Bi-reforming of Methane with Steam and CO₂ over Ni/La-SBA-15 Catalyst for Synthesis Gas Production

Sharanjit Singh¹, Osaze Omoregbe¹, Bawadi Abdullah², Pham T. T. Phuong³, Quang Duc Truong⁴, Maksudur R. Khan¹, <u>Dai-Viet N. Vo</u>^{1,5,*}

¹Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

²Chemical Engineering Department, Universiti Teknologi PETRONAS, 31750, Tronoh, Perak, Malaysia

³Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Str., Dist.1, Ho Chi Minh City, Vietnam

⁴Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-

8577, Japan

⁵Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia

Bi-reforming of methane with steam and CO_2 has been emerged as an alluring reforming technique for syngas production with a desirable H_2/CO ratio close to 2, which is highly compatible for the industrial generation of methanol and Fischer-Tropsch chemicals. This study focuses on preparation, physicochemical attributes and the catalytic performance of 10% Ni/La-SBA-15 catalyst for the combined steam and dry reforming of methane. The La₂O₃-incorporated mesoporous silica support (La-SBA-15) previously prepared by one-pot hydrothermal method was doped with Ni(NO₃)₂ precursor solution using an incipient wetness impregnation approach to synthesize a 10%Ni/La-SBA-15 catalyst. Various characterization techniques including XRD, FTIR, BET, HR-TEM, H2-TPR and TPO measurements were employed to investigate the physicochemical properties of both fresh and spent catalysts. Bi-reforming of methane was carried out in a tubular fixed-bed reactor under atmospheric pressure at 923 K - 1023 K and $CH_4:CO_2:H_2O = 2:1:1$ with gas hourly space velocity (GHSV) of 36 L g_{cat}^{-1} h⁻¹. Although La-SBA-15 support possessed high BET surface area of 737.3 m² g⁻¹, an unavoidable decline in surface area with Ni metal addition to 535.4 m^2 g⁻¹ for 10%Ni/La-SBA-15 catalyst was evident indicating the diffusion of NiO nanoparticles into the mesopores of La-SBA-15 support. Indeed, H₂-TPR result shows that NiO particles present on support surface were reduced to metallic Ni⁰ phase at 675 K, while NiO species inhabited inside the mesoporous channels of support were completely reduced at higher reduction temperature of above 750 K due to strong metal-support interaction. Additionally, the presence of NiO phase with small average crystallite size of 17.4 nm was confirmed by X-ray diffraction measurement. The 10% Ni/La-SBA-15 catalyst exhibited stable activity and selectivity during the span of 12 h on-stream regardless of reaction temperature of 923-1023 K. Methane conversion increased with growing reaction temperature from 923 to 1023 K and reached to the highest value of about 55%. Interestingly, H₂/CO ratio also enhanced with rising temperature and it was always greater than 1. In addition, H_2 selectivity and yield were superior to those of CO. These observations would be due to the concomitant presence of CH_4 steam reforming reaction favored for H_2 formation.