

MODELING AND PROPERTIES OF GLASS FIBRE-REINFORCED NYLON

NURIZZATHANIS BINTI MOHAMAD KUSASEH

Report submitted in partial fulfillment of the requirements for the award of the degree of B.Eng (Hons.) Manufacturing Engineering

> Faculty of Manufacturing Engineering UNIVERSITI MALAYSIA PAHANG

> > JUNE 2015

TABLE OF CONTENT

EXAMINER'S APPROVAL DOCUMENT	ii
SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii

CHAPTER 1 INTRODUCTION

.

1.1	Introduction	1
1.2	Processing Technique	2
1.3	Problem Statement	3
1.4	Objectives	3
1.5	Scope of Project	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Polymer	4
2.3	Polymer Matrix Composites (PMCs)	5

ix

PAGE

	2.3.1 Thermoset polymer	5
	2.3.2 Thermoplastic polymer	5
2.4	Fibre-Reinforced Plastic (FRP) Composites	5
2.5	Glass Fivre-Reinforced Polymer (GFRP)	6
2.6	Polypropylene	7
2.7	Nylon (Polyamide)	7
2.8	Processing Methods	7
	2.8.1 Injection Molding	7
	2.8.2 Hand Lay-up Technique	10
2.9	CAE (Computer Aided Engineering) Methods	12
	2.9.1 Software Autodesk Moldflow	12

CHAPTER 3 METHODOLOGY

3.1	Introduction 13				
3.2	Raw Materials				
	3.2.1	Nylon-6	13		
	3.2.2	Glass Fibre-reinforcement	14		
3.3	Flowc	hart	15		
3.4	Moldf	low Analysis	16		
	3.4.1	Procedure	16		
3.5	Materials Preparation				
3.6	Samp	e Calculation	18		
	3.6.1	95%PA6 + 5%GF	18		
	3.6.2	90%PA6 + 10%GF	18		
	3.6.3	85%PA6 + 15%GF	18		
	3.6.4	80%PA6 + 20%GF	19		
3.7	Injecti	ion Molding	19		
	3.7.1	Procedure	19		
3.8	Mecha	anical Test	21		

		3.8.1	Experimental Procedure	21
CHAPTER 4		RESU	LTS AND DISCUSSION	
	4.1	Introdu	uction	26
	4.2	Moldf	low Analysis	29
		4.2.1	Gating Suitability	32
		4.2.2	Fill Time	33
		4.2.3	Temperature at Flow Front	34
		4.2.4	Time to Reach Ejection Temperature	35
		4.2.5	Pressure at End of Fill	36
		4.2.6	Shear rate at Maximum	37
		4.2.7	Volumetric Shrinkage	38
		4.2.8	Air Traps	39
		4.2.9	Weld Lines	40
		4.2.10	Warp	41
	4.3	Injecti	on Molding Main Data	42
	4.4	Tensil	e Test Result Analysis	47
		4.4.1	Introduction	47
		4.4.2	Pure Nylon	51
		4.4.3	95%PA6 + 5%GF	51
		4.4.4	90%PA6 + 10%GF	52
		4.4.5	85%PA6 + 15%GF	52
		4.4.6	80%PA6 + 20%GF	53

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Introduction	56
5.2	Conclusion	56
5.3	Recommendation	57

REFERENCES

APPENDICES

Α

В

C1

C2

D1

	58
Gantt Chart	60
Edge Gate Moldflow Analysis Log	61
Centre Gate Moldflow Analysis Result	64
Centre Gate Moldflow Analysis Log	67
Sprue Gate Moldflow Analysis Result	70

D2Sprue Gate Moldflow Analysis Log73ETensile Test Stress-Strain Curve76

LIST OF TABLES

Table No.	Title	Page
2.1	Properties of Glass Fibres	7
2.2	Advantages and disadvantages of hand lay-up process	11
4.1	Tabulated Moldflow Analysis	29
4.2	Temperature used for material composition of glass fibre	43
	-reinforced nylon	
4.3	Tensile test results	53

xiii

LIST OF FIGURES

Figure No.	Title	Page
2.1	Two-plate mold	8
2.2	Three-plate mold	9
2.3	Illustration of injection molding	9
2.4	The dog bone specimen	10
2.5	Example of 20% glassfibre PA filltime	12
3.1	Project Flowchart	15
3.2	Pure nylon, PA6	17
3.3	Glass fibre with PA6	17
3.4	FKP Injection Molding Machine	20
3.5	Illustration of specimen	23
3.6	The grip section	24
3.7	Universal Testing Machine (UTM)	25
4.1	Three different 3D modeling of dog bone specimen	27
4.2	Injection molding of long-fibres one side specially (improved molding tool design) gated ISO multipurpose test specimen	28
4.3	Dog bone shape modeling in Catia V5	28
4.4	Gating suitability	32
4.5	Fill time	33
4.6	Temperature at flow front	34
4.7	Time to reach ejection temperature	35
4.8	Pressure at end of fill	36
4.9	Shear rate, maximum	37
4.10	Volumetric shrinkage	38
4.11	Air traps	39
4.12	Weld lines	40
4.13	Warp	41
4.14	Successful dog bone specimen	43

