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1. INTRODUCTION 

 

Epilepsy is a general term referring to a type of brain disorder that is characterized by 

seizures. Formally, it is defined by the Commission on Epidemiology and Prognosis and 

ABSTRACT: Electroencephalograph is one of the useful and favoured instruments in 
diagnosing various brain disorders especially in epilepsy due to its non-invasive 

characteristic and ability in providing wealthy information about brain functions. To 

study epilepsy more effectively, a flattening method called Flat Electroencephalography 
was invented to view EEG signals on the real plane for further analysis. This novel 

method is well known for its ability to preserves the orientation and magnitude of EEG 

sensors and signals. As such, it certainly contains affluent information about seizure 
process. Since both events of epileptic seizure and Flat EEG are continuous processes, its 

states connectivity will be explored topologically. Generally, this paper study the 

topological properties of Flat Electroencephalography. In addition, the topology on the 

space of diffeomorphism of the dynamical systems of Flat Electroencephalography will 
also be studied. 
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International League Against Epilepsy 1993 as “the occurrence of at least two unprovoked 

seizure” [1], that is, it usually occur more than once and is not prompted. This brain disorder 

is not contagious i.e., cannot be transmit or spread from one person to another. However, it 

can happen to anyone in the world at any age and regardless of gender. Statistically, the 

number of people with epilepsy in the world is at least 50 million in total which is roughly 

1.5% of the world populations [2]. 

During epilepsy, a miniature brainstorm take place within human brain by a group of brain 

cells called neurons. The electrical potential produce by these neurons are recordable non-

invasively via electroencephalogram. In other words, recorded electrical potentials on EEG 

are the reflection of neuronal activity inside the brain [3]. This harmless and painless 

electrophysiological process are referred as electroencephalography and recorded signals are 

often portrayed on an electroencephalograph (EEG signal) for further analysis. 

EEG is used extensively to diagnose epilepsies, classify the type of seizure occurring and 

locate the source of electrical activity [4] (Figure 1). According to [5, 6 and 7], this is one of 

the most important laboratory tests in identifying epilepsies. Perhaps the best reason for its 

wide acceptance is that EEG allows neurologists to analyze and locate damaged brain tissue 

and also to make planning prior to surgery to avoid or lessen the risk of injury on important 

parts of the brain. Recently, obtaining the graphic electrical activity inside the brain has in 

general become a necessary part of surgical [8]. 

 

 
Figure 1 EEG signal 

 

 

2. LITERATURE REVIEW 

 

Two of the methods of controlling or stopping seizures are by taking anticonvulsant 

medications and undergo surgery. The former method is challenging in terms of finding the 
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exact combinations of medications and dosage. Besides, this method is not promising because 

some seizures can still failed to be controlled in spite with the best available medication. 

Moreover, anticonvulsant medications carry undesired side effect [9, 10]. Frequently, it 

adversely affects the cognitive ability of patients (Bennett, 1992). Consequently, some 

patients choose to undergo epilepsy surgery. As a matter of fact, neurologists often suggest 

surgery as the best solution. The target of this method is to remove problematic epileptogenic 

tissue while sparing essential brain areas to avoid neurologic deficits. Therefore, knowing the 

exact location of problematic cells i.e., epileptic foci is crucial. 

Various research using different concepts and techniques to identify epileptic foci has been 

established in the interest of creating better life for epileptic patients. For examples, via 

multimodality approach [12], by using large-area magnetometer and functional brain anatomy 

[13], examining correlations among electrodes captured by linear, nonlinear and multi linear 

data analysis technique [14], 3-D source localization of epileptic foci by integrating EEG and 

MRI data [15] and even approaches that are based on statistical tools such as Bayesian 

method [16] and maximum likelihood estimation approach by Jan et al. [17]. Each of the 

methods has their own advantages and weaknesses. 

Fuzzy Topographic Topological Mapping (FTTM) is a fuzzy and topological based model 

for solving neuromagnetic inverse problem (Figure 2). Consisting of four components i.e., 

Magnetic Contour Plane (MC), Base Magnetic Plane (BM), Fuzzy Magnetic Field (FM) and 

Topographic Magnetic Field (TM), each of these components are homeomorphic to one 

another [18]. For a recorded data, the model is capable of portraying current sources 

topographically in three dimensions space. The advantage of this method is that, it does not 

need priori information and it is not time consuming [19]. 

 

 
Figure 2 FTTM 
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To study the brain disorder more effectively, a novel method called Flat 

electroencephalography (Flat EEG) (Figure 3) was invented to view EEG signals on the first 

component of Fuzzy Topographic Topological Mapping (FTTM). Thus, theoretically, by 

FTTM model, EEG signals can be portrayed in 3-dimension space. Built in [20] this method 

consists of a flattening procedure (a stereographic projection) which serves as the 

transformation from EEG to MC (Figure 4). The main scientific value of this method lies in 

its ability to preserve the orientation and magnitude of EEG signals to MC, allowing it to be 

compressed and analyzed. 

