WATERMARKING OF SINGLE AND MULTI FRAME ULTRASOUND MEDICAL IMAGES

GRAN BADSHAH

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science

Faculty of Computer Systems and Software Engineering UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2016

ABSTRACT

Digital communication of medical images may cause image manipulation for nonmandatory purposes. The originality of single and multi-frame medical images is strictly required to be used for patient health recovery. Watermarking is one of the latest security techniques, which can be used for protection of digital images. This dissertation has focused on watermarking of grayscale eight bits single and multi-frame ultrasound medical images. Watermarking of a medical image with heavy payload causes image degradation and directly affects patient diagnosis. Therefore, watermark must be lossless compressed to reduce its size without data loss. In the past Lempel-Ziv Welch (LZW) has been used for text, image pixel data lossless compression and in this research we extend this technique to binary watermark lossless compression to enhance the performance of region based watermarking techniques. In region based watermarking, an image is divided into region of interest (ROI) and region of noninterest (RONI). LZW compressed watermark based, a new region based watermarking scheme, tamper detection and recovery watermarking of medical images (TDARWMI) is developed. Produced results of the scheme are compared with those of other watermarking schemes and are found better in compression ratio, PSNR of watermarked and recovered images. In region based watermarking schemes, the tamper detection and recovery is restricted to ROI, while rest of the image remains under security threats. Possible wrong selection of ROI is another limitation of region based watermarking schemes. Non-proper selection of ROI may create problems during recovery at destination and can affect the required analysis. Therefore, another watermarking scheme, whole image authentication, tampers detection, localization and complete recovery (WIATDACR) is developed to provide security to a complete image. The LZW compressed watermark is embedded into image's ROI and RONI parts randomly. At destination, watermark is extracted and used for image authentication, tampers detection, localization and lossless recovery. This scheme can locate tampers occurred at any part of image and can perform recovery without data loss. The signature based security technique of DICOM multi-frame images has deficiency in tamper detection and recovery. Multi-frame image authentication, tamper detection, localization and recovery (MFATDLAR) watermarking scheme is formulated to facilitate a DICOM image's frame-wise authentication, tamper detection and lossless recovery. In this scheme the watermark of every frame is prepared, compressed and encapsulated into respective frame's RONI part. At destination the extracted watermark is used for the frame's authentication, tamper detection, localization and lossless recovery.

ABSTRAK

Komunikasi digital imej perubatan boleh menyebabkan manipulasi imej untuk tujuan bukan mandatori. Tunggal dan multi-frame imej perubatan keaslian adalah dilarang sama perlu digunakan untuk pemulihan kesihatan pesakit. Watermarking adalah salah satu teknik keselamatan yang terkini, boleh digunakan untuk perlindungan imej digital. Disertasi ini telah memberi tumpuan kepada watermarking skala kelabu lapan bit tunggal dan multi-frame ultrasound imej perubatan. Watermarking daripada imej perubatan dengan muatan berat menyebabkan degradasi imej dan secara langsung memberi kesan diagnosis pesakit. Oleh itu, watermark mesti lossless dimampatkan untuk mengurangkan saiznya tanpa kehilangan data. Lalu Lempel-Ziv Welch (LZW) telah digunakan untuk teks, imej piksel mampatan lossless data dan dalam kajian ini kita melanjutkan teknik ini kepada perduaan mampatan lossless watermark untuk meningkatkan prestasi teknik watermarking rantau berasaskan. Di rantau berdasarkan watermarking, imej dibahagikan kepada kawasan kepentingan (ROI) dan rantau bukan faedah (RONI). LZW watermark dimampatkan berasaskan, skim watermarking berdasarkan kawasan baru, pengesanan bega dan pemulihan watermarking imej perubatan (TDARWMI) dibangunkan. Keputusan yang dihasilkan skim ini dibandingkan dengan keputusan skim watermarking lain dan didapati lebih baik dalam nisbah mampatan, PSNR imej tera air dan didapatkan. Dalam skim watermarking rantau berdasarkan pengesanan bega dan pemulihan adalah terhad kepada ROI, manakala selebihnya imej kekal di bawah ancaman keselamatan. pemilihan salah kemungkinan ROI adalah satu lagi had skim watermarking rantau berasaskan. Bukan betul penandaan ROI boleh menimbulkan masalah di tempat tujuan dan boleh memberi kesan kepada analisis yang diperlukan. Oleh itu, satu lagi skim watermarking, pengesahan imej keseluruhan, mengganggu pengesanan tepat dan lengkap pemulihan (WIATDACR) dibangunkan untuk menyediakan keselamatan untuk imej yang lengkap. The LZW watermark dimampatkan tertanam ke dalam ROI imej dan bahagian-bahagian RONI rawak. Di destinasi tera air diekstrak dan digunakan untuk pengesahan imej, mengganggu pengesanan tepat dan pemulihan lossless. Skim ini boleh mengesan mengganggu berlaku di mana-mana bahagian imej dan boleh melakukan pemulihan tanpa kehilangan data. Keselamatan berdasarkan tandatangan DICOM imej pelbagai bingkai mempunyai pengesanan bega dan kekurangan pemulihan. DICOM skim pengesahan imej multi-frame, pengesanan bega, penyetempatan dan pemulihan watermarking (MFATDLAR) dibangunkan untuk membuat mungkin setiap pengesahan bingkai imej ini, pengesanan bega dan pemulihan lossless. A watermark setiap bingkai disediakan, dimampatkan dan dimuatkan ke dalam bingkai masing RONI bahagian. Di destinasi watermark yang diekstrak digunakan untuk pengesahan bingkai, pengesanan bega, penyetempatan dan pemulihan lossless.

