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Abstract—In this paper, a new branch of computational intelligence named estimation-based metaheuristic is introduced. 
Metaheuristic algorithms can be classified based on their source of inspiration. Besides biology, physics and chemistry, state 
estimation algorithm also has become a source of inspiration for developing metaheuristic algorithms. Inspired by the 
estimation capability of Kalman Filter, Simulated Kalman Filter, SKF, uses a population of agents to make estimations of the 
optimum. Each agent in SKF acts as a Kalman Filter. By adapting the standard Kalman Filter framework, each individual 
agent finds an optimization solution by using a simulated measurement process that is guided by a best-so-far solution as a 
reference. Heuristic Kalman Algorithm (HKA) also is inspired by the Kalman Filter framework. HKA however, explicitly 
consider the optimization problem as a measurement process in generating the estimate of the optimum.  In evaluating the 
performance of the estimation-based algorithms, it is implemented to 30 benchmark functions of the CEC 2014 benchmark 
suite. Statistical analysis is then carried out to rank the estimation-based algorithms’ results to those obtained by other 
metaheuristic algorithms. The experimental results show that the estimation-based metaheuristic is a promising approach to 
solving global optimization problem and demonstrates a competitive performance to some well-known metaheuristic 
algorithms.  

Keywords— metaheuristic optimization; estimation-based; Kalman Filter; SKF; HKA  

 
1. INTRODUCTION 

 
Optimization is often required in solving engineering problems. The growing complexity of real-world engineering problems 
has turn engineers to metaheuristic methods to save on computation time [1]. The development and enhancement of 
metaheuristic algorithms are still very active, even after the introduction of No Free Lunch (NFL) theorems by Wolpert and 
Macready in 1997 [2]. Accepting the fact that the NFL theorems suggested that there are no universally better algorithms, the 
research now is focusing on designing or finding the best algorithms for at least most types of problems. The search is still 
ongoing, and thus making this field of study an open problem. 
 
Metaheuristic algorithms are general algorithms intended to solve global optimization problem in reasonable practical time. 
There are many ways of classifying metaheuristic algorithms. One way of classifying them is by looking at their source of 
inspiration [3]. The inspirations are typically related to nature. Genetic Algorithm [4] and Particle Swarm Optimization [5] for 
example, are classified as biological-inspired algorithms. Gravitational Search Algorithm [6] and Black Hole algorithm [7] on 
the other hand, are classified under physics/chemistry-inspired algorithms because they are inspired by the physical 
phenomenon of gravity and black hole respectively. Estimation-based method also has been a source of inspiration for some 
metaheuristic algorithms, thus can be considered as a new branch of metaheuristic algorithms classification. This type of 
algorithms mimics estimation algorithm in solving optimization problem.  
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A newly introduced estimation-based metaheuristic algorithm is Simulated Kalman Filter (SKF) [8]. This algorithm uses 
Kalman Filter [9], a state estimation algorithm as its source of inspiration. The SKF has been introduced initially to solve 
continuous, unimodal optimization problems. It has been recently tested for all benchmark functions of the CEC 2014 
benchmark suite by Ibrahim et al. [10]. Ever since its introduction, many enhancements and variations of SKF has been 
introduced. Md. Yusof et al. [11-13] have extended the SKF algorithm into three different versions of SKF algorithms to deal 
with combinatorial optimization problems. The discrete type SKF algorithm is proven to be a promising approach to solving 
Airport Gate Allocation Problems (AGAP) [14] and peak detection problem of EEG [15]. The first attempt to improve the SKF 
performance is by hybridizing the SKF algorithm with PSO algorithm [16]. This new SKF-PSO hybrid is found to be superior 
to both SKF and PSO algorithm individually. Another estimation-based metaheuristic algorithm is Heuristic Kalman Algorithm 
[17]. It is introduced by Toscano and Lyonnet back in 2009. HKA has found to be useful as a simple and effective tuning 
strategy for PID controllers [18].  
 
