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ABSTRACT 

 

Fatigue failure is expected to contribute to injuries and financial losses in industries. 

The complex interaction between the load, time and environment is a major factor that 

leads to failure. In addition, the material selection, geometry, processing and residual 

stresses produce uncertainties and possible failure modes in the field of engineering. 

The conventional approach is to allow the safety factor approach to deal with the 

variations and circumstances as they occur within the engineering applications. The 

problems may persist in the computational analysis, where a complex model, such as a 

three-dimensional surface crack, may require many degrees of freedom during the 

analysis. The involvement of uncertainties in variables brings the analysis to a higher 

level of complexity due to the integration of non-linear functions during a probabilistic 

analysis. Probabilistic methods are applicable in industries such as the maintenance of 

aircraft structures, airframes, biomechanical systems, nuclear systems, pipelines and 

automotive systems. Therefore, a plausible analysis that caters for uncertainties and 

fatigue conditions is demanded. The main objective of this research work was to 

develop a model for uncertainties in fatigue analysis. The aim was to identify a 

probabilistic distribution of crack growth and stress intensity factors for surface crack 

problems. A sensitivity analysis of all the parameters was carried out to identify the 

most significant parameters affecting the results. The simulation time and the number of 

generated samples were presented as a measurement of the sampling efficiency and 

sampling convergence. A finite thickness plate with surface cracks subjected to random 

constant amplitude loads was considered for the fracture analysis using a newly 

developed Probabilistic S-version Finite Element Model (ProbS-FEM). The ProbS-

FEM was an expansion of the standard finite element model (FEM). The FEM was 

updated with a refined mesh (h-version) and an increased polynomial order (p-version), 

and the combination of the h-p version was known as the S-version finite element 

model. A probabilistic analysis was then embedded in the S-version finite element 

model, and it was then called the ProbS-FEM. The ProbS-FEM was used to construct a 

local model at the vicinity of the crack area. The local model was constructed with a 

denser mesh to focus the calculation of the stress intensity factor (SIF) at the crack 

front. The SIF was calculated based on the virtual crack closure method. The possibility 

of the crack growing was based on the comparison between the calculated SIF and the 

threshold SIF. The fatigue crack growth was calculated based on Paris’ law and 

Richard’s criterion. In order to obtain an effective sampling strategy, the Monte Carlo 

and Latin hypercube sampling were employed in the ProbS-FEM. The specimens with a 

notch were prepared and subjected to fatigue loading for verification of the ProbS-FEM 

results. The ProbS-FEM was verified for the SIF calculation, the crack growth for mode 

I and the mixed mode, and the prediction of fatigue life. The major contribution of this 

research is to the development of a probabilistic analysis for the S-version finite 

element model. The formulation of uncertainties in the analysis was presented with the 

ability to model the distribution of the surface crack growth. The ProbS-FEM was 

shown to resolve the problem of uncertainties in fatigue analysis. The ProbS-FEM can 

be further extended for a mixed mode fracture subjected to variable amplitude loadings 

in an uncertain environment.    
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ANALISIS RETAK PERMUKAAN LESU MENGGUNAKAN MODEL 

KEBARANGKALIAN UNSUR TERHINGGA VERSI-S  

 

 

ABSTRAK 

 
Kegagalan lesu telah menyumbang kepada kecederaan dan kerugian dalam industri. 

Interaksi kompleks antara beban, masa dan persekitaran adalah faktor utama yang 

membawa kepada kegagalan. Di samping itu, pemilihan bahan, geometri, pemprosesan 

dan tegasan baki menghasilkan ketidakpastian dan mod kegagalan yang mungkin 

berlaku dalam bidang kejuruteraan. Pendekatan konvensional menggunakan kaedah 

faktor keselamatan bagi menangani perubahan dan sebarang kemungkinan yang berlaku 

semasa applikasi kejuruteraan. Masalah berterusan dalam analisis pengiraan, di mana 

model yang kompleks seperti permukaan retak tiga-dimensi memerlukan darjah 

kebebasan yang banyak. Penglibatan unsur ketidakpastian dalam pembolehubah 

membawa analisis ke tahap yang lebih rumit. Ia disebabkan oleh integrasi fungsi bukan 

linear semasa analisis kebarangkalian. Kaedah kebarangkalian boleh digunakan didalam 

industri penyelenggaraan struktur pesawat, sistem biomekanik, sistem senjata nuklear, 

saluran paip dan automotif. Oleh itu, analisis yang munasabah dengan mengambil kira 

keadaan ketidaktentuan dan kelesuan diperlukan. Objektif utama penyelidikan ini 

adalah untuk membangunkan satu model ketidaktentuan bagi analisis kelesuan. 

Tujuannya ialah untuk mengenal pasti taburan kebarangkalian pertumbuhan retak dan 

faktor keamatan tegasan. Analisis sensitiviti bagi semua pembolehubah dilakukan bagi 

mengenal pasti pembolehubah yang paling berpengaruh terhadap kegagalan. Masa 

simulasi dan jumlah sampel yang dihasilkan dibentangkan sebagai pengukuran kepada 

kecekapan dan penumpuan persampelan. Satu plat dengan ketebalan terbatas yang 

mempunyai retak permukaan dan bebanan rawak yang berterusan di analisis 

menggunakan kaedah kebarangkalian Model Unsur Terhingga Versi-S (ProbS-FEM). 

ProbS-FEM dikembangkan daripada model unsur terhingga (FEM) yang biasa. FEM 

telah dikemas kini dengan jaringan halus (versi-h) dan peningkatan kuasa polinomial 

(versi-p) dan hasil gabungan versi h-p dipanggil sebagai model unsur terhingga versi-S. 

Kemudian, analisis kebarangkalian disertakan di dalam model unsur terhingga versi-S 

dan diberi nama ProbS-FEM. ProbS-FEM menggunakan kaedah pembinaan model 

tempatan di sekitar kawasan retak. Model tempatan dibina dengan jejaring yang lebih 

padat untuk memberi tumpuan terhadap pengiraan faktor keamatan tekanan (SIF) pada 

bahagian retak hadapan. SIF dikira berdasarkan kaedah penutupan retak maya. 

Kebarangkalian retak untuk berkembang adalah berdasarkan kepada perbandingan di 

antara nilai SIF yang dikira dan nilai SIF ambang. Pertumbuhan retak lesu dikira 

berdasarkan model Paris dan kriteria Richard. Persampelan Monte Carlo dan Latin 

hiperkiub digunakan di dalam ProbS-FEM untuk mendapatkan srategi persampelan 

yang berkesan. Spesimen-spesimen dengan takuk disediakan dan diuji dengan bebanan 

lesu untuk tujuan pengesahan. Probs-FEM disahkan dengan pengiraan SIF; 

pertumbuhan retak untuk mod I dan mod campuran; dan ramalan hayat lesu. 

Sumbangan utama kajian ini ialah pembangunan analisis kebarangkalian untuk model 

unsur terhingga versi-S. Formula ketidaktentuan didalam analisis telah dibentangkan 

dengan keupayaan untuk memodelkan taburan pertumbuhan permukaan-retak. ProbS-

FEM telah menunjukkan keupayaan untuk menyelesaikan masalah ketidaktentuan 

dalam analisis kelesuan. Ia boleh dikembangkan lagi untuk kes mod patah campuran 

dengan beban amplitud berubah-ubah dalam persekitaran yang tidak menentu.  
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  CHAPTER 1

 

 

INTRODUCTION 

 

 

1.1 CHAPTER OUTLINE 

 

This chapter introduces the role of surface cracks in promoting fractures and failures 

in mechanical structures. The motivation of the study is firstly highlighted based on 

industrial failures. Then, the problem statement with regard to surface cracks is 

presented. The research objectives and research scope of the present study are 

provided, and this is followed by an outline of the thesis in the last section of this 

chapter. 

 

1.2 INTRODUCTION TO PROBABILISTIC APPROACH IN CRACK 

ANALYSIS 

 

Fracture failure often occurs from initial flaws or defects developed near a stress riser. 

The stress riser causes the development of surface or sub-surface flaws. This, 

combined with repeated loading, will result in the presence of surface cracks. The 

presence of surface cracks is unavoidable in real structures. For example, surface 

cracks exist in many forms in structural components such as at corners, bends, holes, 

grooves and notches. Under in-service and loading conditions, the surface cracks tend 

to grow at micro and macro scales before the cracks propagate until the structure 

completely fails. Therefore, a proper safety assessment is needed to produce an 

accurate evaluation of the effects produced by surface cracks (Brighenti & Carpinteri, 

2013). 

 

 The size, shape, location and orientation of surface cracks in structural 

components are scattered (Brighenti & Carpinteri, 2013). Variations in those 

I 
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parameters influence the stress intensity factor (SIF) of the surface cracks and the 

fatigue behaviour of the structural components. The variations in the parameters are 

not limited to the size, shape, location and orientation of the surface cracks alone, but 

are also contributed to by the material properties. The material properties, particularly 

the fatigue parameters, play a major role in contributing to variations in the SIF and 

fatigue behaviour. Thus, the randomness in some of the parameters exposes the 

analysis of the surface cracks to a certain degree of complexity. The prediction of 

brittle fractures for surface cracks is a unique challenge to researchers. The shape and 

boundary conditions of the structural components, the size, shape, location and 

orientation of the surface cracks, and the fatigue loading are taken into account in the 

analysis.    

 

As the SIFs for surface cracks must be computed along the whole crack front, 

the three-dimensional fatigue propagation analysis of surface cracks is gaining 

attention from researchers. The assessment of a three-dimensional surface crack is 

performed during the whole process of fatigue crack growth. The crack growth 

relationships are applied to study the evolution of crack shapes in industrial failures. 

Examples of cases of industrial failures are considered to refine the study motivations. 

 

 A few typical structural components with the existence of surface cracks, such 

as cracked plates (Dong et al., 2015; Peng et al., 2015), cracked round bars (Carpinteri 

& Vantadori, 2009, 2009; Toribio et al., 2014, 2015), cracked pipes (Brighenti, 2001), 

cracked shells (Carpinteri et al., 2009; Liu et al., 2006) and cracks in notched 

structural components (Cendõn et al., 2015; Larrosa et al., 2015), lead to failure in 

industries such as in petrochemical, aircraft, aerospace, marine and other industries. 

Figure 1.1 shows a typical crack that occurred in a helicopter Longeron driven by 

fatigue loading (Newman et al., 2010). Initially, the fatigue crack was propagated due 

to the loading of the opening mode, but as the crack approached a certain length, a 

mixed mode loading occurred. Therefore, a safe and reliable maintenance operation 

was required. 
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Figure 1.1 Typical helicopter Longeron crack  

Source: Newman et al., 2010 

 

The fracture of an aging aircraft wing skin due to fatigue is shown in Figure 

1.2 (Emery et al., 2009). The need for a more reliable structure due to variations in the 

flaws and fatigue material properties is receiving increasing attention. The random 

nature of the material system results in undesirable and undervalued flaws and 

material properties. This random nature leads to uncertainties in the analysis. 

Therefore, current life estimation methods need to be improved to a better level, 

where the uncertainties element is taken into account. Figure 1.3 is a schematic 

diagram of oil storage tanks and the formation of cracks in a reactor shell. Cyclic 

stress occurred due to the frequent loading and unloading of the liquid and the uneven 

settling of the foundation under the tank (Kim et al., 2009). Thus, the fatigue 

evaluation of surface cracks in structural components using fracture mechanics is 

essential. Uncertainties in the crack size, shape, location and in the parameters of the 

crack growth model need to be considered.  
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(a) 

 

(b) 

Figure 1.2 (a) A wing panel with a row of boltholes; (b) Fractured aircraft wing 

skin 

 

Source: Emery et al., 2009 

 

 

Figure 1.3 Schematic diagram of oil storage tank and crack formation 

Source: Kim et al., 2009 
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Therefore, an analysis method that considers the uncertainties in the structural 

component in the application environment is needed. One such method is the 

probabilistic analysis method. The probabilistic approach enables uncertainties to be 

quantified in a distribution. The distribution describes the range of possible values of 

random parameters such as the crack size, location or fatigue crack growth model 

parameters. The results of the probabilistic assessment can be shown in the form of a 

distribution to indicate the impacts that can possibly occur. Thus, a probabilistic 

assessment can be a basis for decision making in maintenance priority and risk 

determination.  

 

Figure 1.4 shows a comparison of the basic concepts of the probabilistic and 

deterministic approaches. The deterministic concept produces a single outcome from 

an input. The input is produced from a sample space of inputs. Unlike the 

deterministic approach, the probabilistic concept produces from a single up to n 

inputs. The outcomes are established from each input. At the end of the process, a 

distribution of outcomes is produced. Therefore, the probabilistic concept is capable 

of dealing with the presence of uncertainties by generating all the possible inputs.   

Sample 

space

Sample space

First 

input

Second input

n
th

 input

Outcome

Deterministic 

concept

Probabilistic 

concept

Outcome of first sample
Outcome of second sample
Outcome of nth sample

Distribution of 

outcomes

Fatigue Life

C
ra

ck
 

 

Figure 1.4 Basic concept of probabilistic approach 
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1.3 STUDY MOTIVATIONS 

 

The need for accurate approaches to assess uncertainties in computer models, 

geometries, loads, material properties, manufacturing processes and environments is 

significantly increased due to the requirements of critical and complex designs. When 

the level of randomness is relatively small, a deterministic model is sufficient. 

However, when the level of uncertainties is high, a probabilistic approach is essential 

for the analysis and design.  

 

Figure 1.5 shows the comparison between the deterministic and probabilistic 

approaches. The deterministic approach starts with a single parameter, while the 

probabilistic approach starts with random parameters. The random parameters produce 

a statistical response that is important for predicting the cause of failure. Then, a 

comprehensive description of the results can be produced via a robust system. The 

deterministic approach creates a deterministic response and produces a static 

description. The deterministic approach may lead to under or over-designing that 

could disrupt the safety of a system (Choi et al., 2007).  

 

Deterministic 

Approach

Single Parameter

Deterministic 

Response

Static Description

Under/Over 

Design

Probabilistic 

Approach

Random Parameters

Statistical 

Response

Static Description

Robust 

System

 

Figure 1.5 Comparison between deterministic and probabilistic approaches 

Source: Choi et al., 2007 

 

The safety of structural components is a major issue. The deterministic 

approach implements a safety factor to handle any uncertainties or circumstances that 

may occur in the design. The safety factor approach may lead to the under or over-
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designing of the structural components. Under-designing may result in failure, whilst 

over-designing may arbitrarily increase the cost. Thus, it is feasible to use a numerical 

simulation with the probabilistic approach.  

 

 The numerical simulation for fatigue surface crack growth is determined by 

the input parameters, fatigue crack growth model and crack growth direction model 

that are implemented in the simulation code. The calculations for the crack length and 

depth, fatigue cycles and SIF of the surface cracks depend on the material constants 

and constant parameters in the fatigue models. The material constants and constant 

parameters in the fatigue crack growth model are treated as deterministic values in the 

deterministic analysis. In reality, the material constants and constant parameters in the 

fatigue crack growth models vary. Setting up random parameters as deterministic 

values in an analysis may ruin the results.   

 

A numerical approach offers more advantages compared to an analytical 

approach, where advances in computer technology allow predictions that are more 

accurate. Due to the presence of uncertainties, the numerical simulation of surface 

cracks is more complex, and fewer investigations focus on three-dimensional models 

due to the complexity of the computations that are required. In order to model the 

problem in a timely and cost-effective way, it is necessary to enhance finite element 

models. Therefore, this thesis attempted to employ computations using a finite 

element model to present a new combination of probabilistic analysis and an advanced 

finite element model for surface cracks that promote brittle fracture.  

 

1.4 PROBLEM STATEMENT 

 

The mechanical behaviour of surface cracks in promoting failures is crucial in all 

modes of failures. Failures can occur in real applications such as aircraft structures, 

stiffened panels, airframes, biomechanical systems, nuclear systems, pipelines and the 

automotive industry. For example, the structural life of an aircraft fleet is defined by 

the fatigue design criteria. The fatigue design criteria use the safety factor approach to 

assume the initial defects in the structure. The objective of the fatigue design criteria 

is to detect initial cracks before they reach a critical crack size after the usage of an 



8 

aircraft by imposing inspections. The inspection intervals are derived by using safety 

factors and crack size assumptions. The US Air Force provides guidelines on crack 

size assumptions to calculate crack growth so as to determine inspection intervals 

(Iyyer et al., 2007). The safety factor approach and crack size assumptions are 

exposed to uncertainties in analysis. 

 

However, the existence of uncertainties in analysis has received relatively little 

attention compared to the deterministic approach (Quaranta, 2011; Reh et al., 2006). 

Advancements in the computational and experimental mechanics make it possible to 

explore the role of uncertainties in promoting failure and the mechanics of elastic 

surface cracks. 

 

 The mechanics of the behaviour of surface cracks for all damage processes 

become complex, especially when a three-dimensional surface crack analysis and 

uncertain parameters are involved. The reported probabilistic three-dimensional 

surface crack results from this technique are scarce. One of the difficulties in 

considering probabilistic surface cracks is the complex geometry that requires many 

degrees of freedom in numerical modelling and leads to a prohibitively long 

computation time. The complex geometry also influences the surface crack growth.  

 

The determination of random surface crack growth in fatigue is also a 

challenge since the finite element model needs to predict the growth and direction in 

any of the possible paths. A significant number of uncertainties affect the 

phenomenon of surface crack growth. Thus, the possible surface crack growth that is 

affected by the randomness of material parameters, crack location, crack size and 

crack orientation needs to be predicted. The random parameters may increase the 

probability of failure. 

 

The probability of failure is calculated based on the integration of the 

probability density function, which involves a non-linear function. Therefore, a 

method that is able to solve the integration numerically is indispensable. Thus, 

reliance on the safety factor approach can be avoided.  
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The safety factor in the deterministic approach is expected to handle any 

uncertainties involved in the design. However, the implementation of a safety factor 

may result in under or over-designing of a structure. It might cause an early failure or 

increase the cost. The deterministic approach needs to be replaced with a better 

method that is able to predict fracture and failure. The following sections outline the 

research objectives and research scope of this thesis, based on the research problems.  

 

1.5 RESEARCH OBJECTIVES 

 

The prime objective of this thesis was to develop, test and provide a computational 

fracture mechanics model that emphasizes the quantification of uncertainties for 

surface cracks. Thus, the objectives were divided as follows. 

 

(i) To establish a mathematical model for the distribution of surface crack growth 

that considers variations in the initial surface crack size and material 

properties. 

 

(ii) To create an effective algorithmic solution for the S-version Finite Element 

Model that takes into consideration the randomness of variables.  

 

(iii) To develop a probabilistic S-version Finite Element Model (S-FEM) for 

surface cracks which are caused by uncertainties in the material and the 

geometry.  

 

(iv) To validate and enhance the SIF, surface crack growth and fatigue life 

prediction on the developed finite element model for surface cracks.  