TABLE OF CONTENTS

iii
iv
V
vi
vii
viii
ix
xiii
xiv
XX
xxi

CHAPTER 1 INTRODUCTION

1.1	INTRODUCTION	1
1.2	WATERMARKING POSITION IN HIERARCHY OF DATA SECURITY TECHNIQUES	5
	1.2.1 Secret Key	8
	1.2.2 Robust Watermarking	8
	1.2.3 Fragile Watermarking	9
	1.2.4 Semi-Fragile Watermarking	9
	1.2.5 Visible and Invisible Watermarking	9
1.3	WATERMARKING DOMAINS	9
	1.3.1 Frequency Domain	10
	1.3.2 Spatial Domain	10
1.4	BASIC REQUIREMENTS FOR A DIGITAL IMAGE WATERMARKING SYSTEM	10
	1.4.1 Perceptual Quality	10
	1.4.2 Security	11
	1.4.3 Capacity	11
	1.4.4 Blind and Non-blind Watermarking	11

Page

1.5	TELERADIOLOGY AND ITS IMPORTANCE IN	12
	HEALTHCARE	
1.6	COMPRESSION'S IMPORTANCE IN IMAGE	12
	WATERMARKING	
	1.6.1 Lossy and Lossless Compression	13
1.7	PROBLEM STATEMENT	13
1.8	RESEARCH OBJECTIVES	14
1.9	SCOPE OF RESEARCH	14
1.10	THESIS STRUCTURE	15

CHAPTER 2 LITERATURE REVIEW

2.1	INTRODUCTION	16
2.2	DIGITAL IMAGING	16
2.3	HISTORICAL OVERVIEW OF WATERMARKING	18
2.4	CLASSIFICATION OF WATERMARKING TECHNIQUES	19
	2.4.1 Domain Based Watermarking	20
	2.4.2 Technical Based Image Watermarking	23
	2.4.3 Watermark Detection Based Watermarking	25
	2.4.4 Watermark Security Based Watermarking	26
	2.4.5 Watermark Function Based Watermarking	27
2.5	TAMPER DETECTION AND RECOVERY	31
	WATERMARKING SCHEMES OF MEDICAL IMAGES	
	2.5.1 LSB Based Image Watermarking	31
2.6	DATA COMPRESSION	35
	2.6.1 Lossy Compression	36
	2.6.2 Lossless Compression	36
	2.6.3 Watermark Compression in Digital Image Watermarking	37
2.7	CONCLUSION	38

CHAPTER 3 WATERMARK COMPRESSION IN DIGITAL IMAGE WATERMARKING

3.1	INTRODUCTION	40
3.2	METHODOLOGY	41
	3.2.1 Watermark Generation and Compression	41
	3.2.2 Watermark Decompression	45
3.3	RESULTS AND ANALYSIS	47
3.4	CONCLUSION	56

CHAPTER 4 WATERMARKING OF SINGLE FRAME ULTRASOUND MEDICAL IMAGES

4.1	INTRODUCTION	57
4.2	METHODOLOGY	58
	4.2.1 Watermark Preparation and Compression	59
	4.2.2 TDARWMI Watermarking Scheme	62
	4.2.3 Image Tamper Detection, Localization and Lossless	78
	Recovery	
	4.2.4 ROI Authentication	79
4.3	WATERMARKED IMAGE ACCURACY MEASUREMENT	81
4.4	RESULTS AND DISCUSSION	84
4.5	CONCLUSION	85