This paper is intended to study the effectiveness of estimation-based  metaheuristic algorithms in solving global optimization 
problems of CEC 2014, which includes unimodal, simple multimodal, hybrid and composition problems. The rest of this paper 
is organized as follows: Section 2 describes the foundation of Kalman Filter, followed by a brief comparison between the SKF 
algorithm with the HKA. Section 3 explains the experimental parameters in evaluating the performance of estimation-based 
metaheuristic algorithms. The experimental results and discussion are presented and discussed in Section 4. Finally, Section 5 
summarizes and concludes the paper. 
 
 

2. ESTIMATION-BASED METAHEURISTIC ALGORITHMS 
 
The Simulated Kalman Filter (SKF) and the Heuristic Kalman Algorithm (HKA) are two versions of estimation-based 
metaheuristic optimization algorithms inspired by the Kalman Filter estimation method. In this section, a brief description of 
Kalman Filter will be introduced followed by a brief comparison of SKF and HKA approaches in solving global optimization 
problems. 
 
2.1. Discrete Kalman Filter 
 
Discrete Kalman Filter is an efficient recursive filter, introduced by R. E. Kalman to estimate the state variable x , of a discrete 

time controlled process using a series of noisy measurements z . Let tx , be the state vector containing the system’s variable of 

interest at time t . In Kalman Filter model, tx , evolves from the previous time step 1tx - , in accordance to (1). 

1t t t t t tx A x Bu w-= + +   (1)  

where tA  is the state transition matrix, tB  is the control input matrix, tu  is the control input vector, and tw  is the process 

noise vector. At time t , the measurement vector tz , can be represented as (2). 

t t t tz H x v= +   (2)  

where tH  is the measurement matrix, and tv  is the measurement noise vector. 
 
Discrete Kalman Filter, as a recursive estimator, needs only the estimated state from the previous time step 1ˆtx - , and current 

measurement tz , to compute the estimate of the current state. At any given time, the state of the filter is represented by two 

variables, the state estimate x̂ , and the error covariance matrix P , as a measure of the estimated accuracy of the state 
estimate. Kalman Filter uses two sets of recursive equations. The first set of equations is called the time-update equations, 
whereas the second set of equations is called the measurement-update equations. Eq. (3) and (4) show the time-update 
equations that produce an estimate of the state at the current time step. The superscript (T) represents the transpose operation.  

| 1 1ˆ ˆt t t t t tx A x B u- -= +   (3)  

| 1 1
T

t t t t t tP AP A Q- -= +   (4)  

where | 1ˆt tx -  is the predicted state estimate, and | 1t tP -  is the predicted error covariance matrix, 1tP-  is the estimated error 

covariance matrix at previous time step, and tQ  is the process covariance matrix. The measurement-update equations are 
formulated as (5) and (6). 

( )| 1 | 1ˆ ˆ ˆt t t t t t t tx x K z H x- -= + -   (5)  
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(a) SKF principle [8]        (b) HKA principle [11] 
 

Figure 1: Principle comparison between SKF and HKA 
 

( ) | 1t t t t tP I K H P -= -   (6)  

where ˆtx  is the estimated state vector at time t , tP  is the estimated error covariance matrix at time t , and tK is called the 
Kalman gain. These measurement-update equations are employed to refine the state estimate by incorporating the current 
measurement into the predicted state estimate. The Kalman gain improves state estimate by minimizing the estimated error 
covariance during each iteration. In the Kalman Filter framework, the Kalman gain, tK , is computed as in (7). 

( ) 1| 1 | 1
T T

t t t t t t t t tK P H H P H R
-

- -= +          (7)  

where tR  is the measurement covariance matrix.  
 
2.2. Comparison of SKF with HKA 
 
Basically, both SKf and HKA algorithms belong to a population based stochastic optimization group of algorithms since both 
rely on collection of agents in finding the estimate of the optimum solution. Despites the obvious similarity, SKF and HKA 
follow different approaches in finding the estimate. In SKF, each agent acts as a Kalman Filter, thus making individual 
estimation with the help from a simulated measurement process that is led by the best-so-far solution. HKA on the other hand, 
attempts to find the estimate of the optimum by considering the optimization problem as a measurement process by keeping on 
modifying the distribution, thus leading to one estimation only per iteration. While HKA embraces the assumption of Gaussian 
distribution, SKF works in a distributed free setting. Figure 1 compares between principle of SKF with the HKA’s principle. 
 