 

1.6 RESEARCH SCOPE 

 

The fracture and failure studies that were promoted by the Probabilistic S-version 

Finite Element Model (ProbS-FEM) focused on the probabilistic analysis of the 

problem of surface cracks. A few limitations were imposed on the study in order to 

present the specific scope of the investigation. The limitations were as follows:  
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(i) The current study was divided into numerical simulations and experimental 

work on the problem of surface cracks.   

 

(ii) Finite element modelling was developed to simulate the metallic materials that 

predict failure by brittle fracture. The fracture mechanics parameters were 

based on a three-dimensional finite element analysis (FEA) and linear elastic 

fracture mechanics (LEFM). Thus, the current study was limited to 

investigating the problem of elastic surface cracks.   

 

(iii) The uncertain parameters were limited to the material properties and the 

geometry, particularly with regard to the size, location and orientation of the 

surface cracks. The distribution of the uncertain parameters was gained from a 

literature review and experimental approach. 

 

(iv) The estimation of failure method was based on the SIF value. The critical SIF 

is the limit between the safe and the failure region. Thus, the comparison 

between the calculated SIF and the critical SIF was used to determine the 

failure. Then, the SIF was used to calculate the fatigue crack growth. The 

calculation of the fatigue crack growth was limited to Paris’ law.  

 

(v) The probabilistic analysis was limited to the Monte Carlo simulation (MCS) 

technique. The enhancement of the effectiveness of the sampling process was 

based on the Latin Hypercube Sampling (LHS). 

 

1.7 THESIS OUTLINE 

 

This thesis is divided into five chapters. Chapter 1 presents the introduction, study 

motivations, problem statement, research objectives and research scope. 

 

Chapter 2 starts with a brief introduction to brittle fracture and failure that are 

influenced by surface cracks. Then, the computational fracture mechanics is presented 

in the next section. The involvement of uncertainties in numerical methods is 
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discussed in a separate section. Chapter 2 ends with the findings from the literature 

review.  

 

 In Chapter 3, the finite element formulation of the S-FEM and ProbS-FEM are 

discussed. The explanation pertaining to the extraction of the probabilistic information 

is highlighted, as it is the focus of this research. The experimental setup for the 

purpose of verification is also presented in Chapter 3. 

 

 The results and discussion of the ProbS-FEM analysis are presented in Chapter 

4. Chapter 5 lists the main achievements and conclusions of the current work and 

discusses recommendations for future works. 

 

 Lastly, a set of references and appendices, that include the finite element 

formulation and the developed codes, are attached with this thesis.  
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  CHAPTER 2

 

 

LITERATURE REVIEW 

 

 

2.1 CHAPTER OUTLINE 

 

This chapter presents a review of previous works on surface crack problems that cause 

brittle fracture and failure. In addition, a review of the mechanics of computational 

fracture and the quantification of uncertainties in FEM is presented in this chapter. 

The objective of this chapter was to identify the research gap from previous works on 

surface cracks in an attempt to solve the problem using the FEM and probabilistic 

concepts. 

 

2.2 BRITTLE FRACTURE AND FAILURE DUE TO SURFACE CRACKS  

 

This section addresses the role of surface cracks by an introduction to fracture 

mechanics, the brittle failure mechanism and the formulation of fracture parameters in 

LEFM. The occurrence of surface cracks that may lead to fracture and failure is 

common in structural components. A brief review of fracture mechanics, LEFM, 

fatigue design criteria, fatigue crack growth model and the direction of crack growth 

with respect to surface cracks are presented in turn.  

 

2.2.1 Fracture Mechanics 

 

Fracture mechanics is defined as the science that describes the behaviour of bodies 

containing cracks (Taylor 2007). The works of Griffith (1920), Westergaard (1939) 

and Irwin (1958) have greatly contributed to the development of the fracture 

mechanics theory. Details of the history and development of fracture mechanics is 

available in the studies by Anderson (2005) and Gdoutos (2005). Figure 2.1 shows the 

II
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percentage fraction of the research trends in various types of cracks problem. The 

problem of surface cracks has become the focus of researchers due to the frequent 

occurrence of failures in industries (Brighenti & Carpinteri, 2013) such as in pipelines 

(Śnieżek et al., 2016), marine (Pang et al., 2016, offshore (Pang et al., 2016), 

aeronautics (Shi et al., 2014) and aircraft (Newman Jr & Ramakrishnan, 2016) 

industries.  

  

 

Figure 2.1 Fractions of surface crack studies 

Source: Daud, 2012  

 

Failure mechanisms promoted by cracks can be addressed by failures at atomic 

levels in different failure modes. The study of the fracture process depends on the 

scale level at which it is considered (Gdoutos, 2005). Figure 2.2 shows the 

significance of the size range in the crack propagation process. The fracture 

phenomenon is usually studied within the atomic (10
-10

 m), microscopic (10
-6

 m) or 

continuum (10
-6

 – 10
2
 m) scale levels. The continuum scale level is less expensive 

computationally than atomic modelling and hybrid atomic-continuum mechanics 

modelling. The possibility of simulating large-scale structures and reducing the degree 

of freedom in problems are other advantages of using the continuum scale level. Since 
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the aim of this study was to solve large-scale structural problems, the continuum scale 

level was adequate. 

 

Continuum mechanics deals with the analysis of materials under external 

loadings that can be viewed as continuous or homogenous media. The concept of a 

continuum mechanics model has produced the theories of LEFM and Elastic Plastic 

Fracture Mechanics (EPFM) (Anderson, 2005; Gdoutos, 2005). 

 

Atoms

10-10 m

Microstructure

10-6

Defects

10-3

Testing

10-1

Application

102 m

Continuum Mechanics

 

Figure 2.2 Fracture mechanisms at different scales  

 

2.2.2 Linear Elastic Fracture Mechanics 

 

Whether a fracture occurs in a ductile or brittle manner, or a fatigue crack grows under 

cyclic loading, the local plasticity at the crack tip controls both the fracture and the 

crack growth (Stephens et al., 2001). The plastic zone size at the crack tip is calculated 

by using the stress field equations with the SIF and yield strength as functions of the 

determination. The SIF is a fundamental parameter of the LEFM. Several researchers, 

such as Irwin (1957), Dugdale (1960), Paul & Tarafder (2013) and Paul (2016) have 

attempted to determine the size of the plastic zone. The LEFM is applicable when the 

plastic zone radius at the crack tip is relatively small compared to the dimensions of 

the specimen (Stephens et al., 2001). In addition, the LEFM is capable of determining 

the crack growth in materials under the basic assumption that the material conditions 

are mainly linear elastic during the fatigue process.  
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Figure 2.3 shows three types of crack deformations or modes that could be 

extended by surface cracks. Mode  is the opening mode and most cracks tend to 

propagate in this mode, particularly in the fatigue mode. This is because cracks tend to 

grow on the plane of maximum tensile stress. Fatigue loading produces different 

plastic zone sizes. The plastic zone size for fatigue is one-fourth that of the monotonic 

plastic zone size (Dowling, 1999) as the local stress near the crack tip is reduced to a 

value that is less than that observed for the monotonic plastic zone size. The unloading 

process produces a smaller sized plastic zone. The LEFM can often be applied to the 

fatigue crack growth process, even for materials that exhibit significant plasticity 

(Berer & Pinter, 2013; Dowling, 1999; Leander et al., 2013; Rhymer et al., 2008; 

Stephens et al., 2001). The introduction to the LEFM will lead to the computation of 

the SIF, which is the first step in the analysis of cracked bodies (Nejati et al., 2015). 

Then, by design, the cracked bodies are prevented from an early retirement through 

fatigue design criteria.  

 

Mode I Mode IIIMode II
 

Figure 2.3 Failure modes ,  and  

 

2.2.3 Fatigue Design Criteria 

 

The fatigue design criteria are essential for the determination of the structural life. The 

objectives of the fatigue design criteria are to ensure the safety and maximize the 

usage of a structure. There are three methods for the fatigue design criteria: the safe-

life, fail-safe and damage-tolerant approaches (Iyyer et al., 2007).  
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The safe-life method is defined by the crack initiation time, which is calculated 

based on static and fatigue material properties. However, the structure is retired before 

the formation of fatigue cracks by the use of the safety factor approach (Feng et al., 

2014; Iyyer et al., 2007). The advantages of the safe-life method are the enhanced 

safety and decreased inspection costs (Forth et al., 2002). A few disadvantages of the 

safe-life approach might occur, such as premature retirement, when high safety factors 

are used. In addition, defects from the manufacturing process are not considered by 

the safety factors.   

 

The fail-safe method considers the defects from the manufacturing process and 

during the service life. The structure is designed to allow multiple load paths so that 

after the failure, structural integrity is not impaired significantly (Iyyer et al., 2007). 

Thus, ample time is allocated for scheduled inspections and repairs. A maintenance 

program for inspection is part of the fail-safe method. The inspection intervals are 

decided based on the time interval for crack growth. The inspection intervals are 

calculated after a crack is detected on the structure. The inspections should be 

scheduled before the critical crack sizes are reached (Zhang et al., 2009). Thus, the 

calculation of the inspection intervals is made by using the appropriate safety factors.   

 

The damage-tolerant method carries out inspections to detect cracks before 

they reach a critical size. Safety factors on the crack growth life are determined to 

establish the inspection intervals. The inspections are conducted before the detectable 

cracks propagate to critical crack sizes. The US Air Force provides guidelines on 

crack size assumptions for the calculation of crack growth life (Iyyer et al., 2007). The 

structure is designed to have a higher residual strength than the operational limit loads 

when a crack occurs (Iyyer et al., 2007; Ming-Zhou et al., 2016).    

 

 The three methods of fatigue design criteria are to monitor the fatigue life of a 

cracked structure. The structure is designed to consider the existence of cracks before 

and during the service life. Any one of the above methods relies on the safety factor 

approach for the calculation of fatigue crack growth due to the uncertain length of the 

initial crack, which is crucial for the fatigue crack growth model.  
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2.2.4 Fatigue Crack Growth Model 

 

Figure 2.4 shows a typical fatigue rate curve. Commonly, the curve is separated into 

three major regions, namely region I, II and III. Region I indicates a threshold value,

, below which the fatigue cracks are considered as non-propagating. This region 

is influenced by the microstructure, mean stress, frequency and environment (Beden et 

al., 2009; Stephens et al., 2001). Region II shows a linear relationship between 

log  and log . The formula  

 

  (2.1) 

 

was first introduced by Paul Paris in the early 1960s. Region II, or the Paris region, is 

typically controlled by the environment. The microstructure has less influence on the 

behaviour of fatigue crack growth in region II (Stephens et al., 2001). The use of 

LEFM concepts is acceptable and the data follow a linear relationship between 

log  and log  (Beden et al., 2009). In region III, the fatigue crack growth 

rates are very high and are controlled by the fracture toughness, .  

 

 Paris’ law offers a basic description of fatigue crack growth. This law was 

used in this research work due to its simplicity and the involvement of fewer 

parameters. In addition, the limitation with regard to the number of parameters 

provides the advantage of focusing on other uncertain parameters, such as the 

geometry and crack size. From the Paris model, the fatigue crack growth model was 

extended to more specific phenomenological factors such as in the Wheeler (Khan et 

al., 2010; Mehrzadi & Taheri, 2013), Willenborg (Wang et al., 2016), Elber (Johan 

Singh et al., 2007), Gallagher and Hughes (Barker et al., 2013), Barsom (Iranpour et 

al., 2008) and McEvily (Wang et al., 2008) models. Each model can only account for 

one or several phenomenological factors. Although many models have been 

developed, none of them enjoys universal acceptance (Beden, 2010). Thus, only the 

Paris model was developed in this research for the sake of universal acceptance. Then, 

the direction of the crack growth was modelled after the calculation of the fatigue 

crack growth.   
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Figure 2.4 Typical fatigue crack growth rate curve 

 

2.2.5 Crack Growth Direction 

 

The prediction of a three-dimensional crack growth direction in a linear-elastic region 

is based on the stress intensity factors, , , and . Only a few fracture criteria 

exist for three-dimensional mixed mode problems. The well-known Sih criterion is 

based on the strain energy density (Sih, 1990).  The crack growth angle,  is derived 

by minimizing the strain energy density factor. The formulation of  is dependent on 

mode I and mode II of the SIF and Poisson’s ratio. A further explanation can be found 

in Sih (1990).  

 

The Pook criterion for a three-dimensional crack growth was developed based 

on  and . 

 

  (2.2) 

 

The Pook criterion is further discussed in Pook (1982, 2000). The criterion of 

Schollmann et al. is based on the assumption that crack growth develops 
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perpendicularly to the direction of the special maximum principal stress, . The  is 

defined as follows 

 

  (2.3) 

 

Since the Schollmann et al. criterion assumes that the crack growth direction is 

perpendicular to , the partial differential with respect to  is as follows 

 

 

 

 

 

 

 

(2.4) 

 

A further explanation can be obtained by referring to Schöllman et al. (2002). A 

simpler function that is helpful for practical applications was developed by Richard et 

al. (2005) as follows: 

 

  (2.5) 

 

where , ,  for  and  for  and 

. Based on the crack growth criteria presented above, Schöllman et al. and 

Richard’s criteria are suitable for three-dimensional mixed mode problems (Richard et 

al., 2005). However, only one criterion could be implemented in the numerical 

calculation. Thus, Richard’s criterion was used for the model of crack growth 

direction in the numerical calculation due to its simplicity. 
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2.3 NUMERICAL METHOD IN FRACTURE MECHANICS 

 

Diverse numerical methods have been applied to solve problems in solid mechanics 

such as the meshless (Cai et al., 2016), boundary integral equation (Wang & Sun 

2005), finite difference (Kimoto & Ichikawa 2015) and finite element methods. The 

finite element method (FEM) is one method that has been focused on by the vast 

majority of researchers (Pavlou, 2015). This is due to the advantages of the FEM, 

where it is able to handle complex geometries, a variety of engineering problems, 

complex restraints and complex loadings (Elishakoff & Ren, 1999). Also, researchers 

use FEM to simulate surface crack problems in various engineering applications 

(Kikuchi et al., 2014). In the following subsections, the FEM for surface cracks and 

the S-version of the FEM are reviewed.  

 

2.3.1 Finite Element Models for Surface Cracks 

 

Figure 2.5 shows the varieties of FEM models that are currently applicable for various 

engineering problems. Among these examples, it can be noticed that the S-FEM can 

be applied for numerous engineering issues, especially in relation to engineering 

structures and materials. However, it must be accepted that in reality each software 

model is an expert in a specific field and scope of a problem. For instance, the S-FEM 

is suitable for the simulation of surface crack problems due to its effectiveness in 

controlling the meshing process. 

 

The growth of surface cracks has received a great deal of attention from 

researchers. One noticeable finding is with regard to crack shape development, which 

was first studied by Newman & Raju (1981). One of the assumptions made was that 

an initial semi-elliptical surface crack maintains its shape until fracture occurs with 

increased cracking based on Paris’ law (Brighenti & Carpinteri, 2013; Carpinteri, 

1993; Carpinteri et al., 2013; Hou, 2011). Numerous studies have investigated the 

evolution of crack shapes through the alternative current field measurement technique 

for various aspect ratios, and the SIF of corner cracks and round bars (Brighenti & 

Carpinteri, 2013; Carpinteri et al., 2013).  
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Figure 2.5 Varieties of FEMs in fracture mechanics field 

 

The rate of growth of crack shapes has a tendency to be slow at the free 

surface. Hence, the use of a semi-elliptical crack shape during a simulation process 

allows it to evolve in a way that is close to reality. The evolution of crack shapes was 

found to be independent of the semi-elliptical shape, and researchers gradually began 

to discover why. Investigations started at the free and deepest surfaces of the cracks 

due to variations in the crack shapes (Hou, 2011). The discovery of the plasticity-

induced crack closure phenomenon subsequently opened a new chapter in the 

development of crack shapes.  

 

Many researchers studied the effects of crack closure behaviour since it is 

capable of decelerating the crack growth rate at the free surface (Aguilarespinosa et 

al., 2013; De Matos & Nowell, 2009; Hou 2011; Kim et al., 2013; Savaidis et al., 

2010; Song & Shieh, 2004). The plasticity-induced crack closure phenomenon has 

been used to explain fatigue crack phenomena, such as the mean stress effect, crack 

growth retardation, and anomalous growth behaviour (Brighenti & Carpinteri, 2013; 

Carpinteri, 1993; Carpinteri et al., 2013; Hou, 2011).  

 

Due to this phenomenon, the numerical simulation of surface cracks is 

complex, and fewer investigations have focused on three-dimensional models due to 

the complexity of the required computations. In order to model the problem in a 
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timely and cost-effective way, many types of FEMs have been introduced. The finite 

element alternating method (FEAM) (Thomas et al., 2000; Tian et al., 2014) and the 

X-FEM (Tran & Geniaut, 2012; Zhuang et al., 2014) were developed to simulate 

crack growth problems. Both methods utilize singular functions to capture the stress 

field at the crack tip. This requires the rebuilding of the finite element model. In the 

proposed approach, a less demanding analysis was targeted in order to increase its 

applicability to large-scale problems. From this perspective, the S-version Finite 

Element Model (S-FEM), which does not involve rebuilding the finite element model, 

was selected as a basis. 

 

2.3.2 S-version Finite Element Model 

 

An extended version of the FEM was needed since the problem involved complex 

geometries, fatigue loads, cracked structures and modelling of uncertainties. The 

conventional FEM was limited by the assumptions that arose with regard to the 

modelling of the entire problem and the environment. Therefore, it was prone to error 

and produced inaccurate results. The S-version FEM was introduced by Fish (1992) to 

enhance the capability of the FEM.  

 

The S-FEM was developed from adaptive h- and p-methods of the meshing 

technique. However, the efficiency of these methods still needed to be improved by 

subdividing the finite element mesh using the h-method and increasing the degree of 

the polynomial using the p-method. Therefore, (Fish 1992) introduced hp procedures 

to integrate the improvement of both the polynomial order and the mesh refinement. 

The S-FEM has been used for various applications such as heat-affected zone 

materials (Kikuchi et al., 2012; Kikuchi, Wada, Shimizu et al., 2010), corrosion 

cracking (Kikuchi, Wada, Shmizu et al., 2011), the crack closure effect (Kikuchi, 

Wada, Maitireyimu et al., 2010), composite materials (Angioni et al., 2012) and 

surface cracks (Kikuchi, Wada & Suga, 2011).  

 

Surface cracks are frequently found in aeronautical panels, riveted aeronautical 

reinforcements and pressure vessels due to their random loadings, uncertainty of the 

material, and unexpected environment. The crack growth data show a significant 
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amount of scatter (Choi et al., 2007; Stephens et al., 2001), especially when the 

structure has been subjected to fatigue loading (Duquesnay & Underhill, 2010; 

Underhill & Duquesnay, 2008, 2009). Scatter in crack nucleation (Kim et al., 2011; 

Liu & Mahadevan, 2009; Walz & Riesch-Oppermann, 2006) and crack growth rates 

(Grell & Laz, 2010; Hariharan et al., 2011; Iyyer et al., 2007; Kapoor et al., 2011) 

have also been reported. These uncertainties produce a distribution of outputs from a 

distribution of input parameters (Grell & Laz, 2010). 