CHAPTER 5 IMAGE SECURITY USING COMPLETE IMAGE AS WATERMARK

5.1	INTRODUCTION	86
5.2	BACKGROUND	87
5.3	METHODOLOGY	88
	5.3.1 WIATDACR Watermarking Scheme	88
	5.3.2 Watermark Preparation, Compression and Image	89
	Watermarking	

	5.3.3 Watermark Extraction and Decompression	92
	5.3.4 Tampered Localization and Lossless Recovery	92
	5.3.5 Image Authentication	118
5.4	RESULTS AND DISCUSSION	120
5.5	CONCLUSION	120

CHAPTER 6 MULTI FRAME DICOM MEDICAL IMAGES WATERMARKING

6.1	INTRODUCTION	122
6.2	BACKGROUND	123
6.3	METHODOLOGY	125
	6.3.1 MFATDLR Watermarking Scheme	136
6.4	RESULT AND DISCUSSION	138
6.5	CONCLUSION	142

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1	CONCLUSION	144
7.2	RESEARCH CONTRIBUTIONS	144
7.3	LIMITATION OF THIS RESEARCH	145
7.4	FUTURE WORK	146
REFERENCES 14		147
AUTHOR'S BIODATA		157
PUBLICATION 1		158

LIST OF TABLES

Table No.	Title	Page
1.1	Comparison of watermarking, cryptography and steganography based on their properties	7
2.1	Summary of image watermarking based on classes, techniques, watermark security, detection and functions	29
3.1	Watermark compression results comparison based on elements reduction	53
3.2	Watermark compression results comparison based on compression ratio	55
4.1	Comparison of watermark compression techniques	61
4.2	LZW compression of a watermark including 70*115 size different image samples ROI compression ratios and PSNR	82
4.3	Eight image samples watermarking with LZW compressed watermark	83
4.4	TDARWMI comparison with TALLOR-RSMA watermarking scheme	83
5.1	WIATDACR watermarking scheme segmentation results for ultrasound medical image sample 1	91
5.2	Details of noises added to image shown in Figure 5.4	94
5.3	WIATDACR watermarking scheme results of ten image samples	117
6.1	DICOM multi frame image sample 1 frame's selected ROIs information	139
6.2	DICOM multi frame image sample 2 frame's selected ROIs information	140
6.3	MFATDLR watermarking scheme comparison with other schemes	142

LIST OF FIGURES

Figure No.	Title	Page
1.1	Ultrasound original image	3
1.2	Ultrasound tampered image	3
1.3	Different components involved with web-based medical image processing in distributed health care system	4
1.4	Hierarchical structure of data security techniques	5
2.1	Diagrammatic view of eight-bits memory system	32
2.2	Lena image watermarking at (a) 1 st LSB (b) using Baboon image as watermark to get (c) a watermarked image	33
2.3	Lena image watermarking at (a) 7 th bit (b) using Baboon image as watermark to get (c) a watermarked image	33
2.4	Lena image watermarking at (a) 8 th bit (b) using Baboon image as watermark to get (c) a watermarked image.	34
2.5	Digital image lossy, lossless compression and decompression	37
3.1	Example of binary watermark compression using LZW technique	43
3.2	Example of text data compression using LZW technique	44
3.3	Compressed string lossless decompression using LZW technique	46
3.4	Ultrasound image sample 1	48
3.5	Ultrasound image sample 2	48
3.6	Ultrasound image sample 3	49
3.7	Ultrasound image sample 4	49
3.8	Ultrasound image sample 5	50
3.9	Ultrasound image sample 6	50

3.10	Ultrasound image sample 7	51
3.11	Ultrasound image sample 8	51
3.12	Ultrasound image sample 9	52
3.13	Ultrasound image sample 10	52
3.14	Watermark elements reduction comparison	54
3.15	Watermark compression ratio comparison	55
4.1	Image watermarking, communication, watermark extraction and decompression.	59
4.2	Original image sample 1	60
4.3	Curve based comparison of watermark compression techniques	61
4.4	Watermarked image sample 1	63
4.5	Tampered image sample 1 tampered by adding salt and pepper noise	63
4.6	Recovered image sample 1	64
4.7	Original image sample 2	64
4.8	Watermarked image sample 2	65
4.9	Tampered image sample 2 tamper by adding cropping noise	65
4.10	Recovered image sample 2	66
4.11	Original image sample 3	66
4.12	Watermarked image sample 3	67
4.13	Tampered image sample 3 tampered by added 50% noise	67
4.14	Recovered image sample 3	68
4.15	Original image sample 4	68
4.16	Watermarked image sample 4	69