Consider a population of 𝑁 agents with 𝑡 indicates the iteration number, in SKF, the estimated state of the thi  agent at time	𝑡, 

( )iX t  is given as (8). 

( ) ( ) ( ) ( ) ( ){ }1 2, ,..., ,...,d D
i i i i iX t x t x t x t x t=    (8)  

 
where ( )d

ix t  represents the estimated state of the thi  agent in the thd  dimension with D  is defined to be the maximum 

number of dimensions of the optimization problem. For HKA, for a collection of 𝑁  vectors distributed around the mean 

vector,	𝑚%, with a corresponding variance-covariance matrix, Σ% with 𝑘	indicates the iteration number, the ith vector generated 
at iteration 𝑘	is given by (9). 
 

qk
i = q1,k

i ...qd ,k
i ...qn,k

i{ }   (9)  

 

where qd ,k
i  represents the thi  vector in the thd  dimension with n  is defined to be the maximum number of dimensions of the 

optimization problem. In both cases, (8) and (9) is the input of the objective or cost function for fitness calculation. Table 1 
compares between the SKF algorithm with HKA. 
 

Objective Function
f(.)

Kalman Filter1 Measurement1

Kalman Filter2

Kalman FilterN

Measurement2

MeasurementN

X1

X = {X1,X2, ...,XN}

X2

XN

Xtrue

Z2

ZN

Z1
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Table 1: Pseudocode comparison between SKF and HKA. 
Simulated Kalman Filter (SKF) Heuristic Kalman Algorithm 

1. Initialization (X(0), P(0), Q, R) 
2. Fitness evaluation, and 𝑋)*+,(𝑡) and 𝑋,/0*  updates 
3. Prediction for current time step 
4. Simulated measurement 
5. Estimate for the next time step 
6. Check stopping condition 

1. Initialization (N, Nx, a, 𝑚1, Σ1) 
2. Generate sequence of N vectors using Gaussian random generator 
3. Measurement process 
4. Optimal estimation 
5. Initialization of the next time step 
6. Check stopping condtion 

 
During initialization, SKF randomly initialize the state estimate of a population of agents, X(0), over the search space in 
uniform distribution, and initialize the corresponding error covariance, P(0), the process noise, Q, and the measurement noise, 
R. HKA however, initialize the initial parameters of the Gaussian generator, which are the mean, 𝑚1, and variance-covariance, 
Σ1, for 𝑁 number of points based on the lower bound and the upper bound the search space. Using that information, HKA 
generates a sequence of 𝑁 vectors in normal distribution. Besides that, HKA needs to defne the number of best candidates, Nx, 
and also the slowdown coefficient, a. 
 
Then, the fitness of each agent is evaluated. This information is used by SKF to update the 𝑋)*+,(𝑡) and 𝑋,/0* information to 
lead the search. The search in SKF consist of predict, measure and estimate step. The predict and estimate steps in SKF follow 
the standard Kalman Filter framework, with the measurement being simulated using (10).  
 

Zi (t) = Xi (t | t +1) + sin rand × 2π( )× Xi (t | t +1) − Xtrue    (10)  

 
where Xi (t | t +1)  represents the current state estimate of the prediction step and Xtrue  is the best-so-far solution that is 

leading the search process. As the best so far solution, Xtrue will only be updated if ( )bestX t  gives a better solution than 

trueX ( ( )bestX t < trueX  for minimization problem, or ( )bestX t > trueX  for maximization problem). In minimization problem, 

Xbest t( )  is given by (11), while for maximization problem, ( )bestX t  is represented by (12). 

 
( ) ( )( )

1,2,...,
minbest ii N

X t fit X t
Î

=                                                             (11)  

( ) ( )( )
1,2,...,
maxbest ii N

X t fit X t
Î

=                                                             (12)  

 

In HKA, the fitness information is used in the measurement process where the average of the best candidates for k th iteration is 
used as a measurement value given by (13). 
 

