Renewable Syngas Production from Thermal Cracking of Glycerol over Praseodymium-Promoted Ni/Al2O3 Catalyst

Mohd Nasir Nor Shahirah^{a, b}, Bamidele V. Ayodele^{a, b}, Jolius Gimbun^{a, b}, Su Shiung Lam^c, Chin Kui Cheng^{a, b}

^aFaculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

^bCentre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

^cEastern Corridor Renewable Energy Group (ECRE), School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

ABSTRACT

In this study, the kinetics of glycerol pyrolysis over a $3wt\%Pr-20wt\%Ni/77wt\%\alpha-Al_2O_3$ catalyst was investigated. The catalyst was synthesized via wet-impregnation method and was characterized using temperature-programmed calcination (TPC), temperature-programmed reduction (TPR), N₂-physisorption, FESEM imaging, X-ray diffraction and CO₂-/NH₃-temperature-programmed desorption (TPD). The catalytic activity of the as-synthesized 3 wt% Pr-Ni/ α -Al₂O₃ catalyst was evaluated in a stainless steel fixed bed reactor at temperatures that ranged from 973 K to 1073 K and a weighthourly-space-velocity (WHSV) of 4.5×10^4 ml g⁻¹ h⁻¹ under the atmospheric condition. The main gaseous products from catalytic glycerol pyrolysis were H₂, CO, CO₂ and CH₄(descending ranking) with the highest H₂ formation rate and H₂ yield of 0.02593 mol g cat⁻¹ s⁻¹ and 29.04%, respectively. The analysis of the kinetic data obtained from the glycerol pyrolysis showed activation energy of 37.36 kJ mol⁻¹. Based on the mechanistic modeling, it can be deduced that the rate determining step of the glycerol pyrolysis was via a single site associative adsorption with molecular surface reaction as the rate-determining step.

KEYWORDS

Glycerol; Kinetics; Nickel; Praseodymium; Pyrolysis; Syngas

Doi: 10.1016/j.applthermaleng.2016.10.126