Therefore, 

production of biodiesel from natural waste is the best way to overcome all the associated problems with edible oils. In this 

present study, waste cooking oil (WCO) and impregnation of K+ over deoiled spent bleaching clay (SBC) as a catalyst (K+ 

impregnated DSBC) were attempted. In this study, K+ impregnated DSBC was obtained from impregnation of 60 % 

potassium hydroxide (KOH) into deoiled SBC, dried in oven at 100 °C for 16 hours and finally calcined on furnace at 500 °C 

for 4 hours. The prepared catalyst is characterized by several methods such as TGA, XRD, XRF, FESEM and FTIR. Result 

from transesterification showed that highest methyl esters (ME) content was at 91.8 % with 5 h reaction duration at 65 ± 2 °C. 

Optimization of reaction revealed that 12:1 methanol to oil ratio and catalyst amount of 7 wt.% as optimal reaction conditions. 

Furthermore, catalyst can be reused up to 5 times while maintaining ME conversion at 70 ± 0.2 %. 
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1. INTRODUCTION 
 

The economic uses of fatty acid methyl esters (biodiesel) equally as a diesel alternate start in Europe in the late 1980s. 

Biodiesel become a basis of continual substitute to fossil fuels due to its renewable properties as fossil fuel is getting reduced 

day by day [Mutreja et al., 2014]. Biodiesel fuel (BDF) is produced from organic sources for example vegetables oils, animal 

fats, edible oils, non-edible oils, and waste/ used oils and from microorganisms [Boey et al., 2010]. 

The main problem regarding the use of vegetables oil and animal fats is the biological sources cannot be used directly in 

internal combustion engine due to two main reasons: low volatility and high viscosity [Carillo et al., 2010]. However, there 



are some methods that could be executed to reduce viscosity and increase volatility. Those techniques are pyrolysis, micro-

emulsification, transesterification and direct use and blending method. Among them, transesterification method is discovered 

as the best technique with minimum energy complications [Pryde, 1984]. Transesterification with oil and methanol is a 

typical way of producing methyl esters (biodiesel) from triglycerides by switching the alkoxyl group of an ester compound 

with alcohol [Soetaredjo et al., 2011].  
 

Feedstock and catalyst are the major contributing factors in biodiesel production cost. Some examples for alternative 

feedstock are waste cooking oil (WCO), decanter cake (DC), spent bleaching clay (SBC), vegetable oil and animal fat. Zabeti 

et al. (2009) reported that about 4.1 kg of waste cooking oil (WCO) is produced per person in a year. Disposal of WCO is a 

major problem due to the possible pollution of the land resources and water and these indicate that waste cooking oil is one of 

the best options to be used for biodiesel production. However, these kinds of feedstock contain high moisture content and free 

fatty acids (FFAs). Heterogeneous catalysts could accept water and FFA much well than the homogeneous catalyst [Ho et al., 

2012]. The study will be focusing on the transesterification of the waste cooking oil using potassium impregnated 

heterogeneous catalyst which is deoiled spent bleaching clay (SBC). 

  

2. MATERIALS AND METHOD 
 

WCO is collected from cafetaria KK1, Universiti Malaysia Pahang. SBC is collected from palm oil refinery at Felda 

Vegetable Oil Product Sdn. Bhd., Gebeng. FAME standard (methyl heptadecanoate) is obtained from Sigma-Aldrich. 

Potassium hydroxide, sulphuric acid (to wash the catalyst), methanol, and n-hexane, were obtained from Merck. 

Phenolphthalein (H_= 8.2), 2, 4-dinitroaniline (H_= 15.0), 4-nitroaniline (H_= 18.4) (as Hammett indicators), methyl esters 

standards, palmitic and oleic acid are purchased from Sigma (Deisenhofen, Germany) are chromatographically pure. All the 

chemicals mentioned above were analytical reagent grade. Thin Layer Chromatography (TLC) aluminium sheets are 

purchased from Merck (Darmstadt, Germany). 

Waste cooking oil was kept for about 2-3 days to equilibrate the impurities. Filtration is being applied to eliminate food 

deposits and solid precipitous in the oil. The filtered oil was added with warm water and shake vigorously. Then the mixture 

is poured into centrifuge tube and centrifuged. Then water layer is removed together with other particles. Oil is centrifuged 

many times until no water layer shown. Then oil is heated until all water is evaporated. WCO is furthered for 

transesterification process. About 50 mL of oil is kept for characterization. [Hindryawati et al., 2014]. Oil characterization 

involves determining its acid value, density, viscosity, moisture content, saponification value and iodine value. Viscosity, 

density, and moisture content tests are conducted at Central Laboratory, Universiti Malaysia Pahang (UMP), meanwhile 

saponification value, acid value and iodine executed in Faculty of Sciences and Technology laboratory. 

Spent bleaching clay is being washed with 20% sulphuric acid to remove any impurities and organic matter after the 

extraction. 25 g of de-oiled spent bleaching clay (D-SBC) was added into 250 ml beaker containing 100 ml distilled water. It 

then proceeds with adding 60% KOH (loading based on D-SBC weight) by wet impregnation method. The mixture was held 

in an ultrasonic water bath for 3 h (Bransonic at a working frequency of 42 kHz with 235 W power supply). The K-

functionalized D-SBC (K-DSBC) sample was prepared at 60 wt.% KOH. It then was dried in oven at 120 °C for 16 h. After 

drying, the K-DSBC particles were calcined at 500 °C for 4 h. 

 

Methyl esters peaks from GC-FID were identified easily by comparing with standards and the following Formula 1 is used to 

quantify the conversion.  
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Where 

Atotal = Total area of methyl ester peak from C14:0 to C18:3 

AISTD = Area of internal standard 

CISTD = Concentration of internal standard in mg/ml 

VISTD = Volume of internal standard in ml 

Msample = Mass of sample in mg 

 

 

3. RESULTS AND DISCUSSION 
 

The data from XRF in Table 1 shows that the catalyst is suitable for transesterification reaction since it contain high 

amount of potassium which can act as base catalyst. Meanwhile silica, the main active compund in DSBC act as the support 

for the catalyst. 

 

Table 1: XRF data of K+ impregnated SBC 
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Figure 5: Cycles vs Methyl ester content (wt.%).  Reaction conditions: 5 h, 7 wt. % catalyst amount and 12:1 methanol to oil 

ratio (wt/wt) 

 

4. CONCLUSION 
The catalyst show high activity under optimum condition of 5 hours of reaction time, 12:1 of methanol to oil molar ratio with 

7 wt.% of catalyst. The transesterification yields 91.8% methyl ester. Methyl ester was then analyzed using gas 

chromatography flame ionization detector (GC-FID). Therefore, magnetic composite catalyst is able to reuse 5 times and 

maintaining its activity at considerable ME content (70 ± 0.2 %). 
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