𝜉% =
4
5x

𝑞%7
5x
784                                                                   (13)  

 
Note that the best candidates in HKA are those which has the smallest cost function for minimization problem and the highest 
cost function for the maximization problem. The corresponding variance-covariance matrix, 𝑉%,	also being calculated by 
finding the average for the diagonal elements. The diagonal elements of 𝑉% is represented by 𝑣𝑒𝑐>(𝑉%)  and is given by (14). 
 

𝑣𝑒𝑐>(𝑉%) =
4
5x

(𝑞?,%7 − x?,%)
A5x

784    (14)  

 
In the estimation of HKA, a slowdown coefficient, a, is used in the calculation of Kalman gain to avoid the estimator to 
converge too fast. The prior estimation before the measurement is then combined with the measurement, 𝜉%, to come out with 
an optimal posterior estimation. At iteration 𝑘, the posterior estimated mean, 𝑚%, and its variance-covariance matrix, Σ%, are 
then used to initialize the random generator for the next time step 𝑘 + 1. 
 
The stochastic element in SKF comes from the random initialization of the state estimate of the agents and also a uniformly 
distributed random value 𝑟𝑎𝑛𝑑 in the simulated measurement equation. Equation (10) is used as the balancing mechanism 
between exploration and exploitation in SKF. In HKA however, the stochastic element only comes from the Gaussian random 
generator. Due to this, HKA can be seen as an evolutionary computation algorithm.  
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3. EXPERIMENTS 
 
In order to test and validate the SKF algorithm, it is coded in MATLAB and implemented to all unimodal, simple multimodal 
functions, hybrid functions and composition functions of the CEC 2014 benchmark suite [19]. Note that all the benchmark 
functions in the CEC 2014 benchmark suite are minimization problems. The benchmark test functions in MATLAB are 
available online at: http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014. 
 
Similar to [8] the performance of SKF and HKA for unimodal, simple multimodal, hybrid and composition functions is 
benchmarked against physics-based metaheuristics, which are Gravitational Search Algorithm (GSA), and Black Hole (BH) 
algorithm. All these algorithms were implemented in the same platform and subjected to the same initial and experimental 
settings. Specifically, for the SKF initial parameters, the initial error covariance, P(0), was set to 1000, and the process noise, 
Q, and the measurement noise, R, were set to 0.5. For HKA, the number of best candidates, Nx, is set to 10 and also the 
slowdown coefficient, a is set to 0.9 following the original setting of HKA. In terms of experimental parameters, all algorithms 
use 100 numbers of agents, and 2,000 maximum iterations, 50 dimensions, and 50 run times were selected.  
 
For comparison purposes, the mean fitness and standard deviation of all the algorithms for each benchmark function were 
computed. Friedman and Holm statistical tests were then carried out to compare the performance of the SKF algorithm to the 
other metaheuristics. Friedman test was chosen rank the algorithms’ performance overall benchmark functions while Holm test 
was responsible to test the 5% significant difference between the algorithms.  
 
 

4. RESULTS AND DISCUSSION 
 
In this section, the results of SKF performance over the 30 benchmark functions of CEC 2014 are presented and discussed. 
Table 2 shows the mean and standard deviation values for all the four algorithms for every benchmark function. The best 
solution for each benchmark function is marked in bold.  
 
From Table 2, it can be seen that estimation-based metaheuristic algorithms which are SKF and HKA produce the best result 
for all 3 unimodal functions as presented in [8]. SKF and HKA also perform excellently at simple multimodal functions by 
leading all but 3 out of the 14 simple multimodal functions. Even for the 3 functions, they are lagging by just a few decimal 
points. Estimation-based metaheuristic algorithms also shown a competitive performance of hybrid and composition functions 
by leading 2 out of 6 in hybrid functions and 3 out of 8 in composition functions. They also produce a consistent performance 
looking at the small standard deviation value over the 50 runs for all function types, especially for HKA because the Gaussian 
spread of the estimated optimum tends to decrease over time. 
 
