Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment

Weerana, Eh Kan and Jamil, Roslan and Ruzinah, Isha (2016) Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2). pp. 230-237. ISSN 1978-2993. (Published)

[img]
Preview
PDF
Effect of Calcination Temperature on Performance.pdf
Available under License Creative Commons Attribution Share Alike.

Download (391kB) | Preview

Abstract

Conservative desalination technology including distillation requires high energy and cost to operate. Hence, pretreatment process can be done prior to desalination to overcome energy demand and cost reduction. Objective of this research is to study the effect of calcination temperature of hybrid catalyst in photocatalytic reactor system in the seawater desalination, i.e. salt removal in the seawater. The catalyst was synthesized via wet impregnation method with 1:1 weight ratio of TiO2 and activated oil palm fiber ash (Ti:Ash). The catalyst was calcined at different temperature, i.e. 500 oC and 800 oC. The study was carried out in a one liter Borosilicate photoreactor equipped with mercury light of 365 nanometers for two hours with 400 rpm mixing and catalyst to seawater sample weight ratio of 1:400. The Chemical Oxygen Demand (COD), pH, dissolved oxygen (DO), turbidity and conductivity of the seawater were analyzed prior and after the testing. The fresh and spent catalysts were characterized via X-Ray Diffractogram (XRD and Nitrogen physisorption analysis. The calcination temperature significantly influenced the adsorption behaviour and photocatalytic activity. However, Ti:Ash which calcined at 800 oC has less photocatalytic activity. It might be because the surface of fiber ash was sintered after calcined at high temperature. The Ti:Ash catalyst that calcined at 500 oC was found to be the most effective catalyst in the desalination of seawater by reducing the salt concentration of more than 9 % compared to Ti:Ash calcined at 800 oC. It can be concluded that catalyst calcination at 500 °C has better character, performance and economically feasible catalyst for seawater desalination.

Item Type: Article
Uncontrolled Keywords: Pre-treatment; Oil palm waste; photocatalyst; Seawater; Titanium Dioxide
Subjects: T Technology > TP Chemical technology
Faculty/Division: Faculty of Chemical & Natural Resources Engineering
Institute of Postgraduate Studies
Depositing User: Mrs. Neng Sury Sulaiman
Date Deposited: 10 Oct 2016 07:06
Last Modified: 21 Feb 2020 03:45
URI: http://umpir.ump.edu.my/id/eprint/14676
Download Statistic: View Download Statistics

Actions (login required)

View Item View Item