4.17	Tampered image sample 4 tampered by adding cropping noise	69
4.18	Recovered image sample 4	70
4.19	Original image sample 5	70
4.20	Watermarked image sample 5	71
4.21	Tampered image sample 5 tampered by adding salt and pepper noise	71
4.22	Recovered image sample 5	72
4.23	Original image sample 6	72
4.24	Tampered image sample 6 tampered by 99% added noise	73
4.25	Watermarked image sample 6	73
4.26	Recovered image sample 6	74
4.27	Original image sample 7	74
4.28	Watermarked image sample 7	75
4.29	Tampered image sample 7 tampered by adding cropping noise	75
4.30	Recovered image sample 7	76
4.31	Original image sample 8	76
4.32	Watermarked image sample 8	77
4.33	Tampered image sample 8 tampered by adding salt and pepper noise	77
4.34	Recovered image sample 8	78
4.35	ROI hash value before image communication	80
4.36	ROI hash value after image communication	80
4.37	ROI hash changed value after image communication	80
4.38	Ultrasound original image sample 1 (b) watermarked image (c) tampered image (d) recovered image	80

4.39	Compression results of a watermark including 70*115 ROI	82
5.1	Original ultrasound image sample 1	90
5.2	Original image sample 1 used as a major part of watermark	90
5.3	Segmentation results of image sample 1	91
5.4	Image sample 1 tampered at five different points	93
5.5	Recovered image sample 1	93
5.6	WIATDACR scheme run time for image sample 1	94
5.7	WIATDACR run time results part 1 for image sample 1	95
5.8	WIATDACR run time results part 2 for image sample 1	96
5.9	Original ultrasound image sample 2	97
5.10	Original image sample 2 used as a major part of watermark	98
5.11	Image sample 2 tampered at four different points	98
5.12	WIATDACR scheme run time for image sample 2	99
5.13	WIATDACR run time results part 1 for sample 2	99
5.14	WIATDACR run time results part 2 for sample 2	100
5.15	Recovered image sample 2	101
5.16	Original ultrasound image sample 3	101
5.17	Original image sample 3 used as a major part of watermark	102
5.18	Image sample 3 tampered at three different points	102
5.19	Recovered image sample 3	103
5.20	WIATDACR scheme run time for image sample 3	103
5.21	WIATDACR run time results part 1 for image sample 3	104
5.22	WIATDACR run time results part 2 for image sample 3	105
5.23	Original ultrasound image sample 4	106

5.24	Image sample 4 tampered at three different points	106
5.25	Recovered image sample 4	107
5.26	Original ultrasound image sample 5	107
5.27	Image sample 5 tampered at four different points	108
5.28	Recovered image sample 5	108
5.29	Original ultrasound image sample 6	109
5.30	Image sample 6 tampered at four different points	109
5.31	Recovered image sample 6	110
5.32	Original ultrasound image sample 7	110
5.33	Image sample 7 tampered at four different points	111
5.34	Recovered image sample 7	111
5.35	Original ultrasound image sample 8	112
5.36	Image sample 8 tampered at four different points	112
5.37	Recovered image sample 8	113
5.38	Original ultrasound image sample 9	113
5.39	Image sample 9 tampered at two different points	114
5.40	Recovered image sample 9	114
5.41	Original ultrasound image sample 10	115
5.42	Image sample 10 tampered at three different points	115
5.43	Recovered image sample 10	116
5.44	Graphical results of ten image samples	118
5.45	Sample 1 image hash before watermarking	119
5.46	Sample 1 image hash after watermark extraction	119
5.47	Sample 1 image hash before communication	119

5.48	Sample 1 image hash after communication	119
6.1	DICOM multi-frame image 1 frame 1	126
6.2	DICOM multi-frame image 1 frame 2	126
6.3	DICOM multi-frame image 1 frame 3	127
6.4	DICOM multi-frame image 1 frame 4	127
6.5	DICOM multi-frame image 1 frame 5	128
6.6	DICOM multi-frame image 1 frame 6	128
6.7	DICOM multi-frame image 1 frame 7	129
6.8	DICOM multi-frame image 1 frame 8	129
6.9	DICOM multi-frame image 1 frame 9	130
6.10	DICOM multi-frame image 1 frame 10	130
6.11	DICOM multi-frame image 1 frame 11	131
6.12	DICOM multi-frame image 1 frame 12	131
6.13	DICOM multi-frame image 1 frame 13	132
6.14	DICOM multi-frame image 1 frame 14	132
6.15	DICOM multi-frame image 1 frame 15	133
6.16	DICOM multi-frame image 2 frame 1	133
6.17	DICOM Multi-frame image authentication code generation and verification	134
6.18	DICOM Multi-frame image division into separate frames	135
6.19	DICOM Multi-frame image watermark extraction and decryption	136
6.20	DICOM frame authentication verification	137
6.21	Watermarking time graph for DICOM multi-frame images	141