xiv

4.15	Pure nylon	44
4.16	95%PA6 + 5%GF	44
4.17	90%PA6 + 10%GF	45
4.18	85%PA6 + 15%GF	45
4.19	80%PA6 + 20%GF	46
4.20	Example of stress-strain curve	48
4.21	Fractured specimens	50
4.22	Stress-strain curve or pure nylon	51
4.23	Stress-strain curve of 95%PA6 + 5%GF	51
4.24	Stress-strain curve of 90%PA6 + 10%GF	52
4.25	Stress-strain curve of 85%PA6 + 15%GF	52
4.26	Stress-strain curve of 80%PA6 + 20%GF	53
4.27	Graphical result of Modulus Young, GPa	54
4.28	The relationship of mechanical properties with fibre percentage composition	54

xv

LIST OF SYMBOLS

- Yield strength or yield point σy Elastic modulus
- Е
- ΔL% Percent elongation
- Stress-strain diagram σ_{UTS}

LIST OF ABBREVIATIONS

ASTM	American Society for Testing Materials
CAE	Computer Aided Engineering
CONH	Amide group
GF	Glass fibre
GFRP	Glass Fibre-reinforced Plastic
FKP	Fakulti Kejuruteraan Pembuatan
FRP	Fibre-Reinforced Plastic
PA6	Nylon
PBT	Polybutylene terephthalene
PDF	Portable Document Format
PET	Polyethylene terephthalate
PMCs	Polymers-Matrix Composites
PP	Polypropelene
UTM	Universal Tensile Machine
UTS	Ultimate Tensile Strength

ABSTRACT

Nylon is one of the synthetic polymers family that known as polyamides. This research study is about to analyze the modeling and properties of glass fibre-reinforced nylon. In spite of many advantages of plastics, the better physical and mechanical properties of plastic are needed. So that, reinforced plastics (composites plastics) has produced. The objectives of this study is to analyze process flow of plastic part modeling for injection molding process by using Autodesk Moldflow Insights software, to fabricate the plastic part of glass fibre-reinforced nylon by using injection molding machine, and to study the mechanical properties of glass fibre-reinforced nylon. Specimens of dog bone shaped with standard size ASTM D638 are used specifically in order to carry out this research. The processes involved in this research study are moldflow analysis, injection molding process, and tensile strength test. Moldflow analysis is used to identify the suitable process flow of injection molding process. The 3D modeling of dog bone shape specimen is used in completing the moldflow analysis. Then, the injection molding machine is used to produce the glass fibre-reinforced nylon dog bone shape specimen with different percentage of glass fibre. The glass fibre percentages used are 5%, 10%, 15%, and 20%. The mixtures were injected with a range of temperature of 210°C-255°C throughout the barrel. Lastly, the universal tensile machine is used to generate a tensile stress-strain graph for every specimens and the tensile strength of the testing parts is analyzed. As a result, it is concluded that the specimen with higher percentage of glass fibre-reinforced nylon that exceeds the percentage of pure nylon obtain high tensile stress at maximum temperature. This is due to the higher amount of weight of glass fibre-reinforced nylon increased as the percentage increased. The differences tensile strength between pure nylon and glass-fibre reinforced is tabulated and plot in a graph.

ABSTRAK

Nylon adalah salah satu daripada keluarga polimer sintetik yang dikenali sebagai polyamides. Kajian penyelidikan ini adalah untuk menganalisis model dan sifat-sifat kaca bertetulang gentian nilon.Walaupun banyak kelebihan plastik, sifat-sifat fizikal dan mekanikal plastik yang lebih baik diperlukan. Jadi, plastik bertetulang (komposit plastik) telah dihasilkan. Objektif kajian ini adalah untuk menganalisis aliran proses pemodelan bahagian plastik untuk proses pengacuan suntikan dengan menggunakan perisian Autodesk Moldflow Insights, fabrikasi bahagian plastik kaca bertetulang gentian nilon dengan menggunakan mesin pengacuan suntikan, dan mengkaji sifat-sifat mekanikal kaca bertetulang gentian nilon. Spesimen berbentuk tulang anjing dengan saiz standard ASTM D638 digunakan khusus untuk menjalankan kajian ini. Proses-proses yang terlibat dalam kajian penyelidikan ini adalah analisis moldflow, proses pengacuan suntikan, dan ujian kekuatan tegangan. Analisis Moldflow digunakan untuk mengenal pasti aliran proses yang sesuai bagi proses pengacuan suntikan. Pemodelan 3D spesimen berbentuk tulang anjing digunakan dalam menyiapkan analisis moldflow. Kemudian, mesin pengacuan suntikan digunakan untuk menghasilkan spesimen kaca bertetulang gentian nilon berbentuk tulang anjing dengan peratusan gentian kaca yang berbeza. Peratusan gentian kaca yang digunakan adalah 5%, 10%, 15%, dan 20%. Campuran telah disuntik dengan pelarasan suhu antara 210°C-255°C. Akhir sekali, mesin tegangan universal digunakan untuk menjana graf tegasan-terikan tegangan untuk setiap spesimen dan kekuatan tegangan untuk setiap satu bahagian ujian dianalisis. Kesimpulannya, spesimen dengan peratusan yang lebih tinggi daripada kaca bertetulang gentian nilon yang melebihi peratusan nilon tulen mencapai tegasan tegangan yang tinggi pada suhu maksimum. Ini adalah kerana jumlah berat kaca bertelulang gentian nilon meningkat apabila peratusan meningkat. Perbezaan kekuatan tegangan antara nilon tulen dan kaca-bertetulang gentian dijadualkan dan di plot dalam graf.