 

 
Figure 3 A random Flat EEG 

 

 

 
Figure 4 Stereographic projection 
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Basically, Flat EEG is a platform which enables EEG signals be studied on the Cartesian 

plane mathematically, hence allowing the extraction of “hidden” information within EEG 

signals that cannot be obtained by traditional visual inspection. Furthermore, characteristics 

and properties obtained from this platform can be used to describe epileptic seizure since 

epileptic seizure and Flat EEG are topologically conjugated [21] (Figure 5). 

 

 
Figure 5 Pictorial representation of topological conjugacy. 

 

 

There have been numerous researches utilizing various mathematical tools to visualize and 

extract “hidden” information within EEG signals via Flat EEG on a particular frame (or time) 

with promising outcome. For instance, implementation of Fuzzy C-Means (FCM) on Flat 

EEG enables one to compute the number of cluster centers along with its locations, hence 

made tracking brainstorm during epileptic seizure possible [20]. 

Apart from that, the algebraic study on Flat EEG demonstrates not only the possibility of 

transforming Flat EEG from one mathematical structure to another i.e., from topological to 

algebraic but also shows that Flat EEG can be decomposed into semigroup of upper triangular 

matrices under matrix multiplication and hence revealing that patterns exist in epileptic 

seizure process rather than chaotic [22]. 

Furthermore, study on the dynamic structure of Flat EEG, in particular, its structural 

stability from topological viewpoint, proves that Flat EEG in the presence of artifacts could 

still offer significant descriptions of electrical activities in the brain during seizure attack [23]. 

All this signifies that Flat EEG is a worthy platform to study epileptic seizure (Figure 6). 
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Figure 6 A structurally stable diffeomorphism f in   rC

nrDiff , . 

 

 

The event of epileptic seizure and Flat EEG are continuous processes. This is evident from 

the embedment of time parameter in the processes. As a matter of fact, they can be modelled 

generally as dynamical systems [21]. To date, the connectivity of the states in the events has 

not been studied. Furthermore, compactness is one of the topological properties that are 

preserved by homeomorphism. This notion is defined via open covering. Metrizable spaces 

and compact Hausdorff spaces are two of the well-behaved classes of spaces to deal in 

mathematics. This is due to the many useful properties they display, which can be used in 

proving theorems. Thusly, in this study, the events will be explored topologically, 

anticipating several characteristic of the events to be revealed. 

 

 

3. MATERIAL AND METHODS  

 

Consider the flow of Flat EEG modelled in [21]: 

 

 t y
 
where : Y Y    such that the following two properties are fulfilled: 

 i.  0

ny y y Y     , and 

 ii. for all t  and s  

  t s t s     

http://creativecommons.org/licenses/by/4.0/
http://ijseries.com/
http://creativecommons.org/licenses/by/4.0/


  

 

International Journal Series in Multidisciplinary Research (IJSMR),  
Vol. 2, No. 2, 2016, 14-26  

ISSN: 2455–2461 

http://ijseries.com/ 
 

 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

20 

Here, for any n

ky Y  ,  t y  is generally defined as  i k iy y   i.e., the state of the system 

which initiate from 
ky  at time i  is 

iy . 

 

 Basically, for each n

ky Y  , the flow of Flat EEG defines an event of Flat EEG 

(EoFE). Before going any further, we introduce the following notations 

 

   
 

kytkt OyO


 ,  - An EoFE with order topology 

 

Theorem 1 (Davis, 2005): Every metrizable space is Hausdorff [25]. 

 

Theorem 3 (Davis, 2005): Every metrizable space is paracompact [25]. 

 

Theorem 3 (Davis, 2005): Every metrizable space is normal [25]. 

 

Theorem 4 (Smirnov Metrization Theorem): A space X  is metrizable if and only if it is a 

paracompact Hausdorff space that is locally metrizable. 

 

Theorem 5 (Nagata-Smirnov Metrization Theorem): A space X  is locally metrizable if and 

only if X  is regular and has a basis that is countable locally finite. 

 

Theorem 6 (Kelly, 1975): Every locally compact Hausdorff space is a Tychonoff space. [26] 

 

Theorem 7:    
 

kytkt OyO


 ,  is Hausdorff. 

Proof: Every metrizable space is Hausdorff (Theorem 1). Since    
 

kytkt OyO


 ,  is metrizable, 

it is Hausdorff. ■ 

 

Theorem 8:    
 

kytkt OyO


 ,  is paracompact. 

Proof: Every metrizable space is paracompact (Theorem 2). Since    
 

kytkt OyO


 ,  is 

metrizable, it is paracompact. ■ 
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Theorem 9:    
 

kytkt OyO


 ,  is normal. 

Proof: Every metrizable space is normal (Theorem 3). Since    
 

kytkt OyO


 ,  is metrizable, it 

is normal. ■ 

 

Theorem 10:    
 

kytkt OyO


 ,  is locally metrizable. 

Proof: By Smirnov Metrization Theorem, Theorem 8 and Theorem 9. ■ 

 

Theorem 11:    
 

kytkt OyO


 ,  is regular and has a basis that is countable locally finite. 