 

The S-version FEM is appropriate for solving three-dimensional fatigue 

surface crack problems. In addition, it is feasible to add the uncertainties 

quantification feature in the S-version FEM. So far, the embedded probabilistic 

analysis in the S-version FEM has rarely been published. The quantification of 

uncertainties in the S-version FEM is introduced and discussed in the following 

section.  

 

2.4 UNCERTAINTIES QUANTIFICATION IN FEM 

 

The initial defect originates from a notch due to a stress concentration. Since the 

structure is exposed to a fatigue load, the defect is extended to create a surface crack. 

The size of the initial surface crack is a random process in nature (Sain & Chandra 

Kishen, 2008). It is due to the uncertainty in the material homogeneity, initial flaws 

and the applied load (Wang, 1999). The conventional method does not account for the 

uncertainty in the fatigue crack growth analysis (Möller et al., 2003). In most practical 

cases, a safety factor approach is implemented to cater for all the uncertainties in the 

analysis. In addition, due to insufficient experimental data, it is assumed that the initial 

crack size is a deterministic value. Therefore, a method is needed that is capable of 

quantifying the uncertainties in the FEM. This section starts with a survey of the 

probabilistic analysis in FEM. This is then followed by explanations on the MCS, 

LHS, and upper and lower bounds. 
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2.4.1 Probabilistic Analysis in FEM 

 

The availability of various probabilistic analysis software in FEM is presented in 

Table 2.1. The Proban software provides an integrated FEM and probabilistic analysis 

for analysing structural components. The enhancement of the FEM is restricted to the 

available analysis in the Proban software (Tvedt, 2006).  

 

The NESSUS and COSSAN software are probabilistic software packages that 

offer a merging process with the FEM commercial software. However, the 

dependence on commercial FEA software arbitrarily leads to an increase in the cost. 

Furthermore, the NESSUS and COSSAN software also involve a number of costs.    

 

The ANSYS Probabilistic Design System offers synchronization with the 

ANSYS commercial software. However, the dependence of the ANSYS Probabilistic 

Design System on ANSYS creates a software that can hardly couple with other finite 

element packages. The handling of random geometry parameters may also be 

cumbersome in certain cases in the ANSYS Probabilistic Design System (Reh et al., 

2006). Thus, a probabilistic analysis with an advanced FEM is needed. The priority of 

the selection is the freedom to improve the source codes of FEM and the probabilistic 

analysis.  

 

Based on the review of the probabilistic analysis in FEM, the MCS was 

selected as the probabilistic analysis in this research work. This was because the 

domain of possible responses can be estimated by modern MCS procedures (Schuëller 

& Pradlwarter, 2006). Even though various probabilistic techniques have been 

implemented in commercial software, still the results from the MCS are taken as a 

benchmark. Thus, the MCS, with an effective sampling strategy by the LHS, has been 

selected and presented in the following subsections.  

 

2.4.2 Monte Carlo Simulation 

 

The MCS is the most general probabilistic approach and one that is quite powerful for 

assessing parameter randomness (Cetin et al., 2013; Narayanan et al., 2016; Sanches 
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et al., 2015). Figure 2.6 shows the research trend in the Monte Carlo (MC) method 

that covers the scientific study of material failure (Leira et al., 2016; Rodríguez et al., 

2015; Wang et al.m 2014) and industrial case studies (Cai et al., 2015; Kim et al., 

2016). The trend shows that the main focus was more on the sampling techniques 

(Estecahandy et al., 2015; Rajabi et al., 2015; Shields et al., 2015), a new diagram for 

presenting the results (Kaczor et al., 2016) and the applications (Kaczor et al., 2016; 

Leira et al., 2016). The combination of MCS and S-FEM is a new trend within the 

scope of this research. 

 

Table 2.1 Review of probabilistic analysis in FEM  

 

Software Model and approaches used  Reference 

Proban  FORM, SORM, adaptive response 

surface, nested reliability analysis, MCS, 

stratified simulation, directional 

simulation, design point simulation, axis 

orthogonal simulation and LHS 

Tvedt (2006) 

NESSUS  Interfaced with ABAQUS, ANSYS, 

DYNA3D, LS-DYNA, 

NASA_GRC_FEM, MADYMO, 

MSC.NASTRAN, PRONTO, and 

USER_DEFINED. 

 Monte Carlo simulation, first-order 

reliability method, advanced mean value 

method and adaptive importance sampling 

Thacker et al. (2006) 

ANSYS 

Probabilistic 

Design 

System 

 Using ANSYS solver for FEM 

 MCS with LHS 

Reh (2006) 

COSSAN  FEA solved by interfaced FEM or 

standalone toolbox.  

 MCS, LHS. 

Schuëller & Pradlwarter 

(2006) 

 

The Monte Carlo sampling (MCS) method has received interest as a powerful 

tool for solving important physical problems and producing reliable outcomes. The 

MCS results have become the benchmark for any new development in probabilistic 

analysis codes (Helton & Davis, 2003; Janssen, 2013). The advantage of the Monte 

Carlo approach is in the characterisation and quantification of uncertainty. However, 
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the major issues to be solved are the time taken and the huge number of samples 

produced by the MCS. Therefore, an MCS in combination with the LHS is required. 
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Figure 2.6 Research trend in MC   

 

2.4.3 Latin Hypercube Sampling 

 

The LHS provides a dense stratification over the range of each uncertain parameter. 

As a result, the LHS generates a small sample size. Each sample is generated with a 

structured form and randomized process (Sallberry et al., 2007). Unlike the MCS, the 

sample avoids generation in a same range of values, hence, making the LHS very 

effective. The effectiveness of the LHS and MCS in the characterisation of uncertainty 

has been adopted in the S-FEM in order to model a real application in the engineering 

field. The S-FEM is a basis for the adoption of probabilistic analysis in a structural 

analysis.  

 

A significant number of powerful sampling techniques are available (Beer & 

Liebscher, 2008). Hence, this study employed the LHS as a numerically efficient 

simulation technique for the improvement of numerical feasibility. The LHS is 

efficient at estimating the mean values and standard deviations in a structural analysis, 

and is even more efficient than the standard Monte Carlo (Olsson et al. 2003) method. 
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In addition, the LHS is capable of preparing the bounds that are to be used for 

analysing the distribution of the results.  

 

2.4.4 Bounds 

 

Sets of random values are required to simulate variables in the MCS. Each generated 

variable produces a corresponding result until a distribution of the results is obtained 

for the set of random input variables. Then, all the results are averaged to obtain a 

mean value, and upper and lower bounds. The lowest result is represented as the lower 

bound and the highest result is represented as the upper bound. The bounds are 

produced from a certain relation of mean, standard deviation and number of samples 

of the uncertain variables. Based on the mean, and upper and lower bounds, a 95% 

confidence level in the bounds can be calculated. 

 

In order to take account of the uncertainty of the variables, the bounds may be 

determined for the variables concerned (Möller et al., 2003). The upper and lower 

bounds offer a variability quantification that extracts from the width of the bounds. In 

addition, the upper and lower bounds produce statistical information that is essential 

for a characteristic study of the random variables. In addition, the upper and lower 

bounds are capable of reducing the computational burden for the development of a 

reliable system (Ramirez-Marquez & Levitin, 2008). The fatigue strength and 

characteristic life of a complex structure with multiple similar structural details can be 

calculated at a certain level of bounds (Huang et al., 2012). 

 

The fatigue strength and life can be calculated at a 95% confidence level in the 

bounds due to their convenience and simplicity for applications in fatigue analysis. 

For instance, aircraft structural designs have used a 95% confidence level (Huang et 

al., 2012). Therefore, the 95% confidence level of the upper and lower bounds were 

computed in this thesis to indicate the randomness of the distribution and the range of 

the results.  
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The overall review pertaining to the analysis of surface cracks using FEM and 

the probabilistic approach has been presented. This chapter ends with the conclusion 

or the findings from the literature review.  

 

2.5 SUMMARY 

 

Despite the consistent enhancements achieved in the simulation of fatigue crack 

growth and life, the merging with probabilistic methods remains poorly established, 

particularly for multiple surface cracks with potentially complex mesh refinements 

and rebuilding issues. 

 

The application of unrealistic safety factors and a deterministic initial crack 

size may lead to an unreliable residual life, resulting in uneconomical maintenance 

intervals (Wang 1999). Therefore, a probabilistic approach with different sampling 

strategies is demanded in the analysis of fatigue crack growth.  

 

There is an insufficient number of software available for the simulation of 

fatigue in surface cracks due to the geometrical complexities involved. The S-FEM 

technique is able to implement different components or structure, notch and crack 

configurations. The mesh generator is accurate and less time-consuming.  

 

 The most widely used sampling strategy in FEM is the MC sampling due to 

the ability of the MCS to bridge the gap between deterministic and probabilistic 

concepts (Schuëller & Pradlwarter, 2006). Figure 2.7 shows the present research work 

in bridging the gap between both concepts, together with the implementation of the 

LHS. The combination of all the methodologies produced the Probabilistic S-version 

Finite Element Model (ProbS-FEM). Chapter 3 presents the methodology for the 

ProbS-FEM. 
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Figure 2.7 Research gap between deterministic and probabilistic approach that has been bridged by the current research work 
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  CHAPTER 3

 

 

PROBABILISTIC S-VERSION FINITE ELEMENT METHOD 

 

 

3.1 CHAPTER OUTLINE 

 

This chapter presents the formulation of a three-dimensional stress and surface crack 

growth analysis using the ProbS-FEM. The explanation starts with an overview of the 

methods, followed by the general finite element formulation. Then, the calculation of 

the stiffness matrix at the overlaid area between the global and local area is presented. 

After the completion of the matrix formulation, the surface crack growth procedure 

and fatigue crack growth model are described. Then, the embedded probabilistic 

analysis in the finite element model is discussed. The enhancement of the sampling 

method is elaborated under the section on the LHS. Finally, yet most importantly, the 

experimental setup is presented at the end of this chapter. 

 

3.2 INTRODUCTION TO THE ProbS-FEM 

 

The ProbS-FEM methodology was divided into three major parts, as shown in Figure 

3.1. The main procedures were the probabilistic, deterministic and experimental 

works. The deterministic part means that the calculation was independent of random 

data. The deterministic analysis was computed from the setting up of the input data, 

the mesh generation for the local and global regions, the finite element formulation 

and the calculation of the surface crack growth.  

 

III
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Figure 3.1 Overall diagram of the methods 



32 

Meanwhile, the probabilistic part started with the sampling of the random 

parameters and the supply to the deterministic analysis. Since the deterministic part 

was independent of random data, the exact random parameters that were generated 

were used for supplying the parameters to the deterministic part. As the calculation 

was computed for the deterministic part, the probabilistic information was extracted at 

the end of the analysis. The evaluation of the results was validated by the 

experimental results for clarification purposes. In order to get a basic idea of the 

ProbS-FEM, the explanation of the deterministic part begins with the general finite 

element formulation as below. 

 

3.3 FINITE ELEMENT FORMULATION 

 

This section discusses the formulation of a three-dimensional stress analysis problem. 

The stress-strain relations are given by 

 

  (3.1) 

 

where  is the material property matrix. The strain-displacement relations can be 

expressed as  

 

  (3.2) 

 

where  is the deformation matrix. Considering the foregoing developments, 

Eq. (3.1) can be expressed as 

 

  (3.3) 

 

where  is the displacement obtained from the relation between the stiffness and 

loading matrices. The force is expressed as  

 

  (3.4) 

 

where the stiffness matrix  is calculated as 
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  (3.5) 

 

Further details of the derivation of the ProbS-FEM formulation is discussed in the 

following section. The formulation was focused within the context of the ProbS-FEM 

concept.  

 

3.4 MATHEMATICAL FORMULATION OF THE ProbS-FEM  

 

This section presents the mathematical formulation of the ProbS-FEM, which is an 

integration of the S-version Finite Element Method and the probabilistic approach. 

The primary focus of this section is the combined development of the program. It is 

the main contribution of this thesis. The combined program is known as the ProbS-

FEM. Therefore, a detailed explanation is essential. This section is divided into three 

subsections. The first explains the development of the stiffness matrix at the overlaid 

region. This is followed by the implementation of surface crack growth in the ProbS-

FEM. The fatigue crack growth is discussed in the third subsection. 

 

3.4.1  Stiffness Matrix at Overlaid Region 

 

Figure 3.2 shows the concept of the ProbS-FEM implementation in the analysis of 

surface cracks. A coarser mesh was generated at the global area,  while a denser 

mesh was used for the local area, . The local area covered the vicinity of the crack 

front area. During the implementation of the global mesh, the crack tip area was 

temporarily neglected to allow the generation of a mesh for the whole domain. 

Subsequently, the mesh around the crack front area was taken into account during the 

implementation of the local mesh. Then, the local mesh was overlaid on the global 

mesh.  represents the boundary of each region. Let  be the boundary of the 

constrained displacement and  be the boundary of the force that was applied at the 

global region. The overlaid boundary was represented by . 
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Figure 3.2 Concept of the S-FEM 

 

It was crucial to decide on the size of the local mesh area since the growth of 

the crack was affected by the calculation of the displacement function. The 

displacement in the overlaid area was calculated from the global and local meshes, as 

shown below 

 

 
 

(3.6) 
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A virtual displacement is all the possible displacements that a node might move in. 

The virtual displacement for the local and overlaid area is given by 

 

  (3.7) 

 

The principle of virtual work states that the work done by forces in any virtual 

displacement of the body is equal to zero. Therefore, the equation is expressed by  

    

 

 

(3.8) 

 

where  and  are the stress and virtual strain vector, respectively. Moreover,  is 

the domain of interest,  is the body force per unit volume,  is the vector of the 

boundary tractions,  is the part of the boundary on which the displacements are 

prescribed, and  is the nodal force. These components can be represented in matrix 

form as follows: 

   

 

  

 

(3.9) 

 

Considering Eq. (3.9) in Eq. (3.8) yields a simpler equation of virtual work, which is 

shown as 

 

   (3.10) 
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Since the stress-strain relationship is expressed as , Eq. (3.10) can be 

expressed as 

 

  (3.11) 

 

The material property matrix  can be referred to in Eq. (0.1) in Appendix A. Since 

there are global and local regions, the strain in Eq. (3.11) for each region is expressed 

as follows 

 

  (3.12) 

 

Therefore, Eq. (3.11) can be written as 

 

 

 

(3.13) 

 

The first three terms are for the global minus the local region, and the remaining terms 

are only for the local region. The displacement component for the physical quantity at 

any point within the element is formulated by   

 

              (3.14) 

 

where the  character represents the element subscript, and  and  are the 

displacements of the element node for the global and local regions, respectively. The 

displacement of each node in an element is represented by ,  and  for the 

components of the -, - and -axes, respectively. Since there are 20 nodes in a 

hexahedron element, as shown in Figure 3.3, the displacement matrix of each node is 

given by 
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  (3.15) 
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Figure 3.3 Hexahedron element with 20 nodes 

 

Different geometries produce different shapes of an element. Then, a different 

function is computed to represent the shape of that element. In this research work, a 

three-dimensional hexahedron element was used, since it is sensible with respect to 

the corner angle. The shape functions were used to formulate finite element equations 

for various types of physical problems. These were derived to satisfy certain required 

conditions at the nodes. The  in Eq. (3.14) is the shape function matrix, and the 

detailed derivation can be referred to in Eq. (0.2) in Appendix A. 

 

Meanwhile, the strain in Eq. (3.13) can be expressed by the following equation 

 

              (3.16) 

 

where  and  are the matrices of the displacement strain for the global and 

local regions, respectively. Details of the  matrix and the expanded development of 

Eq. (3.16) can be referred to in Eq. (0.3) in Appendix A.  

 

Recalling Eq. (3.13), the equation can be split up into separate terms. The first 

term is 
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  (3.17) 

 

The second term is 

 

  (3.18) 

 

The third term is 

 

  (3.19) 

 

The fourth term is 

 

 

 

 

 

(3.20) 

 

The fifth term is 

 

 

 

(3.21) 

 

The sixth term is 
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(3.22) 

 

Since  and  are constants, Eq. (3.13) can be expressed as 

 

 

 

 

 

 

 

 

 

 

(3.23) 

 

Since , the element stiffness and force 

matrices are identified as 

 

 

 

 

 

(3.24) 
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Eq. (3.23) can be written as  

 

  

 

(3.25) 

 

A three-dimensional ProbS-FEM having  number of elements is formulated by 

 

  

 

(3.26) 

 

The matrix form of the finite element formulation is expressed as 

 

  (3.27) 

 

where  and  are the nodal forces at THE global and local regions, 

respectively, and the matrices  and  represent the stiffness matrices of the 

merging area. The complicated part in the ProbS-FEM was the construction of the 

stiffness matrix of the overlaid region between the local and global matrices,  

and . The relationships between  and 
 
are shown below. 

 

  (3.28) 
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  (3.29) 

 

The 
 
matrix is the strain displacement matrix in the global region. During the 

overlaying process between the local and global regions, the integration of the Gauss 

point was considered. The Gauss point is an integration point within an element at 

which the integrals are evaluated numerically. Since the local element overlapped with 

the global element, it was necessary to consider the relationship between the Gauss 

point in the local and global elements. Each local and global element has its own 

coordinates system. Figure 3.4 shows the overlaying concept between the local and 

global regions in two dimensions for clarity. In the implementation of the ProbS-FEM, 

a three-dimensional element was computed. 

