

A New Approach for Dimensional Optimization of Inverters in 6T-Static Random-Access Memory Cell Based on Silicon Nanowire Transistor

Author: Hashim, Yasir

Source: Journal of Nanoscience and Nanotechnology, Volume 17, Number 2, February 2017, pp. 1061-1067(7) Publisher: American Scientific Publishers DOI: https://doi.org/10.1166/jnn.2017.12608

< previous	article vie	view table of contents		next article >			ADD TO FAVOURITES
 Abstract	References	55 Citations	Supplem	entary Data	C Data/Media	Metrics	

This study explores dimensional optimization at different high logic-level voltages for six silicon nanowire transistor (SiNWT)-based static random-access memory (SRAM) cell. This study is the first to demonstrate diameter and length of nanowires with different logic voltage level (V_{dd} optimizations of nanoscale SiNWT-based SRAM cell. Noise margins and inflection voltage of butterfly characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on nanowire dimensions and V_{dd} . The increase in V_{dd} from 1 V to 3 V tends to decrease the dimensions of the optimized nanowires but increases the current and power. SRAM using nanowire transistors must use V_{dd} of 2 or 2.5 V to produce SRAM with lower dimensions, inflection currents, and power consumption.

Keywords: CMOS; Digital Inverter; Nanowire; SRAM; SiNWT

Document Type: Research Article

Affiliations: Faculty of Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Pahang, Malaysia

Publication date: February 1, 2017