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Fibre-Reinforced Plastic or FRP is a composite material consisting of reinforcing fibres thermosetting resins and other materials such as fillers. Glass fibre is generally used as a reinforcing material and polyester resins are usually used as bending agent. An FRP structure typically consists of unsaturated polyester resin. It is applied to a mould in combination with reinforcement, which most commonly glass fibre, to form a part that is rigid, highly durable and low in weight.

By reinforcing the plastic matrix, a wide variety of physical strengths and properties can be designed into the FRP composite. Additionally, the type and configuration of the reinforcement can be selected, along with the type of plastic and additives within the matrix. These variations allow an incredible range of strength and physical properties to be obtained. FRP composites can be developed specifically for the performance required versus traditional materials: wood, metal, ceramics, etc.

In addition, reinforced plastic has its own mechanical properties and physical properties. Type, shape, length and orientation of the reinforcing material can affect the mechanical and physical properties of reinforced plastics. The percentage parameters of the reinforcing material also give effect on the mechanical and physical properties of the reinforced plastic.

Glass Fibre-reinforced Plastic (GFRP) is a composites material combined plastic resin and glass fibre. Glass fibre is used to improve the mechanical strength, resistance to damage from the outside and to maintain a fixed shape. The results of combined both plastic and glass fibre, the high tensile strength is supported. Besides, the properties of lightweight and good thermal insulation are one of the factor glass composition and modern composite material.

There are many conventional properties of glass fibre-reinforced plastic, for example long fibres are more effective than short fibres. Their resistance to fatigue, creep and wear also depends on the type and amount of reinforcement. GFRP have the ability properties to meet wide-ranging performance specifications and ability to markedly reduce part assembly. GFRP also have high strength at low weight, good impact and compression. The molding part is in close dimensional tolerances. Moreover, it is excellent chemical and corrosion resistance, good thermal insulation and respectable abrasion resistance with ready to bond with dissimilar materials.

1.2 PROCESSING TECHNIQUE

In this study, there is some method that will be use to complete the project such as Moldflow software, Injection Molding machine, and Universal Tensile Machine (UTM).

Firstly, the plastic part design must be analyze before undergoes injection molding process. Moldflow software is needed. It is used to calculate the fill analysis and wrap analysis that includes the molding process, or cooling system.

Then, to fabricate the plastic part with the combination of fibre and nylon at different percentages used is by using injection molding machine. Injection molding is a machine specially in making parts from thermoplastic. The process begins with the injection of molten plastic with high pressure into the desired shape of mold cavity inside the injection molding machine. Then, the part after injection will undergo cooling time by itself and the part can be ejected.

To study on mechanical properties of the glass fibre-reinforced nylon, the specimen formed by injection molding machine will undergo tensile test and impact test. The Universal Tensile Machine (UTM) is used to identify the tensile strength and other characteristic of the specimen.

1.3 PROBLEM STATEMENT

In spite of many advantages of plastics, the better physical and mechanical properties of plastic are needed. So that, reinforced plastics (composites plastics) has produced. Reinforced plastics has produced a good materials with light-weight properties, high levels of stiffness, high strength-to-weight ratio, outstanding fatigue resistance and very impressive corrosion resistance to compare to others most common metallic alloys, such as steel and aluminum alloys. The strength and stiffness of polymers are good by adding fibres of glass, carbon, nylon and etc.

1.4 **OBJECTIVES**

- To analyze process flow of plastic part modeling for injection molding process by using Autodesk Moldflow Insights software.
- To fabricate the plastic part of glass fibre-reinforced nylon by using injection molding machine.
- > To study the mechanical properties of glass fibre-reinforced nylon.

1.5 SCOPE OF PROJECT

This thesis focuses on modeling and properties of glass fibre-reinforced nylon. Nylon is one of the synthetic polymers family that known as polyamides. Nylon is a thermoplastic. Nylons have good mechanical properties and abrasion resistance, selflubricating and also resistant to all chemicals such as acids and alkalis. I need to analyze the plastic part modeling in commercial programme Moldflow for injection molding process. The analysis from Moldflow must be focus on the different percentage of used for both Nylon and fibre. After the specimen is formed, the mechanical properties need to be studied by tensile test.