Estimation-based metaheuristic algorithms also have a high convergence rate. This characteristic allows SKF and HKA 
algorithms to reach the global optimum faster than GSA and BH algorithms. The convergence curves for selected functions are 
shown in Fig. 2 for comparison.  
 
Statistically, Friedman statistic considering reduction performance distributed according to chi-square value of 15.93 with 3 
degrees of freedom ranked SKF behind HKA, followed by GSA and then BH (see Table 3). Then, by using NxN post-hoc test 
at 5% significance level, Holm’s procedure shows that SKF performance is on par to all algorithm as shown in Table 4. HKA 
on the other hand, outperform BH while performing on par with SKF and GSA. Note that for 5% significance level, Holm’s 
procedure only rejects hypotheses that have an unadjusted p - value that is less than or equal to 0.01. These statistical results 
show that estimation-based metaheuristics is a very promising approach not only for unimodal optimization problems as in 
[10], but also for simple multimodal problems, hybrid and composition based problems. 

 
5. CONCLUSION 

 
In this paper, a new classification of population-based metaheuristic optimization algorithms named estimation-based 
metaheuristic optimization is introduced. At the moment, there are already two algorithms parked under this new classification, 
the Simulated Kalman Filter (SKF) and the Heuristic Kalman Algorithm (HKA). Both algorithms takes inspiration from 
Kalman Filter, a well-known and effective state estimation algorithm. In evaluating the algorithms’ performance under this 
proposed classification, the CEC 2014’s benchmark suite has been used and the results are compared against physics-based 
algorithms, specifically the Gravitational Search Algorithm (GSA) and the Black Hole (BH) algorithms. Experimental results 
obtained show that SKF and HKA are able to converge to near optimal solution for all benchmark problems. Statistical analysis 
confirms that estimation-based metaheuristics is a promising approach and able to give a competitive performance compared to 
some well-known metaheuristic algorithms such as GSA and BH. 
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Table 2: Experimental results comparison of SKF and HKA with GSA and BH. 
Function Type Function Name   SKF HKA GSA BH 

Unimodal 

Rotated High Conditioned Elliptic Function Mean 1.74E+07 3.37E+07 6.91E+07 3.85E+07 
Std Dev. 8.10E+06 1.08E+07 1.05E+08 6.57E+06 

Rotated Bent Cigar Function Mean 1.84E+07 1.22E+05 1.23E+08 1.48E+09 
Std Dev. 4.71E+07 1.31E+05 1.75E+08 2.98E+08 

Rotated Discus Function Mean 16118 1.93E+05 1.38E+05 43235 
Std Dev. 7267.2 24687 7777.9 6400.9 

Simple  
Multimodal 

Shifted and Rotated Rosenbrock’s Function Mean 626.23 448.04 878.73 986.62 
Std Dev. 45.257 0.51159 179.07 78.542 

Shifted and Rotated Ackley’s Function Mean 520.01 520.28 520 520.04 
Std Dev. 0.012199 0.11817 9.80E-05 0.045258 

Shifted and Rotated Weierstrass Function Mean 631.96 601.62 647.96 659.47 
Std Dev. 3.8817 0.30997 2.7796 5.3889 

Shifted and Rotated Griewank’s Function Mean 701.26 700.16 702.1 718.59 
Std Dev. 1.633 0.087132 1.715 3.2368 

Shifted Rastrigin’s Function Mean 822.54 823.71 1076.5 996.49 
Std Dev. 7.0145 0.087132 12.326 23.093 

Shifted and Rotated Rastrigin’s Function Mean 1059.6 923.72 1250.7 1224.9 
Std Dev. 30.575 5.0596 20.682 45.742 

Shifted Schwefel’s Function Mean 1426.2 1399.3 8193.2 5125 
Std Dev. 241.74 288.29 616.14 771.4 

Shifted and Rotated Schwefel’s Function Mean 6203.8 1928.6 9275.7 8614.5 
Std Dev. 893.56 383.71 654.93 978.07 