Global element

Local element

Gauss point

 

Figure 3.4 Merged element between local and global regions 

 

Both the global and local elements have their own local coordinates, where 

 represents the Gaussian point coordinates for the local element, and 

 represents the Gaussian point coordinates for the global element. The 

construction of the  matrix in Eq. (3.28) requires the  coordinate. The 

 coordinate was calculated from the transformation of the  

coordinate. This transformation was computed using the Newton-Raphson method of 

iterative calculation.  
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 In order to determine the Gaussian point in the global element, , 

the physical nodal coordinate of the local element  was calculated by 

 

 

 

 

 

(3.30) 

 

 are the local coordinates of the Gaussian point in the local element, which 

is known after the generation of local mesh, while  are the nodal 

coordinates of the local mesh supplied by the mesh generator.  is the shape function, 

as shown in Eq. (0.2) in Appendix A. The physical nodal coordinates  of the 

local element were determined from Eq. (3.30). The relationship between the physical 

nodal coordinates,  and the Gaussian point in the global element,  

is shown as   

 

 

 

 

 

(3.31) 

 

 are the nodal coordinates of the global mesh supplied by the mesh 

generator. In order to calculate the Gaussian point in the global element, , 

in Eq. (3.31), the Newton-Raphson method was computed. Trial values of the vectors 

of the local coordinates  were set as , ,  since 

, , . The range of the transformation from the 



43 

global to the local mesh was from -1 to 1. The product of the trial values of , 

,  was represented as . The difference between  

calculated from Eq. (3.30) and the estimated coordinates  from the Newton-

Raphson method was determined as 

 

  

  

(3.32) 

 

The Newton-Raphson method continued the iteration for calculating  until

. The value of  was updated and used for the next 

iteration of the Newton-Raphson method by using the relationship of 

 

 

 

 

 

(3.33) 

 

Eq. (3.33) can be expanded as  

 

 

 

 

(3.34) 
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In matrix form, the relationship can be simplified as  

 

 

 

(3.35) 

 

where  is equal to 

 

 

 

(3.36) 

 

Therefore,  was updated as 

 

 

 

(3.37) 

 

The value for the next trial, , was updated by 

 

 
 

 

 

(3.38) 

 

The iteration for seeking the value of  was updated until the value of 

 became small enough. The iteration of the Newton-Raphson 
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method ended with a certain degree of convergence. The convergence was calculated 

based on the tolerance,  as 

 

 

 

(3.39) 

 

Based on these procedures, the local coordinates in the global element, , 

could be estimated. The estimated value of  from the local coordinates in 

the local element, , was useful at the overlaid mesh region due to the 

calculation of the stiffness matrix at the overlaid mesh.  

 

 Once the value of the local coordinates in the global element, , was 

in hand, the  matrix could be determined. The determination of the  matrix 

enabled the overlaid stiffness matrices,  and , to be computed, as shown in 

Eq. (3.28). On completing the calculation for the overlaid stiffness matrix, the 

determination of the crack growth was considered as below. 

 

3.4.2  Crack Growth 

 

The calculation of the overlaid stiffness matrix and the displacement of each node 

were explained in Section 3.4.1. The focus of this subsection is on explaining the 

growth at the crack front in the ProbS-FEM. The stress intensity factor (SIF), and 

the energy release rate were used as parameters to evaluate the crack growth in linear 

elastic fracture mechanics. A criterion was used to determine the direction of the crack 

growth.  

 

The energy release rate was determined via the Virtual Crack Closure method 

(VCCM) (Okada et al., 2005). The VCCM technique was then extended to 

synchronise with the ProbS-FEM program. The VCCM considered the opening 

displacement near to the crack front, as shown in Figure 3.5. The joint reactions at five 

nodes at the back of the crack front were shown by fi, where . The 

opening displacement at the five nodes at the front edge of the crack front was shown 

by ui, where .  
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Figure 3.5 VCCM for local mesh at crack front 

 

The displacement of the upper surface crack is represented by  and the 

displacement of the lower surface crack is represented by  Therefore, the opening 

displacement,  is expressed as 

 

 

 

(3.40) 

  

If the local and global meshes were overlaid in the analysis, the displacement was 

calculated based on a summation of the local and global displacements for the upper 

and lower surface cracks. Thus, the displacements for the upper and lower surface 

cracks were calculated as 

 

 

 

(3.41) 
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However, the opening displacement in the global region is always zero due to the 

overlay technique in the ProbS-FEM. The opening displacement occurred in the local 

mesh only. Therefore,   

 

 

 

(3.42) 

 

Combining Eq. (3.41) and (3.42) in Eq. (3.40) yielded 

 

 

 

(3.43) 

 

As can be seen in Eq. (3.43), the total opening displacement,  at the node was 

represented by the local region only. Then, the calculated opening displacement was 

used for the calculation of the energy release rate.  

 

 The energy release rate,  for the non-symmetrical finite element face 

arrangement at the crack front was introduced by Okada et al. (2005). When the 

failure mode component,  was considered, Okada et al. proposed that the energy spent, 

 be calculated during the opening of the crack for the area,  as 

 

 

 

(3.44) 

 

The area of  is shown in Figure 3.6. The failure modes ,  and  are shown in 

Figure 2.3.  and  are the length and width of the element perpendicular and parallel 

to the crack front, respectively as shown in Figure 3.6.  is the cohesive stress in the 

plane of the crack ahead of the crack front with the first subscript 3 representing the 

face that is in the vertical direction of the crack and the second subscript 3 

representing the axes of   and , as shown in Figure 3.6.  is the crack opening 

displacement function with  direction. The cohesive stress and the displacement 

function at the crack face are given by 
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(3.45) 

 

Further details regarding the stress and displacement at the crack face can be referred 

to in Broek (1986), where  for the plane stress, and  for the 

plane strain;  and  are the Young’s modulus and Poisson’s ratio of the material, 

respectively;  is the distance from the crack front; and  is the angle created between 

the direction of  and the normal direction of the crack front, as shown in Figure 3.6. 

Substituting the stress and displacement into Eq. (3.44) gives 

 

 

 

(3.46) 

 

Thus, Eq. (3.46) can be expressed in terms of the SIFs of the areas of  and , as 

shown in Figure 3.6, by 

 

 

 

(3.47) 

 

Further details of the derivation can be referred to in Okada et al. (2005).  

R(θ
)

Crack 

Front

r

O  

Figure 3.6 Element arrangement at the crack front 
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The energy release rate for the remaining failure modes are expressed by 

 

 

 

(3.48) 

 

 

 

(3.49) 

 

The superscripts at u and f are the coordinate axes in Figure 3.5, where  is the shear 

modulus. Each component of the energy release rate is represented by a subscript at G, 

whereby the sum of ,  and  produces . The energy release rate can be 

converted to the SIF, as shown in Equations (3.47), (3.48) and (3.49). The SIF is 

essential to determine the crack growth rate. The model for fatigue crack growth is 

explained in the following subsection. 

 

3.4.3  Fatigue Crack Growth Model 

 

Paris’ law was implemented to compute the crack growth rate in the ProbS-FEM. 

Since this research is a pioneer work for the embedded probabilistic approach in the S-

FEM, thus an established model such as Paris’ law was used for this case. The results 

of the ProbS-FEM were verified against those by previous researchers who used Paris’ 

law. Therefore, the ProbS-FEM maintained the usage of the same law for the sake of 

similarity. In addition, Paris’ law is simpler and requires fewer parameters. Thus, 

more effort could be focused on the development of a probabilistic analysis. The result 

of the SIF calculation was computed as a parameter in the fatigue model. Therefore, 

the simplest model was selected to reduce and control the uncertainty in the 

parameters of the fatigue model.  

 

Paris’ law is described by the equation 

 

 
       

(3.50) 
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where ,  and  are the crack depth, crack length and number of cycles, respectively, 

while the  and  coefficients are the material constants. The fatigue cycle range is 

expressed by 

 

 
         

(3.51) 

 

The value of  is the parameter associated with the fatigue crack growth rate under 

mixed mode conditions. The equivalent SIF of  was used in this study based on 

Richard’s criterion (Richard et al., 2005) .  is expressed by 

 

 

 

(3.52) 

 

Furthermore, the crack growth angle,  was calculated according to the 

criteria proposed by Richard et al. (2005). 

 

 

 

(3.53) 

 

where  for  and  for  and . The crack growth 

angle,  is shown in Figure 3.7. The calculation of the number of cycles and the 

explanation on the crack direction marked the end of the deterministic analysis. The 

deterministic analysis was merged with the probabilistic analysis. The implementation 

of the probabilistic analysis is explained in the next section. 

 

3.5 PROBABILISTIC S-VERSION FINITE ELEMENT MODEL 

 

The ProbS-FEM that was developed in this study consisted of an uncertainty analysis 

of the complex mathematical models of risk or failure. If each of the random 

parameters is characterised by a probability density function (PDF), then a joint PDF, 

 is produced. Therefore, the probability of failure (POF),  is given by 



51 

 

Crack 

Front

Crack

 

Figure 3.7 Crack growth direction 

 

 

 

 

(3.54) 

 

where  is the vector that represents the independent random parameter, and   is 

the performance function. If , it indicates failure. Since the evaluation of 

Eq. (3.54) is difficult as  and  are non-linear and multidimensional 

(Chowdhury et al., 2014), therefore, the Monte Carlo simulation (MCS) was used in 

the ProbS-FEM to avoid the integration in Eq. (3.54).  

 

The MCS is used to provide a distribution on final outputs. The method can 

account for parameter uncertainty in a rational way. The Monte Carlo method was 

used to account for parameter uncertainty in the ProbS-FEM. The technique for 

accounting for parameter uncertainty consists of the following steps:  
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(i) Sampling of random parameters 

(ii) Generating data from the selected distribution 

(iii) Using the generated data as a parameter in the model to produce the output 

(iv) Extracting the probabilistic information 

 

These steps will be presented in turn. 

  

3.5.1 Sampling of Random Parameters 

 

Modern computer programs have the capability of generating uniformly distributed 

random numbers from zero until one. By utilising this capability, a random number is 

generated from different numbers of seed values. A seed value is the starting point 

from which to grow a formula. Different seed values are generated for different sets of 

random numbers.  

 

In the initial step of the sampling process, a random number was picked. 

Different random numbers were generated for different parameters. It was a 

continuous process as the new sample was generated. The generation of loops was 

continued until the end of the sample. Once the random number had been picked, the 

inverse transformation technique was used for generating a random parameter from 

the selected distribution. The generation of random parameters is explained in Section 

3.5.2.  

 

3.5.2 Generating Data from the Selected Distribution 

 

The type of distribution for each parameter was determined based on the experimental 

result or the citation from the paper of a previous researcher (Liu & Mahadevan, 

2009). The next task was to equate the generated random number,  with the selected 

cumulative distribution function (CDF),  of the random parameter, . The 

equation for this is shown as 
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(3.55) 

 

where  and  are the mean and standard deviation of the random parameter, 

respectively. Thus, the random parameter yields 

  

 

 

(3.56) 

 

where  is the inverse of the selected CDF of each random parameter. Figure 3.8 

shows the transformation of the random number to a random parameter. The random 

parameters that were generated were computed to enable the ProbS-FEM to produce 

outputs. The generation of outputs is explained in the following subsection.  

 

3.5.3 Producing the Outputs  

 

The generated random parameters were fed into the finite element model and the 

associated results were calculated. Once the new sample had been computed, a new 

sampling process began again. The entire finite element calculation process was 

repeated by using newly generated data. After all the samples had been generated, the 

probabilistic information was extracted. Since each sample produced its own output, 

the outputs were compiled for the extraction of the probabilistic information. The 

extraction process is explained below. 

 

3.5.4 Extracting the Probabilistic Information 

 

The sampling process produced a huge dataset from which the probabilistic 

information was extracted. The available information was with regard to the 

probability of failure, the upper and lower bounds, the determination of the probability 

distribution and the regression analysis. The information is discussed in the following 

subsections. 
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Figure 3.8 Mapping for data generation 

 

a. Probability of Failure (POF) 

 

The probabilistic information was extracted from an evaluation of the performance 

function, , which is given by 

 

 

 

(3.57) 

 

where  is the fracture toughness and  is the equivalent of the SIF. The vector 

 represents all the random parameters such as the initial crack size, material 

properties and load. Since the equivalent of the SIF was a function of the vector , 

the crack growth rate was computed probabilistically. Based on Eq. (3.51), the mean 

of the cycle can be expressed as  
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(3.58) 

 

where  is the mean operator. Since ΔKeqmax is the dependent parameter, the 

predetermined value of ΔKeqmax was used in this case. The predetermined ΔKeqmax was 

computed through S-FEM iteration via Eq. (3.52) with regard to the randomness of 

the Young’s modulus, yield strength, initial crack length and depth. The uncertainties 

in the predetermined   implicitly influenced the fatigue life calculation. Once 

the distribution of ΔKeqmax was computed, the mean of the cycle could be solved.  

 

The maximum increment in the crack growth was used to calculate the 

remaining crack length at the nodes on the crack front. The maximum increment in the 

crack growth was located at the node that computed the maximum equivalent SIF. 

Then,  was calculated using Eq. (3.51), and was then used to compute the 

remaining crack length or depth at the nodes. After calculating the crack lengths of the 

remaining nodes, a new crack front was constructed. The construction of the new 

crack front is shown in Figure 3.9. The construction of the crack length at each node 

showed that every crack length was exposed to uncertainty because of the dependence 

on the random parameter, . 

 

Thus, the randomness in the crack shape was due to the randomness of the 

independent and dependent parameters in Eq. (3.58). The process continued with the 

looping generation of the random variable for the next sample until the final sample 

was completed. Then, the statistical results were obtained from the compilation of all 

the samples. From the statistical results, the distribution of the crack shape, crack 

length or depth versus cycles, and the SIF were constructed.  

 

Besides the quantification of the POF, the compilation of the failure and 

non-failure samples was used for this purpose. Let  be the total number of samples 

and  the total number of samples when . Thus, the POF was estimated by  

 

 

 

(3.59) 
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Figure 3.9 Construction of new crack front  

 

b. Bounds 

 

The upper bound, lower bound and the 95% confidence bound can be generated in the 

ProbS-FEM. After all the results had been computed by the ProbS-FEM, the mean of 

the results was calculated. The maximum result was denoted as the upper bound and 

the minimum result was assigned as the lower bound. In addition, the confidence 

bounds of the probabilistic information were constructed from the ProbS-FEM results. 

Occasionally, the confidence bound is also known as the confidence level. The 

confidence bound of the result was calculated based on the mean of the ProbS-FEM. 

The percentage depends on the desired confidence bound. A 95% confidence bound is 

a plausible figure to rely on. It was reasonable that 95% of the results were within a 

certain range of distribution. The fatigue strength and life can be calculated at a 95% 

confidence bound due to its convenience and simplicity for application in fatigue 

analysis. For instance, aircraft structural designs use a 95% confidence level (Huang et 
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al., 2012). The wider the confidence bound, the more certain it will be that all the 

results will be within that range. For example, if the mean of the samples is 100 and 

the standard deviation of the samples is 15 out of 100 samples, therefore, the 

corresponding 95% bound would be 2.9. The 95% bound was calculated using the 

equation below: 

 

 

 

(3.60) 

 

where  is the mean of the samples,  is the standard deviation of the samples and 

is the total number of samples. In this case, there was a 95% certainty that the true 

mean of the population fell within the range of 97.1 to 102.9.  

 

c. Determination of Probability Distribution 

 

Further probabilistic information available from the ProbS-FEM analysis is the crack 

growth distribution. The type of probability distribution is determined via a statistical 

test. Through this statistical test, a judgement needs to be made as to whether the 

relationship between the random variable (such as crack growth) and its CDF is close 

to linear. 

 

 In order to establish the underlying distribution, two commonly used statistical 

tests for this purpose are the chi-square and the Kolmogorov-Smirnov (K-S) test. The 

K-S test was used in this research because of its advantage over the chi-square test in 

that, with the former, the data does not have to be divided into intervals. In this way, 

the error associated with the number of intervals can be avoided. 

 

 The K-S test compares the observed cumulative frequency and the CDF of an 

assumed theoretical distribution. After arranging the data or random variables in 

increasing order, the maximum difference between the two cumulative distribution 

functions of the ordered data can be estimated as  

 

 

 

(3.61) 
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where  is the theoretical CDF of the assumed distribution at the ith observation 

of the ordered data, , and  is the corresponding stepwise CDF or Empirical 

Cumulative Distribution Function (ECDF) of the observed ordered data. The ECDF is 

like an ideal CDF line for the assumed distribution. The ECDF,  can be 

estimated as  

 

 

 

(3.62) 

 

An example, taken from Akramin (2008), is shown in Figure 3.10. The CDF of  

can be related to the significance level,  as 

 

 

 

(3.63) 

 

and the  values at various significance levels,  can be obtained from a standard 

mathematical table, as shown in Haldar & Mahadevan (2000). Then, according to the 

K-S test, if the maximum difference,  is less than or equal to the tabulated value, 

 the assumed distribution is acceptable at the significance level, . A further 

explanation regarding the K-S test can be referred to in the study by Mora-López & 

Mora (2015). 

 

d. Regression Analysis 

 

Regression analysis is a statistical tool that measures the relationships between 

variables. The analysis produces regression coefficients and determines how well the 

regression line explains the variations of the dependent variable. The coefficient of 

determination,  represents the ratio or percentage of the data that is closest to the 

regression line. Further details regarding this analysis can be referred to in Freedman  

(2009). 
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The POF, bounds, determination of the distribution, and regression analysis 

can be extracted from the ProbS-FEM results. The calculation of the POF and the 

bounds of the probabilistic information required a huge number of samples for the 

sake of convergence. Therefore, an enhancement of the sampling strategy was 

required in the ProbS-FEM to reduce the analysis time. Various techniques have been 

implemented in engineering applications, and one of these techniques is the LHS. The 

following section explains the LHS technique. 
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Figure 3.10 An example of the K-S test for ten random variables 

Source: Akramin (2008)  

 

3.6 LATIN HYPERCUBE SAMPLING 

 

The sampling of random parameters for the MCS was explained in Section 3.5.1. The 

MCS randomly generates a number according to a certain distribution. The procedure 

is repeated for the next sample. It is impossible for the MCS to generate the same 
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number if the random number has four or five decimal places. However, the MCS 

might generate a random number that is nearly the same as previous samples due to 

the lack of memory of past random numbers. As a result, the MCS might generate 

denser random numbers within a certain range and not in other ranges, as shown in 

Figure 3.11(a). A large number of samples are required to produce rare extreme 

random numbers. A major issue in the generation of more samples is the time 

constraint since the whole analysis needs to be repeated. Therefore, a good sampling 

strategy was required to overcome this problem. 

 

The sampling strategy was improved using the LHS. The LHS provides a 

constrained sampling strategy instead of random sampling according to the MCS. The 

LHS strategy was used to limit the possible samples by ensuring that all parts of the 

distribution were represented in the sample. In the LHS, the regions 0 and 1 were 

uniformly divided into  non-overlapping portions. For instance, Figure 3.11(b) 

shows a range of random numbers divided into seven portions. Then, one random 

number per portion was generated. This means that  random numbers were 

generated for each random variable. Normally, the value of  is equated to the 

number of simulation cycles. This is because the number of simulation cycles 

determines the number of trials.  times the number of simulation cycles gives  

times of trials. Since the simulation was generated for  times of trials, then the 

distribution was divided into  non-overlapping portions. Therefore,  random 

numbers were generated for  non-overlapping portions. In other words, one random 

number per portion was computed. 

 

The generated values within the range [0,1] were linearly transformed to the 

random numbers in the non-overlapping portions using following equation 

 

 

 

(3.64) 

 

where  is the th portion from 1,2,3,…. ;  is a random number within the range 

[0,1]; and  is a random number in the th portion. Based on Eq. (3.64), only one 

generated value was randomly selected for each portion. The lower and upper bounds 
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of the th portion prevented any out of bounds selection. The lower and upper bounds 

were calculated as 

 

 

 

(3.65) 
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Figure 3.11 Coverage of range of distribution for MCS and LHS 

 

The generation was continued until the end of the number of simulation cycles. 