Proof: By Nagata-Smirnov Metrization Theorem. ■ 

 

Theorem 12:    
 

kytkt OyO


 ,  is locally compact. 

Proof: For each point  kt yi Ox  , there exist points  kt xji Oxx ,  where kij  , such that 

ix  lies in the open interval  kj xx ,  which in turn is contained in the closed and bounded 

(hence compact) neighborhood  kj xx , .■ 

 

Theorem 13:    
 

kytkt OyO


 ,  is a Tychonoff space. 

Proof: Since    
 

kytkt OyO


 ,  is a locally compact Hausdorff space (by Theorem 6, 7, and 12). 

■ 

In the following, the coincidence of the topology defined by using weak subbasis and 

subspace topology on the set of diffeomorphisms   1

 mrDiff  i.e., the space of all dynamical 

systems of Flat EEG will be showed. Firstly, consider the definition of weak topology or rC  

compact-open topology 

 

Definition 1 (Morris, 1994): Let  11 ,   mmrCg ;  U,  and  V,  be charts on 1m  and 

1m ; UK   be a compact set such that   VKg  ; and  0 . Define the weak subbasis 

neighborhood [27] 

 

     ,,,,,; KVUgN r  
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to be the set of rC  maps 11:   mmk  such that   VKk   and 

 

         xkDxgD kk 11  

 

for all  Kx  , rk ,...,3,2,1,0  

 

Then the weak (or rC  compact-open) topology on the set  11,   mmrC  is generated by the 

weak subbasis neighborhood. 

 

Let this topology be denoted as  11 ,   mmrC
 , and an element of it as  , then 

 

       



























 
   

1 1
,

,,,,,;|11

i

n

j

j

r

C
KVUgNmmr       (1) 

 

where  11 ,   mmrCg ;  U,  and  V,  be charts on 1m  and 1m ; UK   be a compact set 

such that   VKg  ; and  0  

 

In other words, elements in  11 ,   mmrC
  is the unions of finite intersections of the weak subbasis 

     ,,,,,; KVUgN r . 

Next, denote the flow of Flat EEG as f , then the set  1

 mrDiff  such that 

     1111 , 

  mmrmrmr CDiffDifff  can be regarded as the set of all rC -

diffeomorphism where all these diffeomorphism are assumed to have no periodic trajectory, 

have the same number of trajectories and equilibrium points. 

Since the interest is on the set of diffeomorphisms i.e.,  1

 mrDiff , a new topology must be 

defined. This topology can obtained by using subspace topology which can be defined as 

follow 

 

      111 ,

1 ,: 
 




 mmrmr C

mr

Diff
Diff       (2) 
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Notice that the topology which starts from defining weak subbasis on the set  1

 mrDiff  

will be the same as the subspace topology. Formally, the weak subbasis on the set  1

 mrDiff  

can be formulated as follow 

 

Let  1

  mrDiffg ;  U,  and  V,  be charts on 1m  and 1m ; UK   be a compact set such 

that   VKg  ; and  0 . Define the weak subbasis neighborhood 

 

     ,,,,,; KVUgN r  

 

to be the set of rC  maps 11:   mmk  such that   VKk   and 

 

         xkDxgD kk 11  

 

for all  Kx  , rk ,...,3,2,1,0  

 

Then the weak (or rC  compact-open) topology on the set  1

 mrDiff  is generated by the weak 

subbasis neighborhood. 

 

Briefly, this topology can be defined as 

 

       



























 
 


 

1 1

,,,,,;|1

i

n

j

j

r

Diff
KVUgNmr       (3) 

 

where  1

  mrDiffg ;  U,  and  V,  be charts on 1m  and 1m ; UK   be a compact set 

such that   VKg  ; and  0  

The following theorem proves our claim that topology which starts from defining weak 

subbasis on the set  1

 mrDiff  will be the same as the subspace topology 

 

Theorem 1:           



























 




   
1 1

,

1 ,,,,,;|,: 11

i

n

j

j

r

C

mr KVUgNDiff mmr   
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Proof: 

 

    11 ,

1 ,:  



  mmrC

mrDiff   

         


























  





 

11 ,

1

1 1

,:,,,,,; mmrC

mr

i

n

j

j

r DiffKVUgN      by (1) 

  1: 

  mrDiffsomefor    since        















 

 
1 1

,,,,,;
i

n

j

j

r KVUgN  

             


























 



 

1

1 1

,,,,,;:,,,,,; mr

j

r

i

n

j

j

r DiffKVUgNsomeforKVUgN    

     



























 

 
1 1

,,,,,;|
i

n

j

j

r KVUgN  .■ 

 

 

6. CONCLUSION 

 

In this paper, several topological properties on the event of Flat EEG has been established. 

Generally, the event of Flat EEG are well behaved. Futhermore, the topology defined via the 

weak subbasis on the set of all diffeomorphism containing the dynamical system of Flat EEG 

will be the same as its subspace topology. 
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