Shifted and Rotated Katsuura Function Mean 1200.2 1200.1 1200 1200.8 
Std Dev. 893.56 383.71 0.0018287 0.2567 

Shifted and Rotated HappyCat Function Mean 1300.6 1300.2 1300.5 1300.6 
Std Dev. 893.56 383.71 0.039138 0.04008 

Shifted and Rotated HGBat Function Mean 1400.3 1400.4 1400.3 1400.3 
Std Dev. 893.56 383.71 0.022578 0.012858 

Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function Mean 1556.7 1511.7 1765.9 1898.6 
Std Dev. 893.56 1.9554 76.912 0.012858 

Shifted and Rotated Expanded Scaffer’s F6 Function Mean 1619.4 1618.2 1622.5 1621.9 
Std Dev. 0.83349 0.80653 0.27252 0.63537 

Hybrid 

Hybrid Function 1 (N=3) Mean 2.82E+06 4.35E+06 2.18E+06 3.29E+06 
Std Dev. 1.47E+06 2.12E+06 9.80E+05 1.15E+06 

Hybrid Function 2 (N=3) Mean 9.00E+06 34168 6.93E+07 26431 
Std Dev. 2.86E+07 36366 2.06E+08 47098 

Hybrid Function 3 (N=4) Mean 1958.3 1920.7 1944 1969.1 
Std Dev. 29.325 1.0411 21.358 31.328 

Hybrid Function 4 (N=4) Mean 35668 1.49E+05 59216 25431 
Std Dev. 17120 70721 21.358 8715.3 

Hybrid Function 5 (N=5) Mean 3.11E+06 2.55E+06 1.85E+06 2.21E+06 
Std Dev. 1.85E+06 1.27E+06 4.32E+05 1.11E+06 

Hybrid Function 6 (N=5) Mean 3473.4 2351.3 4133.9 3873.1 
Std Dev. 314.15 88.84 310.67 332.21 

Composition 

Composition Function 1 (N=5) Mean 2649.3 2649.3 2500 2677 
Std Dev. 5.3598 1.712 1.02E-08 3.5418 

Composition Function 2 (N=3) Mean 2666.5 2664.4 2600.1 2676.9 
Std Dev. 5.7677 0.25106 0.021272 9.6875 

Composition Function 3 (N=3) Mean 2731.7 2706.8 2700 2748.2 
Std Dev. 3.6712 1.7408 1.86E-10 8.9883 

Composition Function 4 (N=5) Mean 2792.9 2727.8 2800.1 2794.4 
Std Dev. 27.529 47.03 0.016801 23.965 

Composition Function 5 (N=5) Mean 3905.2 3053.7 4789 4758.6 
Std Dev. 117.81 47.03 0.016801 161.39 

Composition Function 6 (N=5) Mean 6934.6 3199.4 6083.9 11210 
Std Dev. 850.33 31.11 967.91 1145.9 

Composition Function 7 (N=3) Mean 19573 3125.6 3100.2 18384 
Std Dev. 62411 31.11 0.014704 15797 

Composition Function 8 (N=3) Mean 25821 3893.6 3200 2.05E+05 
Std Dev. 7629 31.11 0.0010457 38604 
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(a) Function 1 (Unimodal benchmark function) (b) Function 5 (Simple multimodal benchmark function) 

  
(c) Function 19 (Hybrid benchmark function)  (d) Function 26 (Composition benchmark function) 

Figure 2: Selected convergence curves comparison. 
 
 

Table 3: Friedman average ranking of the algorithms. 
Algorithm Ranking 

SKF 2.3333 
HKA 1.8333 
GSA 2.6000 
BH 3.1833 

 
Table 4: Post-hoc Holm’s analysis. 

Algorithms z p Holm 

HKA vs BH 3.90 0.000096 0.008333 
SKF vs BH 2.55 0.010772 0.01 

HKA vs GSA 2.15 0.031555 0.0125 
GSA vs BH 1.75 0.080118 0.016667 

SKF vs HKA 1.35 0.177016 0.025 
SKF vs GSA 0.80 0.423711 0.05 
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