LIST OF ALGORITHMS

Algorithm No.	Title	Page
3.1	LZW algorithm for binary watermark compression	42
3.2	LZW algorithm for binary watermark decompression	46
6.1	Watermark preparation and multi-frame DICOM watermarking	134

LIST OF ABBREVIATIONS

AES	Advance Encryption Standard		
ANN	Artificial Neural Network		
CRC	Cyclic Redundancy Check		
СТ	Computed Tomography		
Db	Decibel		
DCT	Direct Cosine Transformation		
DFT	Direct Fourier Transformation		
DICOM	Digital Imaging and Communication in Medicine		
DS	Digital Signature		
DWT	Direct Wavelet Transform		
EPR	Electronic Patient Record		
GIF	Graphic Interchange Format		
HIS	Hospital Information System		
IEEE	Institute of Electrical and Electronics Engineering		
IRVL	Image Row Value Length		
JPEG	Joint Photographic Expert Group		
LBP	Local Binary Pattern		
LSB	Least Significant Bit		
LZW	Lempel-Ziv Welch		
MAC	Machine Authentication Code		
MDC	Manipulation Detection Code		
MLP	Multilayer back Propagation		
MFATDLR	Multi-frame authentication, tamper detection, localization and lossless recovery		

MRI	Magnetic Resonance Imaging
MSE	Mean Square Error
NASA	National Aeronautics and Space Administration
NM	Nuclear Medicine
PACS	Picture Archive and Communication in Medicine System
PBM	Portable Bitmap
PET	Positron Emission Tomography
PNG	Portable Network Graphics
PSNR	Peak signal to noise ratio
RIS	Radiological Information System
ROI	Region of Interest
RONI	Region of Non-Interest
RSMA	ROI Segmentation and Multilevel Authentication
SHA	Secure Hash Algorithm
SNR	Signal to Noise Ratio
TALLOR	Tamper Localization and Lossless Recovery
TDARWMI	Tamper Detection and Recovery Watermarking of Medical Images
US	Ultrasound
VPN	Virtual Private Network
WIATDACR	Whole Image as Watermark for Authentication and Tamper Detection, Localization and Complete Recovery

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

History of the world is a witness of changes in technologies. Changes are made to upgrade the technologies but some upgradations have negative effects on their related applications. For example the invention and development of Internet technology has replaced formal, complex, costly and time consuming data communication system by an automatic, easy, cheaper and real-time responding one with data security threats. Internet technology has interconnected people around the globe to store, share, access and communicate data digitally with chances for hacker's manipulation. Digitization of data has facilitated data communication, effective storage, duplication, transportation with cost reduction. The use of digital technology has replaced data centralized records storage by decentralized one through globally accessible Internet with increase of security demands. Easy and open accessibility of Internet data may result into illegal alteration. Data alteration may happen intentionally and non-intentionally but affect the achievement of dedicated goals. Data alteration happens due to the unauthorized accesses or use of noisy communication channels. The illegal change in data originality is known as tampering. Data tampering causes problems of ownership, integrity, confidentiality and authentication of data. Digital medical image tampering is a problem that has been faced in electronic healthcare environment. Due to the lack of security unwanted outcomes may be produced and can loss the important digital image information. For more than last two decades, different security measures including digital watermarking have been tested to solve this problem (Abd-Eldayem, 2013). Watermarking is an efficient technique to be used for Internet based medical image's authentication, tamper detection, localization and lossless recovery.

A typical watermark is a meaningful identification mark such as logo, fingerprint, sequence of text or numbers, a secret code, an image or part of image used for product identification, ownership proof, authentication and prevention of illegal distribution, duplication (Holliman and Memon, 2000). A watermark size is not restricted to a limit and can be long as to cover all the features of a product. Watermarks can be pasted onto or encapsulated into products for achievement of defined goals. The process of watermark pasting or encapsulation is called watermarking (Memon, 2010). Digital medical image security is very important in electronic healthcare system because pixels of a digital image can be easily manipulated due to easy access to the Internet. A watermarking technique should have the capability to detect, locate and restore such manipulations of medical images (Langelaar et al., 2000).