All the random numbers were distributed into each portion. A denser generation at a 

certain portion was avoided. The LHS strategy covered all parts of the distribution 

with a minimum number of samples. By covering all parts of the distribution, the 

efficiency of the simulation was increased.  
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After the random parameters had been generated from the selected 

distribution, the simulation was continued with the analysing and producing outputs. 

The same process was implemented in the MCS, as explained in Sections 3.5.2 to 

3.5.4. Figure 3.12 shows the flow for the MCS and LHS processes. After all the 

ProbS-FEM analyses had been carried out with the LHS, the few outcomes were 

verified by the experimental results. The experimental setup is presented as below. 

 

3.7 EXPERIMENTAL SETUP 

 

Experimental works were carried out on certain specimens due to the feasibility of the 

apparatus and the significance of the verification. Three- and four-point bending 

specimens were prepared for this research work. This was a non-standard experiment 

as the objective of conducting the experiment was to obtain the crack growth for 

surface cracks in a bending load. The closest standard experiment is the ASTM E740-

03 (2008) for surface crack tension specimens. Based on the ASTM E740-03 (2008), 

the surface crack test is suitable for direct application to designs only when the service 

conditions are exactly parallel to the test conditions. Since the test conditions were in 

tension mode, the ASTM E740-03 was not applicable for the bending condition. 

Therefore, a non-standard experiment was conducted, and this is explained in the 

following subsection, which consists of the specimen preparation and the 

experimental procedure. 
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Figure 3.12 Flow of the MCS and LHS processes 

 

3.7.1 Specimen Preparation 

 

The material used in the experiment was Aluminium 7075-T6. The reason for 

choosing Aluminium 7075-T6 was that the material is used for applications that are 

exposed to fatigue such an aging aircraft (Sankaran et al., 2001). The chemical 

composition of the material includes Zn (5.6 wt%), Mg (2.5 wt%), Cu (1.6 wt%) and 

Cr (0.3 wt%) (Ohdama, 2012). The specimens were prepared in a long traverse (LT) 

direction.  

 

A flat work piece with a protuberance was prepared, as shown in Figure 3.13. 

The size of the work piece varied as the crack angle was varied from 0° to 45°. An 

electric wire-cutting machine was used to introduce a notch with a diameter of 0.2 

mm. The notch was located at the centre of the protuberance. The work piece was then 
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polished to a mirror finish at the vicinity of the crack length. In order to introduce an 

initial surface crack, a cyclic load was applied to the work piece, as shown in Figure 

3.14.  

 

    

 

Figure 3.13 Preparation of work piece with protuberance 

 

A four-point bending setup was prepared for the work piece with the 

protuberance at the bottom. The schematic figure of the four-point bending setup is 

shown in Figure 3.15. The four-point bending test was used as a larger area of the 

work piece was exposed to potential defects and flaws. The introduction of the initial 

surface crack was conducted with a 100-kN capacity MTS servo-hydraulic machine 

operating in a load control mode. The stress ratio was set to 0.1 with a frequency of 

20 Hertz. The stress ratio of 0.1 is frequently used when testing components and to 

gain the maximum crack opening displacement during the fatigue loading. The 

maximum and minimum loads were 45 kN and 4.5 kN, respectively. The maximum 

load was computed based on the fatigue endurance limit of the Aluminium 7075-T6 

material (Liu & Mahadevan, 2009). Thus, 45 kN was the usable maximum load for 

the work piece. The upper test rig applied the load, while the lower test rig remained 

static. Once the load was released, the work piece was subjected to the bending load. 

Milling process Wire cut process 

Notch
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The notch at the bottom was forced to grow the crack. As the loading and unloading 

processes were repeated, the surface crack was established, as shown in Figure 3.16.  

 

  

Figure 3.14 Introduction to the initial surface crack 
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Figure 3.15 Schematic figure of initial surface crack setup  
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Figure 3.16 Initial surface crack growth 

 

In order to create the initial surface crack, the cyclic load was stopped when 

the crack length grew to 2 mm from the protuberance. Then, the protuberance was 

milled off and the deeper surface crack remained in the work piece. The process is 

shown in Figure 3.17. The remaining surface crack was treated as an initial crack in 

the specimen later on.  

Notch

Surface-crack

Surface-crack 

plane

Protuberance

Work piece

 

Figure 3.17 Surface crack remained in the work piece and the protuberance milled 

off 
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Then, a 160×65×25 mm specimen was prepared from the work piece. In order 

to prepare a slanted surface crack specimen, it was necessary to cut the work piece at a 

certain angle using a band saw machine, as shown in Figure 3.18. The crack angle,  

was varied from 0° until 45°, as shown in Figure 3.19. The size of the work piece 

became larger as the crack angle was increased to 45° in order to prepare the specimen 

to have the same dimensions of 160×65×25 mm. 

 

The vicinity of the crack length at the specimen was polished to a mirror 

finish. The specimen was then ready for the fatigue test. The experimental procedure 

for the fatigue test is explained in the next subsection. 
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Figure 3.18 Specimen prepared from a work piece using a band saw machine 
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Figure 3.19 0° surface crack and slanted surface crack specimens 

 

3.7.2 Experimental Procedure 

 

A four-point bending fatigue test was conducted using a dynamic system from 

Instron
®
. The 8801 servo-hydraulic fatigue-testing machine is capable of performing a 

fatigue test with a load of up to 100 kN, and it varies in both a dynamic and static 

testing environment. It is a fully-digital servo-hydraulic controller that is able to 

provide an automatic calibration of all the compatible transducers. The console 

software is used as an interface for the controller. The calibration of a transducer 

requires a few steps in the interface. When the load cell or extensometer is changed, 

the controller automatically recognizes its characteristics and prevents it from starting 

a test until the calibration has been computed. The force amplitude is calibrated using 

a strain gauge load cell.  

 

The mechanical system of the 8801 servo-hydraulic testing system consists of 

advanced features such as the Software
®

Bluehil for static tests and the WaveMatrix
TM

 

for cyclic block loading software. The test was carried out at ambient temperature to 

ensure that failure due to any unwanted mechanism would be avoided. Since the 

objective of this research was to investigate the crack growth of the specimen under a 

fatigue load, a wider surface crack plane in the specimen was needed. Thus, a non-
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standard test was conducted. A wider surface crack plane was provided in the 

specimen to enable the crack to grow. 

 

In a previous study (Kikuchi, Maitireymu, et al., 2010), the frequency was set 

at 20 Hertz for all experimental conditions. Due to the significance of plastic strain, 

the maximum usable frequency was set at 20 Hertz (El-Zeghayar et al., 2011). As 

shown in Figure 3.20, the specimen was located at the centre of the rigs. The upper 

and lower rigs could be adjusted according to the geometry of the specimen. The 

length for the lower rig was 140 mm and that for the upper rig was 70 mm. It should 

be noted that the upper rig position and length were meant to replicate the four-point 

bending test. Therefore, the measurements were according to the study by Kikuchi et 

al. (2010). The specimen was positioned in the middle of the test rig, with the surface 

crack facing the lower test rig. Once the specimen had been placed according to the 

required specifications, the lower rig was slowly adjusted until the force transducer 

showed the value zero or close to zero. This was to ensure that the specimen was fixed 

and that the loading could be transferred directly to the specimen. 

 

The entire experimental process was conducted continuously via the automatic 

settings in the WaveMatrix
TM

 that allowed the user to set the loading history. The 

Instron servo-hydraulic testing machine is equipped with many accessories and 

sensors to fulfil the needs of researchers. Among them are a transducer for the force 

and the displacement. The force transducer allows users to monitor and apply the 

loading. However, if a user would like to perform the experiment using the 

displacement, then the displacement will replace the force as the input. The 

WaveMatrix
TM

 also allows users to set the type of motion such as sinusoidal, square 

or even random motion. In this research, a constant sinusoidal wave was used to 

replicate the constant amplitude loading. 
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Figure 3.20 Specimen positioned in the middle of the upper and lower test rigs 

 

Subsequently, the WaveMatrix
TM

 software was used to set up the loading 

history of the experiment, as shown in Figure 3.21. The user-friendly graphic interface 

made it easier for the tester to use the software and to design the loading. Using a 

maximum stress (Fmax) set at 45 kN, the loading history was then designed following 

the stress ratio (R) of 0.1 for the crack propagation and 0.8 for the beach marks. By 

having a maximum load of 45 kN and using 0.1 as the stress ratio, the minimum load 

would then be 4.5 kN, and the mean stress was calculated to be 24.75 kN. Figure 3.21 

shows the loading history that was designed in order to produce the beach marks, and 

this sequence was repeated. The stress ratios of 0.1 and 0.8 were conducted for up to 

20,000 cycles and 100,000 cycles, respectively. The fatigue test was stopped when the 

specimen failed, i.e. in this case, broke into two pieces. The complete experimental 

process is shown in Figure 3.22.  
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Figure 3.21 Amplitude of cyclic loading 

 

Since two different stress ratios were computed, two different fracture surfaces 

were developed, as shown in Figure 3.23. The reason why the beach mark 

phenomenon was introduced was to allow the crack length, c and the crack depth, a to 

be measured. The crack length and crack depth were measured from the distance of 

two beach marks, as shown in Figure 3.24, as captured using a Baty Vision System - 

Venture System. The beach marks could be clearly seen and were measured using the 

Baty precision instruments. Hence, instead of having to monitor the specimen for a 

number of cycles before taking the measurement, this experimental procedure was 

much more effective in reducing experimental errors since once the measurements of 

the specimen had been taken, it had to go through the whole process again, starting 

from the placement to the assigning of the loading. Thus, the experimental procedure 

could be questionable since the experiment had to be stopped to remove the specimen 

for measurement before placing it back to continue with the experiment.  
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Figure 3.22 Experimental process 

 

Finally, the coordinates were plotted and the number of cycles was calculated. 

The results were verified by plotting the experimental and ProbS-FEM outcomes in 

the same graph. The failure cycle was also validated to show the capability of the 

ProbS-FEM. 
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(a) 

 

(b) 

Figure 3.23 Specimen photo taken by (a) normal camera (b) Baty Vision System - 

Venture System 

 

 

Figure 3.24 Crack length and depth measurement 
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Figure 3.25 The Baty Vision System - Venture System 

 

3.8 SUMMARY 

 

Section 3.1 presented an overview of Chapter 3 with the objective of delivering the 

ProbS-FEM formulation from the governing equation until the sampling technique of 

the probabilistic analysis. In order to model the uncertainty, Sections 3.3 and 3.4 

addressed the typical understanding of the finite element formulation and the 

enhancement of the ProbS-FEM finite element model.  

 

The development of a stiffness matrix at the overlaid region was the key point 

in the development of the ProbS-FEM. The crucial part was the development of the 

strain displacement matrix  and displacement function for two different types of 

meshes, namely global and local. The  matrix was constructed by using the 

integration of the Gauss point coordinates in the local and global elements. The Gauss 

point coordinates were calculated based on the Newton-Raphson method. Once the 

 matrix had been calculated, the stiffness matrix for the global, local and global-

Specimen 
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local mesh could be computed. The stiffness matrix was used to calculate the 

relationship of . The displacement of each node was calculated based on 

the relationship and was used for the construction of the stress-strain equation.  

 

 Once the stress-strain of the structure had been computed, the analysis was 

further extended to the calculation of the fatigue crack growth and direction based on 

Paris’s law and Richard’s criterion, respectively.    

 

This was followed by the modelling of the uncertainty in the ProbS-FEM using 

the MCS, with quite a bit of time being taken up for the generation of samples. The 

LHS was used to reduce the number of samples. This chapter ends with an 

explanation of the experiment since few results were validated by the experimental 

findings. The applications and findings of the ProbS-FEM are presented in the 

following chapter. 
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  CHAPTER 4

 

 

RESULTS AND DISCUSSION 

 

 

4.1 CHAPTER OUTLINE 

 

The mathematical model of the ProbS-FEM was incorporated with the Monte Carlo 

simulation and the LHS model, as discussed in Chapter 3. This chapter presents the 

numerical calculations for the ProbS-FEM that was developed. It starts with the 

verification of the SIF, crack growth and fatigue life. The analysis then continues with 

the crack growth distribution and the statistical test for use in engineering 

applications. Subsequently, the sample reduction technique in the ProbS-FEM is 

presented.  

 

4.2 VERIFICATION OF THE ProbS-FEM APPROACH 

 

This section presents the results and discussion of the ProbS-FEM approach in 

validating the outputs. Since an algorithm for probabilistic surface crack analysis was 

developed in this research, it was important to validate the results with other 

deterministic numerical solutions. Therefore, a comparison was made of the 

probabilistic and deterministic approaches so that a conclusion could be drawn as to 

the reliability of the ProbS-FEM. The following subsection presents the verification of 

the:  

 

(i) Stress intensity factor; 

(ii) Crack growth for mode I; 

(iii) Crack growth for mixed mode; and 

(iv) Prediction of fatigue life. 

 

IV 
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4.2.1  Stress Intensity Factor  

 

A three-dimensional tension model pioneered by Newman & Raju (1981), as shown in 

Figure 4.1, was used for the verification of the ProbS-FEM. The model was subjected 

to tension loads. The mode I for the SIFs along the crack front was calculated and 

compared for verification purposes.  

 

2b

2h

t

2c
a

Uniformly distributed load

Angle 

Crack length, 2c

Crack 

depth, a

y

x

 

Figure 4.1 Surface crack at centre of tension model 

 

Three models with various aspect ratios were considered to show the capability of the 

ProbS-FEM in generating SIF values. The details of the models are shown in Table 

4.1.  

 

Table 4.1 Classification of the tension model 

 

Tension 

model 

Crack shape aspect 

ratio,  

Crack size 

aspect ratio, 
 

Model width 

aspect ratio, 
 

Tension Load, 

MPa 

Mean Standard 

Deviation 

A 0.4 0.01 0.2 0.1 10  

B 1.0 0.01 0.2 0.1 10  

C 1.0 0.01 0.2 0.1 201  
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Tension models A and B had different crack shape aspect ratios, while tension model 

B had a longer crack depth compared to model A. The simulations of models A and B 

were carried out to show the prediction of the ProbS-FEM for different crack sizes, 

while the simulation of tension model C was to show the prediction for uncertain load 

values. 

 

Figure 4.2 and Figure 4.3 show the normalised SIFs along the crack front for 

tension models A and B. Models A and B were selected to present the various crack 

shape aspect ratios that can be simulated by the ProbS-FEM. These ratios referred to 

the crack shape aspect ratios of 0.4 and 1.0, from which different curve patterns could 

be expected. The SIF values were normalised by , where  is the 

shape factor. The reason for the normalisation was to generalize the result. In this 

case, the result was not dependent on either the load or the crack size. The loads, as 

shown in Table 4.1, were based on the calculation in the ProbS-FEM. The ProbS-FEM 

needs a load to start the calculation since it is based on the principle of virtual work. 

That was why the loads were stated, as in Table 4.1. Then, the SIF results from the 

ProbS-FEM were normalised by . The normalised results were suitable 

for comparison purposes regardless of the load and crack size. A detailed explanation 

regarding the shape factor can be referred to in the study by Murakami et al.(1987). 

The shape factor is given by 

 

 

 

(4.1) 

 

Figure 4.2(a) and (b) show the comparison of the normalised SIFs along the 

crack front for tension model A. The SIF curve that was constructed using the ProbS-

FEM was compared with the numerical solution by Newman & Raju (1981) (shown 

as Newman-Raju in Figure 4.2(a) and (b)) and the deterministic S-FEM (Det. S-FEM) 

solution. The results of the Newman-Raju and deterministic S-FEM solutions were 

plotted based on the aspect ratio for model A, as shown in Table 4.1. Then, the mean 
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of the ProbS-FEM was plotted together with the upper and lower bounds (shown as 

bounds in the Figure 4.2(a)) of the normalised SIFs with the mean and standard 

deviation of the crack shape aspect ratios of 0.4 and 0.01, respectively. The crack 

shape aspect ratios were distributed based on the Gaussian distribution. According to 

Liu & Mahadevan (2009), the crack shape has large uncertainties that cause additional 

difficulties for the prediction of probabilistic life. This is the reason for the 

randomness of the crack shape aspect ratio. The mean of the ProbS-FEM was 

constructed based on a hundred samples. The bounds were calculated based on the 

minimum and maximum result of the ProbS-FEM. 

 

As shown in Figure 4.2(a), the SIF was higher at  than at . This 

confirmed that the numerical results were plausible. With respect to the surface crack 

depth, the calculation of the SIF in the ProbS-FEM was sensitive (as reflected in these 

results). A comparison showed that the mean ProbS-FEM agreed with the finding of 

the Newman-Raju solution. As the angle was increased, the mean of the ProbS-FEM 

showed a slight deviation from the finding of the Newman-Raju solution as it was 

influenced by the modelling of uncertainties in the analysis. The bounds showed the 

range of the normalised SIFs as the crack shape aspect ratio was modelled as an 

uncertain parameter. 

 

Figure 4.2(b) shows that the same results were obtained by the Newman-Raju 

solution as by the deterministic S-FEM and mean ProbS-FEM in Figure 4.2(a), except 

for the bounds. The bounds in Figure 4.2(b) had a 95% confidence level, based on the 

calculation using Eq.(3.60). The 95% confidence bounds are the range within which 

95% of the results of the ProbS-FEM can be found. The 95% confidence bounds are 

presented in Figure 4.2(b) due to their application in fatigue analysis such as in 

aircraft structural designs (Huang et al., 2012). Figure 4.2(b) shows that the results of 

the Newman-Raju solution were excluded from the range of the 95% confidence 

bounds. The highest deviation between the mean ProbS-FEM and the Newman-Raju 

solution was five per cent at an angle of zero. This was considered a small deviation 

since it involved a few assumptions in the Newman-Raju solution. For instance, the 
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Newman-Raju solution assumes a limiting behaviour as a/t approaches zero. Thus, a 

five per cent error is acceptable.   

 

 

(a) 

 

(b) 

Figure 4.2 Normalised SIFs along crack front in tension model A with (a) upper 

and lower bounds (b) 95% confidence bounds 
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Figure 4.3(a) and (b) show the comparison of the normalised SIFs along the 

crack front for tension model B. Unlike tension model A, the crack shape aspect ratio 

for model B was increased to 1.0, whereas the crack size and model width aspect ratio 

were maintained the same as with model A. The reason behind this was to certify the 

prediction of the SIFs by the ProbS-FEM for larger crack shapes. The calculation was 

compared with the results using the Newman & Raju (1981) solution (shown as 

Newman-Raju in Figure 4.3(a) and (b)) and the deterministic S-FEM (Det. S-FEM). 

The results were plotted based on the aspect ratio for model B, as shown in Table 4.1. 

Subsequently, the mean of the ProbS-FEM was plotted together with the upper and 

lower bounds (shown as bounds in Figure 4.3(a)) of the normalised SIFs with the 

mean and standard deviation of the crack shape aspect ratio being 1.0 and 0.1, 

respectively. The mean of the ProbS-FEM was constructed based on a hundred 

samples. The bounds were the maximum and minimum samples from the ProbS-FEM. 

The mean value curve of the SIF deviated by less than four per cent from the 

numerical solution of the Newman-Raju equation.  

 

Figure 4.3(b) shows the 95% confidence bounds with the results of the 

Newman-Raju solution, the deterministic S-FEM and the mean ProbS-FEM that were 

duplicated from Figure 4.3(a). The comparison shows that the 95% confidence bounds 

deviated four percent from the Newman-Raju solution at a zero angle due to the 

assumption of a semi-elliptical shape for the surface crack in the Newman-Raju 

solution. That was the reason why the maximum deviation occurred at a zero angle.  

 

Then, the normalised SIFs that had been calculated by the ProbS-FEM were 

plotted against the normalised SIFs calculated by the Newman-Raju solution, as 

shown in Figure 4.4. In order to measure how much of the variance in the ProbS-FEM 

was explained by the Newman-Raju solution, the coefficient of determination,  was 

calculated. If  was close to one, then the normalised SIF that had been calculated by 

the ProbS-FEM tightly mirrored that of the Newman-Raju solution. The  calculated 
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from the correlation analysis in Figure 4.4 showed a good prediction by the ProbS-

FEM. 

 

 

(a) 

 

(b) 

Figure 4.3 Normalised SIFs along crack front in a tension model B with (a) upper 

and lower bounds, and (b) 95% confidence bounds 
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Figure 4.4 Comparison of normalized SIFs between Newman-Raju and ProbS-

FEM 

 

The proposed ProbS-FEM approach revealed an important issue when the un-

normalised SIFs versus the angles were plotted. The random load with a constant 

amplitude loading was considered with a mean of 201 MPa and a standard deviation 

of 20.1 MPa. The load was considered since it was less than the yield strength and was 

an average load for Aluminium 7075-T6 in industrial applications (Liu & Mahadevan, 

2009). Figure 4.5(a) and (b) show the SIFs along the crack front for tension model C. 

Details of the aspect ratio for model C can be referred to in Table 4.1. The material 

properties of Aluminium 7075-T6 were used for this model, as shown in Table 4.2. 

The deterministic results did not exceed the critical SIF of 29 MPa∙√m, thus predicting 

a safe structure because an unstable crack growth will not occur for an SIF below this 

critical value. However, this only reflected the mean behaviour. The upper bound 

exceeded the critical SIF, thus indicating a significant probability for unstable crack 

growth, as shown in Region Z in Figure 4.5(a). Thus, the fracture of the material and 

the structural component could occur. A quantitative result for the structural safety 

was obtained with the probability of failure estimated from the sampled data. Figure 

4.5(b) shows the 95% confidence bounds with the calculated results from Figure 

4.5(a). In this case, the Newman-Raju solution was within the range of the 95% 
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confidence bounds. A small deviation occurred at a zero angle in Figure 4.5(b), but it 

was still within the range of the 95% confidence bounds. 

 

 

(a) 

 

(b) 

Figure 4.5 SIFs along crack front in tension model C with (a) upper and lower 

bounds, and (b) 95% confidence bounds 
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Table 4.2 Material properties for Aluminium 7075-T6 

 

Variable Value 

Critical stress intensity factor, KIC 29 MPa∙√m 

Fatigue power parameter, n 2.88 

Poisson ratio, PR 0.33 

Tensile Strength, Yield 503 MPa 

Young’s modulus, E 71.7 GPa 

Paris coefficient, C  2.29×10
-10

 

Threshold value, ΔKth 5.66 MPa∙√m 

 

Figure 4.6 shows the histogram for the SIF at  for tension model C. 

The maximum and minimum stresses were 33.50 and 22.32 MPa∙√m, respectively. 

The mean value was 27.50 MPa∙√m. The maximum and minimum deviations from the 

mean were 6.00 and 5.18 MPa∙√m, respectively. Although the range between the 

minimum and maximum was only approximately 11.20 MPa∙√m, this did not produce 

a major uncertainty. Even though it showed a small range of uncertainty, it was crucial 

when analysed with a critical SIF. The critical SIF,  for this case was 29 MPa∙√m. 

Thus, 60% of the samples were in the safe region and 40% were in the failure region. 

The failure region means the occurrence of unstable crack growth. This forecast 

cannot be produced by the deterministic method. The deterministic approach predicts 

that the model is in a safe region at any angle. Figure 4.5(a) shows that the failure of 

the sample occurred from an angle of   to . This result demonstrated the 

importance of a probabilistic analysis in the context of fatigue problems to avoid 

structural failure and potentially harmful consequences. Hence, an implementation of 

a probabilistic design is advisable in practical cases. 



86 

 

Figure 4.6 Histogram of SIFs at  for tension model C 

 

The calculation of the SIFs for tension models A and B were verified and 

shown to be in agreement with other deterministic numerical calculations in Figure 

4.2 and Figure 4.3, respectively. Then, the important issues and applications were 

presented by tension model C. Thus, the reliability of the ProbS-FEM in producing the 

SIF was proven. The verification of the ProbS-FEM was continued with the surface 

crack growth. 

 

4.2.2  Crack Growth for Mode I 

 

A four-point bending model and specimen were used for the verification of crack 

growth. The experimental setup was conducted based on the procedure in Section 3.7. 

The crack length between the beach marks was measured and compared with the 

ProbS-FEM analysis. Figure 4.7 shows a photo of the surface crack plane from the 0-

degree fractured specimen. The schematic diagram of the 0-degree specimen is shown 

in Figure 3.19. 
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Figure 4.7 Photo of four-point bending specimen with centimetre label 

 

The bending model shown in Figure 4.8 was used to predict the crack growth. 

The analysis demonstrated the flexibility in applying the developed approach with 

respect to different models. A specific feature of the bending model was the 

deceleration effect on the crack growth due to bending. Thus, the bending model was 

used for the purpose of verification. The material properties were simulated according 

to the specifications in Table 4.3. In order to control the acceleration of fatigue crack 

growth, the fatigue power parameter,  was set as a deterministic variable. The 

standard deviation for the critical SIF, KIC and the yield tensile strength were set to 

zero as the variable itself acted as the value for comparison. Both the material 

constants were compared with the simulation results. For instance, the SIF that was 

calculated from the ProbS-FEM was compared with the critical SIF for the 

determination of unstable crack growth. Thus, it was not appropriate to randomise the 

critical SIF, KIC and the yield tensile strength. The maximum load was 45 kN with a 

stress ratio of 0.1. 

 

In the numerical simulation with the ProbS-FEM, the boundary conditions 

were defined to be the same as in the experiment, and the four-point bending process 

was analysed. The size of the pre-cracking area was modelled in a local mesh. The 

crack growth was calculated based on Eq. (3.50).  
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Figure 4.8  Global mesh with boundary conditions and overlaid local mesh in 

wireframe view of four-point bending model 

 

Table 4.3 Input distribution for Aluminium 7075-T6 

 

Variable Distribution Deterministic / 

Mean Value 

Standard 

deviation 

Critical stress intensity 

factor, KIC 

Deterministic 29 MPa∙√m 0 

Fatigue power parameter, n Deterministic 2.88 0 

Tensile Strength, Yield Deterministic 503 MPa 0 

Young’s modulus, E Gaussian 71.7 GPa 0.01 

Paris coefficient, C  Lognormal 2.29×10
-10

 4.01×10
-10

 

Threshold value, ΔKth Lognormal 5.66 MPa∙√m 0.268 

Initial crack depth, ai Gaussian 3.87 mm 0.1 

Initial crack length, ci Gaussian 4.50 mm 0.1 

 

In order to conduct the analysis in mode I condition, a zero-degree fatigue 

crack was used. Figure 4.9 shows half of the crack growth in the four-point bending 

specimen in the experiments and the deterministic S-FEM. Only two beach marks are 

shown to avoid a complicated graph. The deterministic results were represented by the 

dash lines. A divergence appeared when the experimental results were compared to 

the deterministic results, and thus, a remedy was required to improve the analysis. A 

probabilistic approach was used to enhance the outputs and to demonstrate the 

capability of the developed software. The ProbS-FEM was used to provide a 

probabilistic perspective of the results. In total, 50 samples were used to generate the 

 Load 

Constraint 
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area 
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probabilistic crack growth. The mean of the 50 samples, which was named the Mean 

ProbS-FEM, is illustrated in Figure 4.9. The 95% confidence bounds from the results 

of the ProbS-FEM were plotted as in Figure 4.9. The 95% confidence bounds were 

calculated from Eq. (3.60). In addition, Figure 4.9 shows that the experimental results 

were between the lower and upper confidence bounds. Although the mean of the 

ProbS-FEM diverged from the experimental results, the experimental results were 

between the bounds of the ProbS-FEM. These results indicated that the consideration 

of uncertainty in the analysis produced an improvement in the crack growth results. A 

repetition of the experimental works exposed the uncertainties in the initial crack size 

and material. This was the main factor that caused the deterministic result to diverge 

from the experimental results. Therefore, the ProbS-FEM is a reliable simulation tool 

for the prediction of fatigue crack growth. 

 

 

Figure 4.9  Comparison between experimental, deterministic and ProbS-FEM 

results for two 0-degree beach mark cracks 

 

4.2.3  Crack Growth for Mixed Mode 

 

The specimen with a 30-degree crack angle was prepared, as explained in the 

methodology section. Figure 4.10 shows a photo of the slanted surface crack plane 

from the fractured specimen. The load that was applied to the specimen was in a 
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mixed mode (mode I and III) condition because the crack was initiated at a 30-degree 

angle. The material properties were simulated according to the specifications in Table 

4.3. This section presents the crack growth for the mixed mode condition. 

 

 

Figure 4.10 Photo of four-point bending specimen with mixed mode condition 

 

Figure 4.11(a) and (b) show the comparisons between the deterministic, 

experimental and ProbS-FEM crack growth for the four-point bending specimen with 

a 30-degree crack angle. To present a well-ordered graph, two beach marks were 

plotted. Each beach mark had a deterministic, experimental, mean ProbS-FEM and 

bounds or confidence bounds result. The crack growth for the smaller beach marks in 

Figure 4.11(a) and (b) agreed with all the methods. As the crack grew, the crack 

length grew more than the crack depth because of the stress intensity factor in Mode 

III (as shown in the second beach mark). The deterministic result showed a noticeable 

divergence from the experimental finding. The mean ProbS-FEM approached the 

experimental finding. However, the mean ProbS-FEM showed a better comparison 

with the deterministic result. A complete view of the probabilistic analysis illustrated 

the advantages of the ProbS-FEM analysis, as shown by the bounds of the ProbS-

FEM. The bounds were drawn and calculated from the minimum and maximum of the 

ProbS-FEM results. The experimental results were between the bounds, displaying the 

capability of the ProbS-FEM in predicting the bounds of crack growth for the mixed 

mode load. When the bounds were limited to the 95% confidence level, as shown in 

Figure 4.11(b), the experimental data were out of the 95% confidence bounds for the 
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second beach mark. However, this was not critical as only a deviation of less than five 

percent occurred. 

 

 

(a)  

 

(b) 

Figure 4.11  Comparison of the experimental, deterministic and ProbS-FEM results 

for two 30-degree beach mark cracks with (a) upper and lower bounds, 

and (b) 95% confidence bounds  
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4.2.4  Prediction of Fatigue Life 

 

The verification of the ProbS-FEM continued with the prediction of fatigue life. The 

prediction of fatigue life is an essential feature in the development of source codes. 

Thus, the calculations of fatigue life by the experimental and deterministic approaches 

were compared for verification. Two models were used for the verification, namely a 

three-point bending model and a four-point bending model. A different material was 

used for both models to examine the capability of the ProbS-FEM in simulating 

various case studies. Table 4.4 shows the material properties of Aluminium (2017-

T3), which was the material used for the three-point bending model. For the four-point 

bending model, Aluminium (7075-T6) was used, as shown in Table 4.3.  

 

Table 4.4 Input distribution for the Sano (2010) model using Aluminium (2017-

T3)  

 

Variable Distribution Deterministic / 

Mean Value 

Standard 

deviation 

Critical stress intensity 

factor, KIC 

Deterministic 26 MPa∙√m 0 

Fatigue power parameter, n Deterministic 2.93 0 

Tensile Strength, Yield Deterministic 333 MPa 0 

Young’s modulus, E Gaussian 70.2 GPa 0.01 

Paris coefficient, C  Lognormal 2.66×10
-10

 4.01x10
-10

 

Threshold value, ΔKth Lognormal 6.7 MPa∙√m 0.268 

Initial crack depth, ai Gaussian 2.85 mm 0.05  

Initial crack length, ci Gaussian 5.00 mm 0.05 

 

Figure 4.12 shows the comparison between the experimental (Sano, 2010), 

deterministic and probabilistic fatigue crack growth for the three-point bending model. 

The fatigue crack growth was calculated based on Eq. (3.50). The deterministic results 

were obtained when the standard deviations for all the variables in Table 4.4 were set 

to zero. The mean fatigue life was calculated based on the average of one hundred 

samples. The deterministic and experimental results were predicted to be between the 

95% confidence bounds (as denoted by the dash lines). The bounds represented the 



93 

range of possibilities for the fatigue life. They showed how certain the real fatigue life 

was scattered within the bounds. When compared with the deterministic approach, the 

mean ProbS-FEM analysis was found to be closer to the experimental results. Even 

though the correlation analysis in Figure 4.13 showed the same value of , the trend 

of the mean ProbS-FEM towards the experimental findings in Figure 4.12 was 

noteworthy. The ProbS-FEM approach included the uncertainty of the material 

properties, the initial crack length and the initial crack depth in the analysis model. 

Meanwhile, the deterministic approach neglected the uncertainty in its calculation. 

Therefore, the ProbS-FEM solution was closer to reality. Moreover, the ProbS-FEM 

produced the minimum and maximum cycles before the unstable crack growth 

occurred. For instance, the minimum and maximum cycles at a 14-mm crack length 

were 36 and 44 Kilocycles, respectively. This result can assist maintenance personal 

in establishing an adequate repair schedule. 

 

 

Figure 4.12  Comparison of experimental and ProbS-FEM results according to 

fatigue life prediction of three-point bending specimen 
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Figure 4.13 Correlation analysis of predicted cycles versus experimental cycles 

 

The experimental results for the four-point bending test are shown in Figure 

4.14. Six specimens were tested under the four-point bending test and various results 

were produced for the crack length versus the cycles. The mean with the bound bar of 

the experimental results were plotted, as shown in Figure 4.14. The bound bars were 

plotted based on the calculation of the mean and standard deviation obtained from the 

experimental results. The details of the calculation can be referred to in Eq. (3.60). 

The uncertainty in the material contributed to the wider bounds in the results. The 

experimental results were then compared with the results of the simulation conducted 

by Ohdama (2012). The input variables in Ohdama (2012) were identical to the mean 

in Table 4.3. Because Ohdama (2012) conducted a deterministic analysis, no standard 

deviation was involved. The deterministic analysis was conducted through the 

S-version of the FEM, and a divergence was noted resulting from the uncertainty in 

the experimental work. In addition, the crack depth and length size varied for each 

specimen, and the average of the sizes was used as the crack size in the deterministic 

S-version of the FEM. Therefore, the results presented by Ohdama (2012) had a 

smaller number of cycles. 
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Figure 4.14  Comparison of results of fatigue life between experimental and 

deterministic S-FEM by Ohdama (2012) for four-point bending model 

 

Subsequently, the specimen was modelled by the ProbS-FEM, and a 

comparison between the experimental, deterministic and probabilistic results is shown 

in Figure 4.15. The deterministic and experimental results were duplicated from 

Figure 4.14. The dash lines with circle markers represent the probabilistic results. The 

mean ProbS-FEM was plotted from the average of 50 samples. The input variables for 

each sample were generated from Table 4.3. The mean of the ProbS-FEM was nearer 

to the mean of the experimental results than the deterministic results. Therefore, the 

improved results were shown. The prediction of the fatigue life that was obtained 

using the ProbS-FEM was more accurate than that obtained by a deterministic 

analysis. A few of the uncertain parameters that were modelled in the ProbS-FEM 

contributed more to the randomness of the fatigue cycles. This depended on the 

sensitivity of the parameters. 

 

The Young’s modulus, E, the initial crack depth, ai, and the initial crack 

length, ci were the sensitive parameters in the calculation of the fatigue cycles, as 

shown in Figure 4.16. This was due to the correlation of conversion of the energy 

release rate to the SIF in Equations (3.47), (3.48) and (3.49). Then, the equivalent SIF, 

 was directly used for the fatigue cycle calculation. In addition, the high 

magnitude of the Young’s modulus contributed more sensitivity to the fatigue cycle 
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calculation. Besides the Young’s modulus, the initial crack depth and crack length 

were also implicitly correlated with the fatigue cycle. That was why the initial crack 

depth and crack length had a smaller sensitivity compared to the Young’s modulus. 

The sensitivity analysis was based on the Pearson function. This function returns the 

Pearson product moment correlation coefficient, , as shown below  

 

 

 

(4.2) 

 

where  is the independent value and  is the dependent value. The Pearson product 

moment correlation coefficient,  is a dimensionless index that ranges from -1.0 to 

1.0. The  reflects the extent of a linear relationship between a random parameter and 

a fatigue cycle. Based on Figure 4.16, the Young’s modulus, initial crack depth and 

initial crack length were the main factors that contributed to an increase or decrease in 

the fatigue cycles. A positive sensitivity contributed to an increase in the fatigue 

cycles and vice versa.  

 

 

Figure 4.15  Comparison of the means of the experimental, probabilistic and 

deterministic S-FEM (Ohdama, 2012) results for the four-point bending 

model 
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The sensitivity of the Young’s modulus was contributed during the conversion 

of the energy release rate to the SIF, as shown in Equations (3.47) and (3.48). The 

leading cause of this was the direct correlation for the Young’s modulus during the 

conversion from the energy release rate to the SIF. The initial crack depth, ai and 

initial crack length, ci displayed sensitivity to the fatigue cycles due to the implicit 

correlation with the fatigue cycle calculation. Thus, three random parameters showed 

sensitivity to the fatigue cycle calculation. 

 

The Paris coefficient and threshold value had less influence on the calculation 

of fatigue life. Since the value of the Paris coefficient was too small, it had no 

influence on the calculation of the fatigue cycle. The threshold value was used to 

determine whether the fatigue criteria applied or vice versa. Thus, the threshold value 

indicated no sensitivity to the fatigue cycle. Therefore, this result showed that the 

ProbS-FEM was capable of predicting the fatigue life of cracked structures by 

producing a sensitivity analysis of each uncertain parameter. 

 

 

Figure 4.16 Sensitivity analysis for the fatigue cycle calculation of four-point 

bending model  
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4.3 CONTRIBUTIONS AND IMPROVEMENTS IN ANALYSIS 

 

This section presents the engineering applications of the ProbS-FEM as a contribution 

to the existing probabilistic crack analysis. The single and multiple surface cracks 

analyses were conducted to show the contribution to the computational aspect of 

fracture mechanics analysis. The subsection on ‘Sample reduction in the ProbS-FEM’ 

presents the enhancement of the sampling strategy in the analysis. The three 

subsections are presented next. 