An efficient watermarking technique has the ability to keep the image data under protection even after image communication and watermark extraction. Watermarking technique is applicable to audio, video, text, image and other possible digital product. A product after watermark encapsulation is called watermarked product. For example, the watermark embedded image is called watermarked image. A watermark is embedded in a product for the aims of copyright protection, fingerprinting, integration, broadcast monitoring and authentication (Zhao et al., 2011). Copyright watermarks are used to prove the product ownership through backtracking, fingerprinting and to determine the source of illegal distribution. Copy protection watermarks prevent illegal copy of products while broadcast monitoring watermarks are used to control and ensure the agreed upon advertisements processing. In data hiding watermarking, the coded data is hided into a product for its safe sending to destination. In case of medical image watermarking the code may comprise of image metadata or diagnostic information or both. If image is tampered during communication then at destination tampers can be localized and recovered without losing any important data. Different watermarking techniques are available for image tamper detection, localization and recovery (Nyeem et al., 2012). These techniques are reviewed in the next chapter of literature review in details. The remaining chapters explore that how tamper detection, localization and recovery is performed in our proposed methodologies.

Figure 1.1: Ultrasound original image

Figure 1.2: Ultrasound tampered image

Figures 1.1 and Figure 1.2, show the original and its tampered version of an ultrasound medical image respectively. The tampered image has been obtained from cropping the original image through the ImageJ software to show it as an example of image tampering in teleradiology environment. During patient's diagnosis, if the

doctors consider the cropped spot as an original part of image then it will surely mislead the final results and can put the patient life in danger.

Figure 1.3: Different components involved with web-based medical image processing in distributed health care system

Figure 1.3 shows a diagram with visible main components used in research work related to distributed health care system located at Yonsei university of South Korea. The components links show the access mechanism of a medicle image specialist system at remote hospitals using satellite technology in telemedicine (Osborne, 2005). This is an example of picture archive and communication in medicine system (PACS) for the study of medical images. This system is basically derived from National Aeronautics and Space Administration (NASA), where the astronaut's medical information were collected on earth from space in audio and video formats.

1.2 WATERMARKING POSITION IN HIERARCHY OF DATA SECURITY TECHNIQUES

Data security remains a hot research topic for all the times because new security measures are needed with evaluation and development of communication technologies. Data security literature reports a number of techniques used for centralized and distributed data security. Figure 1.4 shows the hierarchical structure of data security techniques including watermarking (Cheddad et al., 2010). Data security techniques are basically divided into two types, cryptography and information hiding.

Figure 1.4: Hierarchical structure of data security techniques

Cryptographic techniques are used to get data in a reduced coded format as compared to the original data. The code is understandable only to the related people and remains secured from the outside people's understanding. Cryptography is a Greek word means secret writing; different functions are applied to data to get their secret codes. A MATLAB supported function SHA-256 is an example of such functions. SHA-256 produces a 64-bytes hexadecimal code after application to data. The resulted code is used mostly for respective data authentication. The main limitation of a cryptographic technique is the only reporting of data authentication and has no capability to detect, locate and recover the tampers. Information hiding based security techniques are used to hide important information within a product. Hiding of an image data into image itself is an example of information hiding. The image serves as a carrier of hided data to be used at destination for intended purpose. Information hiding techniques are further divisible into steganography and watermarking. Steganography is also a Greek word means covered writing. Steganography data is the actual data hidden into a carrier without resulting into coded form like cryptography. Steganography aims to transfer secret data to destination with high security. A carrier medium is cared highly for the successful delivery of secret data and does not remain important after the hidden data extraction.

Watermarking is also a data hiding technique, capable to hide and extract information with intensive care of medium because medium remains the main focus of watermarking process. For example a medical image watermark is used for image authentication, tamper detection, localization and recovery. The actual mean of a medical image watermarking is to ensure the image originality for patient health analysis. During watermarking, the important data is hided into images, audios, videos and texts as watermarks according to the requirements. A watermarking technique is robust or fragile in nature; robust watermarking focuses on watermark security while the fragile one is used for product contents security. Imperceptibility, visibility and fingerprinting describe different levels and types of image watermarking. Imperceptibility means how to make a watermark data invisible to the originality of an image. Visibility means how to keep a watermark data invisible to the human sight to increase its security. Fingerprinting is used to back-track the process of data illegal distribution to reach the illegal distributor of important data. A secret key can be used for making a watermarking scheme more secured and efficient.