 

4.3.1  Single Surface Crack 

 

Even though the single surface crack problem was presented in Section 4.2, a further 

analysis of the ProbS-FEM is continued in this current section. This subsection 

focuses on the crack growth distribution and the statistical test for determining the 

underlying crack growth distribution. The four-point bending model was simulated, 

based on the specifications in Table 4.3. 

 

The variability in the crack growth (due to the randomness of the uncertain 

parameters) is shown in Figure 4.17. These results covered all the possible options for 

crack growth. The histograms for both the crack depth and crack length increments 

were plotted in this illustration. The range for the crack depth increment was [2.05, 

2.29] mm, while the range for the crack length increment at point Z was [3.31, 3.68] 

mm. The crack length and crack depth increments in the samples showed a skewness 

and kurtosis that were close to zero. This motivated an approximation of the 

histograms with a Gaussian distribution. The mean and standard deviation of the crack 

length and depth increments are presented in Table 4.5. 

 

The empirical CDFs (ECDFs) are shown in Figure 4.18 (see also Table 4.5 for 

their estimated parameters). The ECDF was calculated based on the corresponding 

stepwise CDF of the observed ordered samples. The ECDF is like an ideal CDF line 

for the assumed distribution. For instance, the crack depth increment was assumed to 

fit as a Gaussian distribution, as shown in Table 4.5.  
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Figure 4.17 Crack growth on surface crack with distribution of crack length and 

depth increments  
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Therefore, the ECDF (in this case, a Gaussian CDF) was a step function that had a 

step of one over the total samples at each of the observed data points (as plotted in 

Figure 4.18). It was found that the ECDF was an estimate of the true CDF. In order to 

compare the ECDF with the CDF of the crack length or depth increment, the CDF 

from Figure 4.17 was redrawn in Figure 4.18 and labelled as the ProbS-FEM. The 

CDFs of the crack length and depth increment were generated from the ProbS-FEM 

simulation. 

 

Table 4.5 Statistical data of crack growth distribution 

 

Point Mean (mm) Standard 

deviation (mm) 

Assumed type 

of distribution 

Maximum 

difference,  

Y 2.17 0.052 Gaussian 0.0464 

Z 3.49 0.065 Gaussian 0.0441 

 

A K-S test was performed to assess the suitability of the Gaussian models for 

the crack growth at points Y and Z. Table 4.5 shows the maximum differences 

between the ECDFs and the estimated Gaussian distributions as a basis for the K-S 

test. The largest rejection probability found was 0.1360 for points Y and Z. Since the 

maximum difference,  was less than the largest rejection probability, the crack 

growth could be represented as a Gaussian distribution. Figure 4.18 shows that the 

estimated Gaussian distributions were in good agreement with the ECDFs. These 

results support the Gaussian model for both crack length and crack depth increments. 

This type of model is useful for the maintenance process if the crack length is below 

the threshold of an inspection limit. Since the crack growth displayed some amount of 

scatter, it was imperative to treat the residual life from a probabilistic viewpoint. 
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Figure 4.18 K-S test for distribution of crack depth and length  

 

4.3.2  Multiple Surface Cracks 

 

This section presents the results and discussion of the problem of multiple surface 

cracks. The aim was to emphasize the competency of the ProbS-FEM in predicting 

crack growth, fatigue life and SIF for problems that are more complex. In addition, the 

ProbS-FEM can be a tool to predict the standard deviation of initial cracks. The 

findings are explained as follows. 

 

Multiple cracks were modelled using the ProbS-FEM, as shown in Figure 4.19, 

where two surface cracks were introduced in the middle of a four-point bending 

model. The sizes of the initial crack depth and length were based on the measurements 

in the experimental specimen. The material that was selected for this model was 

Aluminium 7075-T6, and the description of the material is given in Table 4.3. A 

cyclic load was applied to this model with a maximum load of 45 kN and a stress ratio 

of 0.1. Figure 4.20 shows the model for multiple crack growth in the ProbS-FEM. 
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Figure 4.19 Multiple surface cracks model 

 

The comparison between the deterministic results and the experimental data is 

depicted in Figure 4.21. After 60×10
3
 cycles, the two cracks were combined and 

merged into a single surface crack. Since the mode I loading was applied, no crack 

transformation was shown perpendicular to the axis of the surface crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Growth of multiple surface cracks using ProbS-FEM modelling 
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Figure 4.21 Comparison of the results between the deterministic and experimental 

data 

 

An improvement in the prediction of crack growth was achieved by the ProbS-

FEM, as shown in Figure 4.22. The mean of the ProbS-FEM was drawn in Figure 4.22 

and it was shown to be closer to the experimental result due to the consideration of 

uncertainty in the crack growth increment. The crack growth increment plays an 

important role in the determination of the number of cycles, as shown in Eq.(3.50). 

Next, the calculated cycles were used to determine the crack length of the remaining 

nodes at the crack front. Thus, small changes in the crack growth increment 

influenced the crack length. 

 

 

Figure 4.22 Comparison of the results between the ProbS-FEM and experimental 

data 
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Additionally, the fatigue life calculation was improved by using the ProbS-

FEM. Figure 4.23 shows the verification of the fatigue life between the ProbS-FEM, 

the deterministic and the experimental results. There was a noticeable divergence in 

the deterministic results from the experimental findings. This was due to the variation 

in the initial crack size in the experimental work. The ProbS-FEM was using a 

standard deviation of 0.001 mm for the initial crack size. In order to control the 

randomness effect of the remaining random parameters in Table 4.3, the standard 

deviations were set to zero. As can be seen in Figure 4.23, the upper and lower bounds 

of the ProbS-FEM covered all the experimental data. The mean ProbS-FEM was 

closer to the experimental results compared to the deterministic results. In order to 

show how close the curves were, the correlation analysis was shown in Figure 4.24. 

The value of  for the mean ProbS-FEM was higher than that of the deterministic 

results, thus indicating that the mean ProbS-FEM was closer than the deterministic 

approach. The divergences of the deterministic and ProbS-FEM results from the 

experimental results were due to the inadequate crack distribution, which represented 

the randomness of the experimental results. Thus, the value of the standard deviation 

for the initial crack was increased from 0.001 to 0.1. 

 

 

Figure 4.23 Fatigue life for multiple surface cracks problem with 0.001 mm 

standard deviation of the initial crack 
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Figure 4.24 Correlation analysis of predicted cycles versus experimental cycles for 

0.001 mm standard deviation of the initial crack 

 

In order to demonstrate the effect of the initial crack size, a different value of 

the standard deviation of the initial crack size was implemented. Hence, in the 

following example, the same material properties, as shown in Table 4.3, were used 

with the deterministic setting, except that the standard deviation for the initial crack 

size was set to 0.1 mm. Figure 4.25 shows the fatigue life for an initial crack size with 

a standard deviation of 0.1 mm. It indicates a wider range of upper and lower bounds 

because of the wider distribution of the initial crack size. The mean ProbS-FEM 

shifted slightly towards the experimental data. In order to determine the best results 

that were closest to the experimental data, the correlation analysis was presented in 

Figure 4.26. The mean ProbS-FEM with a higher standard deviation of initial crack 

size computed a higher value of . Thus, a suitable standard deviation for the initial 

crack size can be predicted through a ProbS-FEM analysis.  

 

Figure 4.27 shows all the samples for the fatigue life of the multiple surface 

cracks problem with a standard deviation of 0.1 mm of the initial crack. The 

distribution of the crack length can be determined at different cycles or the 

distribution of cycles to the critical crack length can be estimated. Scientists are able 
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to set the critical crack length and, based on the critical crack length, the distribution 

of the cycle can be estimated. The cycle can be converted to the lifespan of the 

engineering application, depending on the number of cycles within a period. In 

addition, the crack length can be estimated for a certain lifespan. This process helps 

scientists to make decisions with regard to maintenance works. Apart from that, 

scientists are also keen to know the SIF at the surface crack.  

 

 

Figure 4.25 Fatigue life for multiple surface cracks problem with a standard 

deviation of 0.1 mm of the initial crack 

 

The mean of the stress intensity factors for the first beach mark of two surface 

cracks is shown in Figure 4.28. Obviously, the stress intensity factors, KII and KIII, 

were zero because no load was involved for modes II and III. The stress intensity 

factor, KI, at the crack front for each surface crack is shown in the same figure. Figure 

4.29 shows the mean of the stress intensity factor, KI for the final beach mark before 

the specimen was fractured. The maximum KI stress intensity factor at the final beach 

mark did not exceed the value of the critical stress intensity factor for Al 7075-T6. 

Thus, unstable crack growth occurred after the final beach mark. Since the four-point 

bending model was using a constant amplitude load, variations in the stress intensity 

factors were not noticeable. The load is the sensitive parameter in the calculation of 

the distribution of the values of the stress intensity factor, as shown in Eq. (3.47). 

Thus, in the current case, the bounds of the ProbS-FEM did not affect the SIF. 
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Figure 4.26 Correlation analysis of predicted cycles versus experimental cycles for 

standard deviations of 0.001 and 0.1 mm of the initial crack 

 

 

Figure 4.27 Cycle and crack length distribution from ProbS-FEM samples 

 

0

50

100

150

0 50 100 150

×
 1

0
3
 C

y
cl

es
 (

D
et

er
m

in
is

ti
c 

o
r 

m
ea

n
 

 P
ro

b
S

-F
E

M
) 

× 103 Cycles (Experiment) 

Mean ProbS-FEM (Std. 0.1)

Mean ProbS-FEM (Std. 0.001)

Deterministic

Linear (Std. 0.1)

Linear (Std. 0.001)

Linear (Deterministic)

Deterministic: R² = 0.8863 

Mean ProbS-FEM (Std 0.001): R² = 0.9481 

Mean ProbS-FEM (Std 0.1): R² = 0.9937 

0

5

10

15

20

0 50 100 150 200

C
ra

ck
 l

en
g
th

, 
c 

m
m

 

× 103 Cycles 

ProbS-FEM samples

c critical 

t 

crack length distribution at t 

Cycle distribution at  

critical crack length 



108 

 

Figure 4.28  Mean of the stress intensity factors for the first beach mark of surface 

crack numbers one (SC1) and two (SC2) 

 

4.3.3  Sample Reduction in the ProbS-FEM 

 

The accuracy of the new combination of the two analyses of the so-called ProbS-FEM 

was based on the sampling strategy. Two sampling strategies, the MCS and LHS, 

were developed in the ProbS-FEM. These two sampling strategies offered an 

alternative approach that catered to the uncertainty in the analysis (Helton & Davis, 

2003; Patelli et al., 2012). The MCS and LHS results were compared to analyse the 

efficiency of each sampling method. The end result of the ProbS-FEM was to obtain 

the probability of failure with the optimum time and iterations. The efficiency of the 

ProbS-FEM is demonstrated and discussed in this section. 

 

The LHS and MCS generated random parameters from random numbers, as 

explained in the methodology section. Since the initial crack length, , is one of the 

major factors that contribute to the randomness in the fatigue fracture, the generation 

of the initial crack length is presented in this section. Five thousand samples of initial 

crack lengths were generated according to the Gaussian distribution with a mean of 

4.5 mm and a standard deviation of 0.1. As the mean was 4.5 mm, the frequency for 

the range that covered the mean value was expected to be the highest. 
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Figure 4.29 Mean of KI stress intensity factors for the first and final beach marks 

 

Figure 4.30 shows the quantification for the uncertainty of the crack length 

from the ProbS-FEM code using the LHS and MCS sampling methods. The LHS 

method showed well-generated random parameters. The frequency increased slightly 

before the mean value, as shown in Figure 4.30. After the mean value, the frequency 

decreased slightly as the generation reached the end of the distribution. The MCS 

generated the same trend as the LHS, but the peaks of the probability distribution were 
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generated a higher frequency at the shoulder of the distribution. The higher frequency 

at the shoulder of the distribution happened due to the unstructured random numbers 

that were generated around the mean value. The LHS provided a structured random 

number generation along the CDF. It contributed to the smooth frequency generated in 

the PDF. From this perspective, the LHS generates better random parameters. 
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the failure of a structure. The upper and lower bounds as well were affected by the 

samples at the tail of the distribution. Therefore, the samples at the tail of the 

distribution were initiated by the portion of generated random numbers. By using the 

LHS technique, every range of the CDF was divided into portions. A sample was 

generated for every portion, thus producing a wider coverage. The MCS used a 

random number generator with an uncontrolled technique. Therefore, a denser 

frequency was generated at the shoulder of the distribution. This reflected the 

maximum frequency reached by the mean range. The highest frequency generated by 

the LHS was 695, while the MCS generated a frequency that was less than 624 for the 

mean range. 

 

Figure 4.31 shows the convergence of the mean and standard deviation for the 

generated parameter. The mean of the generated parameter was compared for the LHS 

and MCS, as in Figure 4.31(a). The iteration was classed into seven different groups, 

namely 50, 100, 200, 300, 500, 1000 and 5000. An iteration of 50 meant that 50 

samples were used for this group, while an iteration of 1000 consisted of the 

generation of 1000 samples for that group. Once the number of samples was sufficient 

in each of the iterations, the mean of the generated parameter was calculated. 

 

Since the initial crack length was generated for a mean of 4.5, it was necessary 

for each iteration to provide a mean value that was as close as possible to 4.5. The 

mean was calculated and compared for the LHS and MCS, as in Figure 4.31(a). The 

mean for the LHS was more stable since each of the iterations provided a difference of 

less than 0.005 from the targeted mean value. The mean value generated by the LHS 

decreased slightly from 4.504 as the number of iterations was increased. The MCS 

started with a difference of 0.001 from the targeted mean, and then suddenly increased 

to 4.509. There was a slight decrease in the difference as the number of iterations 

increased. The MCS needed a longer time and more iterations to generate a stable 

mean. The MCS created the input distribution through sampling with enough 

iterations. However, a problem with clustering arose when a small number of 

iterations were performed, as shown for 100 iterations in Figure 4.31(a). 
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Figure 4.30 Quantification of uncertainty for values generated by MCS and LHS 

 

Figure 4.31 (b) shows the standard deviation generated for the LHS and MCS 

with various numbers of iterations. As the standard deviation for the initial crack 

length was 0.100, it was essential for the LHS and MCS to generate a standard 

deviation that was as close as possible to the targeted standard deviation. The LHS 

was shown to be a more stable generator of the standard deviation than the MCS as 

the number of iterations was increased. The standard deviation for the MCS was 

unstable since it started at the same level with the LHS and then deviated from the 

targeted standard deviation (written as Targeted Std. in Figure 4.31(b)) at iterations 

200 until 500. This shows that the accuracy of the MCS in the generation of random 

parameters is questionable. The MCS was dependent on the randomness of the 

pseudo-random numbers, and the hits surrounding the mean value had higher chances 

due to the random numbers transferred to the CDF. Therefore, the accuracy of the 

standard deviation deviated from the targeted value. 
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Figure 4.31 Stability of the generated (a) mean and (b) standard deviation of the 

LHS and MCS 
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presented. The standard deviation of the generated means and the generated standard 

deviations were plotted against the iterations. 

 

The consistency of the generated value was measured against the value of the 

standard deviation. As the standard deviation deviated to zero, it meant that the 

sampling method produced values that were consistent with the theoretical values. 

Figure 4.32 shows that the LHS produced values that were more consistent compared 

to the MCS. This was because the portions in the LHS created a stage for the 

generation of values, even for a lesser number of iterations. The LHS computed a 

lesser value of standard deviation at 50 iterations due to the sampling strategy. The 

LHS generated portions to divide the distribution, and distributed the samples for the 

whole distribution evenly. Even though each iteration was repeated ten times, the LHS 

strategy still produced a better consistency. At 50 iterations, the generation deviated 

0.001 from each of the iterations for both the generated mean and the standard 

deviation. This showed that the LHS is feasible for simulating a model with a small 

number of iterations. 

 The MCS was incapable of doing so since it needed iterations of up to 5000 

for the generated mean and standard deviation to reach a standard deviation of zero. 

This is because the MCS generates values randomly within a distribution and thus, it 

needs more samples to cover all the distributions. A small number of iterations are 

insufficient for the MCS to cover the distribution. As a result, the MCS produced an 

inconsistent mean value, as shown in Figure 4.32(a). The standard deviation of the 

generated means for the MCS increased after reaching zero for 300 iterations. If 

supposing the standard deviation value was maintained at zero, and more iterations 

were generated until 500, 1000 and 5000 iterations, then, due to the unstructured 

generation of the random values, the deviation between the set of samples of 500 

iterations would increase slightly. Figure 4.32(b) shows that the iterations for the MCS 

produced the fluctuated value of the standard deviation. Therefore, the LHS is capable 

of producing consistent random values with less number of iterations. 
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Figure 4.32 Standard deviation of generated (a) means and (b) standard deviation 
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the consistency of the generated value, the LHS was capable of producing consistent 

random values in comparison to the MCS. The embedded sampling strategy in the 

ProbS-FEM was capable of obtaining the probability of failure with the optimum time 

and number of iterations. The iteration time for the LHS was reduced by 20%. 

 

4.4 SUMMARY 

 

Overall, the ProbS-FEM was developed to consider the uncertainties in the analysis. 

The verification of the developed code was presented to show the capability of the 

ProbS-FEM in predicting the SIF, the crack growth for different modes of loading, 

and the fatigue life distribution. Single and multiple surface cracks were simulated to 

indicate the level of complexity that could be solved by the ProbS-FEM. The new 

understanding of the SIF, crack growth and fatigue life distribution, particularly for 

the case of single and multiple surface cracks, have been discussed. The integrity of 

the components could be observed through the ProbS-FEM analysis. The ProbS-FEM 

produced a range of outputs because of the existence of uncertainty in the material 

properties and the crack initiation. The new contribution has improved the previous 

solution model that mostly revealed the static or deterministic results only. The range 

of outputs produced in the ProbS-FEM provided a remedy for stray deterministic 

predictions, particularly in fatigue behaviour. Computationally, the application of the 

probabilistic approach by the developed algorithm contributed to the enhancement of 

the S-FEM compared to the previous approach.     

 

The major finding was the modelling of the uncertainties feature in the FEA 

for the application of the fatigue crack problem. The introduction of uncertainties in 

the analysis successfully defined the improvement in the prediction of the SIF, crack 

growth and fatigue life. Thus, the results will help scientists to make decisions 

regarding future maintenance and inspection strategies, as well as on the appropriate 

remedial actions to be taken following the inspection results. Therefore, the proper 

priority will be given to maintenance with the ProbS-FEM.  
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Even though the current research has focused on a constant amplitude loading 

and the basic fatigue crack growth model (Paris’ law), the ProbS-FEM can be further 

developed for a more complex loading and fatigue crack growth model.     
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  CHAPTER 5

 

 

CONCLUSIONS 

 

 

5.1 INTRODUCTION 

 

The main objective of this thesis was to develop, test and provide a computational 

fracture mechanics model that emphasizes the quantification of uncertainties for 

surface cracks. It can be concluded that this objective has been successfully achieved. 

The uncertainties element in real engineering applications was adopted in the current 

advanced FEM analysis. The ProbS-FEM was introduced and it successfully solved 

the problem of the randomness of variables. This chapter presents the conclusions 

drawn from the abovementioned investigations and suggestions for future work. 

 

5.2 CONCLUSIONS 

 

Based on the research findings, the research objectives have been achieved, and the 

main conclusions are summarized as below: 

 

(i) In the present study, the mathematical model for the distribution of surface 

crack growth has been successfully represented by a Gaussian model with a 

certain value of the mean and standard deviation. The mathematical model has 

shown an acceptable range of agreement via a K-S statistical test evaluation. 

The dispersion of a set of input data, particularly for the initial surface crack 

size and material properties in the ProbS-FEM, led to the development of the 

surface crack distribution. The distribution of fatigue life was also successfully 

addressed by the standard deviation of the initial surface crack. The developed 

model for crack growth distribution, taking into account the randomness of the 

V
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initial surface crack and the material properties, indicated the achievement of 

research objective (i). 

 

(ii) An effective algorithmic solution for the ProbS-FEM was developed in this 

research. It was demonstrated by the bounds of the ProbS-FEM, which showed 

better predictions in dealing with randomness outputs. The standard deviation 

of the initial surface crack size influenced the prediction accuracy of the mean 

ProbS-FEM. The effectiveness of the ProbS-FEM was enhanced with the 

implementation of the Latin Hypercube Sampling. An effective algorithmic 

solution was presented for the ProbS-FEM to reduce the number of samples 

and the iteration time.  

 

(iii) An extension of the S-version of the Finite Element Model for surface cracks 

was successfully shown. The ProbS-FEM was introduced to solve the 

existence of the uncertainties element in real applications for finite element 

analysis. The ProbS-FEM successfully modelled the material and geometrical 

uncertainties, as proven by the results, which were in agreement with the 

experimental findings.  

 

(iv) The uncertainties that have been ignored in deterministic finite element codes 

can lead to conservative results with regard to the SIF, crack growth, failure 

prediction and fatigue life. The SIF was analysed and validated by 

deterministic and experimental methods, and the results were the same. The 

verification of the crack growth and fatigue life showed a small degree of 

dispersion of the results from the experimental results. The dispersion was 

influenced by not only the material properties but also by the initial crack size. 

The mean and bounds produced by the ProbS-FEM showed that there was an 

enhancement in the prediction of crack growth and fatigue life.  
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5.3 KNOWLEDGE CONTRIBUTION  

 

The results-based contribution by the ProbS-FEM has been presented implicitly and 

explicitly in the Results and Discussion section. In short, the study has successfully 

contributed to knowledge in the following aspects: 

 

(i) A new probabilistic model for the S-FEM: In this study, the uncertainty issue 

in relation to the SIF, surface crack growth and fatigue life of surface cracks 

was examined. A newly embedded probabilistic model with the S-FEM, called 

the ProbS-FEM, was proposed. This is the current advanced S-FEM version 

that combines the probabilistic analysis in the S-FEM.  

 

(ii) Formulation of uncertainties feature in the analysis: The introduction of 

uncertainties in the numerical formulations has successfully defined the 

improvements in the prediction of the SIF, surface crack growth and fatigue 

life by modelling the dispersion of the initial surface crack. The mean and the 

upper and lower bounds indicate the improvements.    

 

(iii) Methodological contribution: The accurate determination of the distribution of 

surface crack growth is problematic when a three-dimensional surface crack 

growth is involved due to the repetition of the re-meshing and sampling 

process. Therefore, the ProbS-FEM is a new numerical model for defining the 

methodological algorithm based on the S-FEM technique. So far, the 

probabilistic analysis has been used for the FEM, but not for the S-FEM, as 

provided in this study. No researcher has produced an embedded probabilistic 

analysis with the S-FEM, particularly for a three-dimensional analysis.  

 

(iv) Practical contribution to the ProbS-FEM codes: The deterministic S-FEM was 

presented with the exception of a probabilistic element. With the proposed 

ProbS-FEM model, the outcomes may lead to a proper improvement of the S-

FEM codes in an effort to include the uncertainties element in assessing 

industrial flaws and defects. 
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5.4 SUGGESTIONS FOR FURTHER WORK 

 

The work that has been carried out provides several promising avenues for further 

probabilistic surface crack researches as follows: 

 

(i) The dispersion of the presented initial surface crack size was limited to the 

standard deviation approach. Thus, a study on a new methodology to calculate 

the equivalent initial flaw size distribution is highly encouraged. The initial 

flaw size distribution should be determined to confirm the changes in the 

fatigue life results. 

  

(ii) The variable amplitude loading for mode I and II with the same geometrical 

model should be conducted to assess the change in the mixed mode fracture, 

and the dominant mode can be determined. In addition, it is essential to 

consider the introduction of a variable amplitude load in the ProbS-FEM. The 

variable amplitude load exposes the scatter input in an analysis.   

 

(iii) The present study dealt with a continuum scale level. The study on a 

microstructural scale level is advisable because at microstructural level, high 

sensitivity is shown towards different loading modes, such as uniaxial with and 

without mean stress, torsion and equibiaxial tension. The probabilistic 

modelling of fatigue in relation to the microstructural level would be one of the 

choices to embark on. 

 

(iv) One of the challenges in the implementation is the unpredictable environment. 

One example is the working or operational environment which is exposed to 

uncertain loading. In addition, the temperature and corrosion contribute to the 

unpredictable operational environment. Nevertheless, the simulation of real 

engineering environments will increase the commercial value of the ProbS-

FEM.   
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APPENDIXES 

 

A MATRIX FORMULATION 

 

The material property matrix  is expressed as  

 

  (0.1) 

 

The shape function,  is given by 
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The  matrix can be presented as 

 

  (0.3) 

 

The expended of Eq. (3.16) can be expressed as 
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APPENDIX B 

 

B VOID OF ProbS-FEM 

 

#include<stdio.h> 

#include<stdlib.h> 

#include<malloc.h> 

#include<math.h> 

#include<time.h> 

#include<unistd.h> 

 

#define  DIM               3 

#define  NUMNODEELEM       20 

#define  SzINT   sizeof(int)   

#define  SzDBL   sizeof(double) 

 

typedef  int     INT; 

typedef  double  DBL; 

typedef  INT **  IMatrix_t; 

typedef  INT *   IVector_t; 

typedef  DBL *   DVector_t; 

 

typedef  struct { 

  INT  numNode; 

  INT  numElem; 

  INT  dummy1; 

  INT  dummy2; 

}  Size_t; 

 

typedef  struct { 

  DVector_t  coord; 

}  Node; 

typedef  Node *  Node_t; 

 

typedef  struct { 

  IVector_t  node; 

  int *kkm; 

  int *nflag; 

}  Elem; 

typedef  Elem *  Elem_t; 

 

typedef  struct { 

  INT  numBC; 

  IVector_t node; 

} Bc; 

typedef Bc * Bc_t; 

 

typedef  struct { 

  Size_t   size; 

  Node_t   node; 

  Elem_t   elem; 

  IVector_t bc_node; 

  INT       numBC; 

  Bc_t     bc; 

  INT      numLayer; 

  IMatrix_t vccm; 

}  FEM; 

typedef FEM * FEM_t; 

 

 

int  main( int argc, char *argv[]) 

{ 

  if( argc !=5 ){    //edit by akramin 
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    printf("Usage: $numStep $probsample $numLayer $numLocal \n",argv[0] ); 

    exit(1); 

  } 

 

/*  FILE *write_port_E = fopen ("portion-strat-E.dat","a"); 

  FILE *read_port_E  = fopen ("portion-strat-E.dat","r"); 

 

  FILE *read_portstrat_Pc    = fopen ("portion-strat-Pc.dat","r"); 

  FILE *write_port_Pc        = fopen ("portion-strat-Pc.dat","a"); 

*/ 

 

  int step     = atoi(argv[1]); 

  int probsample    = atoi(argv[2]); 

  int numlayer      = atoi(argv[3]); 

  int numlocal      = atoi(argv[4]); 

 

  char character,fileName[256]; 

  int sample,local1,local2; 

  float cycle[probsample+1][step+1][numlocal+1], 

xo[numlocal+1][probsample+1][step+1][numlayer+1], 

yo[numlocal+1][probsample+1][step+1][numlayer+1], 

zo[numlocal+1][probsample+1][step+1][numlayer+1], 

xn[numlocal+1][probsample+1][step+1][numlayer+1], 

yn[numlocal+1][probsample+1][step+1][numlayer+1], 

zn[numlocal+1][probsample+1][step+1][numlayer+1], 

cycletotal[probsample+1][step+1][numlocal+1]; 

 

  FILE *read_PC    = fopen ("Prob_cycle.dat","r"); 

 

  for (int i=0;i<=15;i++){ 

     fscanf( read_PC,"%c \n",&character);//Di susun dari local 

  } 

 

  fscanf( read_PC,"%d \n",&local1);//1 

 

  for (int i=0;i<=12;i++){ 

     fscanf( read_PC,"%c \n",&character);//sehingga local 

  } 

 

  fscanf( read_PC,"%d \n",&local2);//end of local num 

  for (int j=0;j<=probsample;j++){ 

       for (int i=0;i<=5;i++){ 

         fscanf( read_PC,"%c \n",&character);//sample 

       } 

       fscanf( read_PC,"%d \n",&sample);//0 

       for (int i=0;i<=step;i++){ 

           for (int m=0;m<numlocal;m++){ 

               fscanf( read_PC,"%e 

\n",&cycle[j][i][m]);//cycle[probsample][step] 

               cycletotal[j][i][m]=cycletotal[j][i-1][m]+cycle[j][i][m]; 

           } 

       } 

 

       for (int m=0;m<=numlocal;m++){ 

           cycletotal[j+1][0-1][m]=0.0; 

       } 

  } 

 

 

/**************Read pS**,local1.crack***************/ 

  for (int l=0;l<numlocal;l++){ 

       for (int j=0;j<=probsample;j++){ 

           sprintf(fileName, "pS%d,local%d.crack",j,l+1); 

           FILE *read_pS0    = fopen (fileName,"r"); 

 

           for (int k=0;k<=step;k++){ 

               for (int i=0;i<=5;i++){ 
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                   fscanf( read_pS0,"%c \n",&character);//sample 

               } 

 

               fscanf( read_pS0,"%d \n",&sample);//0 

               for (int i=0;i<=3;i++){ 

                   fscanf( read_pS0,"%c \n",&character);//step 

               } 

 

               fscanf( read_pS0,"%d \n",&sample);//0 

               for (int i=0;i<=4;i++){ 

                   fscanf( read_pS0,"%c \n",&character);//Local 

               } 

 

               fscanf( read_pS0,"%d \n",&sample);//0 

               for (int i=0;i<=62;i++){ 

                   fscanf( read_pS0,"%c \n",&character); 

               } 

 

               for (int i=0;i<=numlayer;i++){ 

                   fscanf( read_pS0,"%e %e %e %e %e 

%e",&xo[l][j][k][i],&yo[l][j][k][i],&zo[l][j][k][i],&xn[l][j][k][i],&yn[l][j]

[k][i],&zn[l][j][k][i]); //coord old x y z new x y z 

               } 

               fscanf( read_pS0,"%c \n",&character);//sample 

           }//end for all steps 

       }//end for allprobsample 

  } //end for all numlocal 

 

 

/**************write_avsn***************/ 

  for (int m=0;m<numlocal;m++){ 

     sprintf(fileName, "Prob_avsn_l%d.dat",m+1); 

     FILE *write_avsn = fopen (fileName,"a"); 

 

     sprintf(fileName, "Prob_allpS_l%d.dat",m+1); 

     FILE *write_pS0 = fopen (fileName,"a"); 

 

     for (int j=0;j<=probsample;j++){ 

/**************open this for none EIFS***************/ 

//         fprintf(write_avsn,"0.000000e+00 0.000000e+00 0.000000e+00 

0.000000e+00 "); 

/**************open this for EIFS***************/ 

             fprintf(write_avsn,"0.000000e+00 %e %e %e ", 

fabs(xo[m][j][0][0]), fabs(yo[m][j][0][10]), fabs(xo[m][j][0][20])); 

 

     } 

     fprintf(write_avsn,"\n"); 

 

     for (int k=0;k<=step;k++){ 

         for (int j=0;j<=probsample;j++){ 

/**************open this for none EIFS***************/ 

//             fprintf(write_avsn,"%e %e %e %e ",cycletotal[j][k][m], 

fabs(xo[m][j][k+1][0]-xo[m][j][0][0]), fabs(yo[m][j][k+1][10]-

yo[m][j][0][10]), fabs(xo[m][j][k+1][20]-xo[m][j][0][20])); 

/**************open this for EIFS***************/ 

             fprintf(write_avsn,"%e %e %e %e ",cycletotal[j][k][m], 

fabs(xo[m][j][k+1][0]), fabs(yo[m][j][k+1][10]), fabs(xo[m][j][k+1][20])); 

//           printf("%e %e %e %e %e %e %e\n",cycle[j][k][m], 

xo[m][j][k+1][0],xo[m][j][0][0], yo[m][j][k+1][10],yo[m][j][0][10], 

xo[m][j][k+1][20],xo[m][j][0][20]); 

         } 

         fprintf(write_avsn,"\n"); 

     } 

 

/**************write_Prob_allpS_l1.dat***************/ 

     for (int k=0;k<=step;k++){ 

         for (int j=0;j<=probsample;j++){ 
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             fprintf(write_pS0,"Sampel %d Step %d Local0 - -                                                            

",j,k); 

         } 

         fprintf(write_pS0,"\n"); 

         fprintf(write_pS0,"Oldcracktip[DIM], Newcracktip[DIM] (About Node 

(calculate by spline))\n"); 

         fprintf(write_pS0,"\n"); 

         for (int i=0;i<=numlayer;i++){ 

             for (int j=0;j<=probsample;j++){ 

                 fprintf(write_pS0," %e  %e  %e  %e  %e  %e - ", 

xo[m][j][k][i], yo[m][j][k][i], zo[m][j][k][i], xn[m][j][k][i], 

yn[m][j][k][i], zn[m][j][k][i]); 

//               printf(" %e  %e  %e  %e  %e  %e - \n", xo[j][k][i], 

yo[j][k][i], zo[j][k][i], xn[j][k][i], yn[j][k][i], zn[j][k][i]); 

//              printf("cycle %e j%d k%d cycletotal 

%e\n",cycle[j][k],j,k,cycletotal[j][k]); 

             } 

             fprintf(write_pS0,"\n"); 

         } 

         fprintf(write_pS0,"\n\n"); 

    } 

  }//end for all numlocal 

 

/**************read_pre_all.vccm1/2***************/ 

  char char1, char2, char3, char4; 

  float KI[numlocal+1][probsample+1][step+1][numlayer+1], 

KII[numlocal+1][probsample+1][step+1][numlayer+1], 

KIII[numlocal+1][probsample+1][step+1][numlayer+1]; 

  int layer[numlocal+1][probsample+1][step+1][numlayer+1],dummy; 

 

  for (int m=0;m<numlocal;m++){ 

      sprintf(fileName, "pre_all.vccm%d",m+1); 

      FILE *read_pre_all_vccm = fopen (fileName,"r"); 

 

      for (int j=0;j<=probsample;j++){ 

           for (int k=0;k<=step;k++){ 

               for (int i=0;i<=6;i++){ 

                   fscanf( read_pre_all_vccm,"%c \n",&character);//sample 

               } 

 

               fscanf( read_pre_all_vccm,"%d \n",&dummy);//0 

 

               for (int i=0;i<=3;i++){ 

                   fscanf( read_pre_all_vccm,"%c \n",&character);//step 

               } 

 

               fscanf( read_pre_all_vccm,"%d \n",&dummy);//0 

 

               for (int l=0;l<=43;l++){ 

                   fscanf(read_pre_all_vccm,"%c", &character);//Layer KI KII 

KIII 

               } 

 

               for (int i=0;i<numlayer;i++){ 

                   fscanf(read_pre_all_vccm,"%d %e %e %e", 

&layer[m][j][k][i], &KI[m][j][k][i], &KII[m][j][k][i], &KIII[m][j][k][i]); 

               } 

           } 

      } 

  } 

 

 

/**************write_Pre_all.vccm1/2***************/ 

  float KI_total=0.0, KII_total=0.0, KIII_total=0.0; 

 

  for (int m=0;m<numlocal;m++){ 
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      sprintf(fileName, "Pre_all_L%d.vccm",m+1); 

      FILE *write_pre_all_vccm = fopen (fileName,"a"); 

      fprintf(write_pre_all_vccm,"KI \n"); 

 

      for (int k=0;k<=step;k++){ 

          for (int i=0;i<=numlayer;i++){ 

           fprintf(write_pre_all_vccm,"%d ",i); 

              for (int j=0;j<=probsample;j++){ 

                  fprintf(write_pre_all_vccm,"%e ", KI[m][j][k][i]); 

                  KI_total=KI_total+KI[m][j][k][i]; 

               } 

           fprintf(write_pre_all_vccm," %e\n",KI_total/(probsample+1)); 

           KI_total=0.0; 

           } 

      fprintf(write_pre_all_vccm,"step %d\n",k); 

      } 

 

      fprintf(write_pre_all_vccm,"KII \n"); 

      for (int k=0;k<=step;k++){ 

          for (int i=0;i<=numlayer;i++){ 

           fprintf(write_pre_all_vccm,"%d ",i); 

              for (int j=0;j<=probsample;j++){ 

                  fprintf(write_pre_all_vccm,"%e ", KII[m][j][k][i]); 

                  KII_total=KII_total+KII[m][j][k][i]; 

               } 

           fprintf(write_pre_all_vccm," %e\n",KII_total/(probsample+1)); 

           KII_total=0.0; 

           } 

      fprintf(write_pre_all_vccm,"step %d\n",k); 

      } 

 

      fprintf(write_pre_all_vccm,"KIII \n"); 

      for (int k=0;k<=step;k++){ 

          for (int i=0;i<=numlayer;i++){ 

           fprintf(write_pre_all_vccm,"%d ",i); 

              for (int j=0;j<=probsample;j++){ 

                  fprintf(write_pre_all_vccm,"%e ", KIII[m][j][k][i]); 

                  KIII_total=KIII_total+KIII[m][j][k][i]; 

               } 

           fprintf(write_pre_all_vccm," %e\n",KIII_total/(probsample+1)); 

           KIII_total=0.0; 

           } 

      fprintf(write_pre_all_vccm,"step %d\n",k); 

      } 

  } 

 

  printf("completed rewrite_result..\n"); 

 

  return 0; 

} 
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