S.no	Property	Watermarking	Cryptography	Steganography
1	History	Modern era, started after	Modern era but	Ancient, invented
		the creation of digital	earlier than digital	before the creation
		images	watermarking	of digital images
2	Secret data	Watermark	Plain text	Payload
3	Secret carrier	Image, audio and video	Image and text	Any digital and
		files		non-digital media
4	Key	Optional	Necessary	Optional
5	Input file	At least one	Always one	At least one
6	Detection	Blind or non-blind	Blind	Blind
7	Result	Watermarked image or	Cipher text or	Stego image or file
		file	image	
8	Main	Authentication, tamper	Data authentication	Data secret
	purpose	detection, Recovery and		communication
		copyrights protection		
9	Visibility	Visible and non-visible	Always visible	Always non-visible
10	Failure	If removed, demaged or	If decrypted	If detected
		altered		
11	Choice of	Restricted to focused	Not available	Not restricted to a
	carrier	image, video or audio		specific carrier
	selection	file		
12	Carrier and	Carrier is more	No relation at all	Secret data is more
	secret data	important while secret		important than
	relationship	data remains its		carrier
		important attribute		
13	Attack	Image processing	Cryptanalysis	Stego analysis
	causes	operations		
14	Main	Robustness	Robustness	Capacity
	concern			

Table 1.1: Comparison of watermarking, cryptography and steganography based on their properties

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

History of the world is a witness of changes in technologies. Changes are made to upgrade the technologies but some upgradations have negative effects on their related applications. For example the invention and development of Internet technology has replaced formal, complex, costly and time consuming data communication system by an automatic, easy, cheaper and real-time responding one with data security threats. Internet technology has interconnected people around the globe to store, share, access and communicate data digitally with chances for hacker's manipulation. Digitization of data has facilitated data communication, effective storage, duplication, transportation with cost reduction. The use of digital technology has replaced data centralized records storage by decentralized one through globally accessible Internet with increase of security demands. Easy and open accessibility of Internet data may result into illegal alteration. Data alteration may happen intentionally and non-intentionally but affect the achievement of dedicated goals. Data alteration happens due to the unauthorized accesses or use of noisy communication channels. The illegal change in data originality is known as tampering. Data tampering causes problems of ownership, integrity, confidentiality and authentication of data. Digital medical image tampering is a problem that has been faced in electronic healthcare environment. Due to the lack of security unwanted outcomes may be produced and can loss the important digital image information. For more than last two decades, different security measures including digital watermarking have been tested to solve this problem (Abd-Eldayem, 2013). Watermarking is an efficient technique to be used for Internet based medical image's authentication, tamper detection, localization and lossless recovery.

A typical watermark is a meaningful identification mark such as logo, fingerprint, sequence of text or numbers, a secret code, an image or part of image used for product identification, ownership proof, authentication and prevention of illegal distribution, duplication (Holliman and Memon, 2000). A watermark size is not restricted to a limit and can be long as to cover all the features of a product. Watermarks can be pasted onto or encapsulated into products for achievement of defined goals. The process of watermark pasting or encapsulation is called watermarking (Memon, 2010). Digital medical image security is very important in electronic healthcare system because pixels of a digital image can be easily manipulated due to easy access to the Internet. A watermarking technique should have the capability to detect, locate and restore such manipulations of medical images (Langelaar et al., 2000).

An efficient watermarking technique has the ability to keep the image data under protection even after image communication and watermark extraction. Watermarking technique is applicable to audio, video, text, image and other possible digital product. A product after watermark encapsulation is called watermarked product. For example, the watermark embedded image is called watermarked image. A watermark is embedded in a product for the aims of copyright protection, fingerprinting, integration, broadcast monitoring and authentication (Zhao et al., 2011). Copyright watermarks are used to prove the product ownership through backtracking, fingerprinting and to determine the source of illegal distribution. Copy protection watermarks prevent illegal copy of products while broadcast monitoring watermarks are used to control and ensure the agreed upon advertisements processing. In data hiding watermarking, the coded data is hided into a product for its safe sending to destination. In case of medical image watermarking the code may comprise of image metadata or diagnostic information or both. If image is tampered during communication then at destination tampers can be localized and recovered without losing any important data. Different watermarking techniques are available for image tamper detection, localization and recovery (Nyeem et al., 2012). These techniques are reviewed in the next chapter of literature review in details. The remaining chapters explore that how tamper detection, localization and recovery is performed in our proposed methodologies.

Figure 1.1: Ultrasound original image

Figure 1.2: Ultrasound tampered image

Figures 1.1 and Figure 1.2, show the original and its tampered version of an ultrasound medical image respectively. The tampered image has been obtained from cropping the original image through the ImageJ software to show it as an example of image tampering in teleradiology environment. During patient's diagnosis, if the

CHAPTER 3

WATERMARK COMPRESSION IN DIGITAL IMAGE WATERMARKING

3.1 INTRODUCTION

Digital imaging techniques produce different size images, suitable for particular applications. The images out of proper size make problems for some secondary applications. For example large size medical images require more storage space, need more transmission time and bandwidth in teleradiology. Besides these obstacles, during image communication an image contents may be changed due to noisy communication channels or hackers manipulation. Medical image data is very sensitive and cannot afford changes to its original dataset. Digital watermarking techniques have been used to detect and recover illegal changes made to images. The watermarking of a medical image with heavy payload causes image perceptual degradation and affects patient diagnosis. To reduce watermark payload and maintain the image perceptual, diagnostic qualities standard, the watermark needs to be compressed. The compression should be in such a way to ensure the compressed data originality. For sensitive data like medical image watermarks, lossless compression is used. Watermark lossless compression ensures no loss of data while reducing the size of dataset. Watermarking of medical images with reduced number of bits preserves the image perceptual and diagnostic qualities. This chapter focuses on watermark lossless compression using different techniques including LZW. LZW compression technique is also applicable to binary watermarks. The binary version watermarks contain of large number of repeating sequences of binaries and most suitable for lossless compression using LZW technique. LZW is a better approach to compress data having repeating sequences of data elements like binaries (Nelson et al., 1989).

3.2 METHODOLOGY

This chapter methodology is watermark lossless compression using LZW technique. For this purpose, ten different samples of ultrasound medical images are chosen for watermark generation and compression experiments. Each sample is divided into ROI and RONI; ROI is the central and rich in information part, while RONI is the remaining image. Watermark is generated from combination of image selected pixels as ROI and secret key. The LZW selection for watermark compression is made after its comparison with other conventional compression techniques such as PNG, GIF, PBM, JPEG and JPEG 2000 of lossless versions. This selection is made on the basis of more bits reduction and good compression ratio.

3.2.1 Watermark Generation and Compression

A 100 * 100 size pixels segment of each image sample is selected as ROI. ROI size is allowed to vary but here we keep it fixed for results comparison of different compression techniques. A watermarking secret key is generated and applied to watermark to get a secured watermark. Watermark security is necessary to hide the originality of this important data from attackers. Here watermark is the combination of ROI and ROI hash code, while secret key is the binary of ROI hash repeated equal to the watermark size. A XOR operation is performed between watermark and secret key to obtain the secured watermark. LZW is a dictionary based compression technique applied to data for elimination of repeating sequences (Nelson et al., 1989). PNG, GIF, PBM and JPEG are conventional compression methods have been tested on the same size watermark compression to compare the results with LZW. For LZW compression, first the watermark is converted to binary and stored in a single row binary array. This conversion gives binaries unique sequences for LZW effective compression. During compression, every unique sequence is replaced by a decimal number called string code. More number of bits reductions makes LZW as the best choice of binary watermark lossless compression in medical image watermarking.

Before starting LZW compression of a binary watermark, an array as a dictionary is initialized with two stings, '0' and '1'. These are only two unique values in watermark binary stream otherwise the dictionary is initialized to the distinct characters in an alphabetic string. The combinations of binaries of binary watermark give different repeating sequences. During watermark compression process unique strings are formed based on binary sequences and inserted into dictionary. Every unique string is allotted a decimal code and inserted to another array called codes table. LZW Algorithm 3.1 checks the availability of newly constructed string in the dictionary codes table as shown in Figure 3.2. This process of unique strings formation, codes allocation and insertion continue till the whole watermark is compressed. At the completion, codes table values give the LZW compressed watermark. The following Algorithm 3.1 explains step by step process of watermark lossless compression. The final dictionary and codes table are used for watermark lossless decompression after the watermark extraction at destination (Alarabeyyat et al., 2012).

Algorithm 3.1: LZW algorithm for binary watermark compression

1.	Convert watermark to binary
2.	Dictionary={'0','1'}
3.	String = get the first binary from binary watermark
4.	WHILE get the next available binary and continue
5.	Next-binary = Get the next binary
6.	IF String + Next-binary exist in dictionary then
7.	String = String + Next-binary
8.	ELSE
9.	Assign decimal code to String and insert into code table
10.	Add String + Next-binary to the dictionary
11.	String=Next-binary
12.	END of IF
13.	END of WHILE
14.	Output dictionary and code table