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ABSTRACT 

 

This paper presents modeling and simulation force tracking control of a hydraulic actuator 

applied in a quarter car of the active suspension system using skyhook control system. The 

controller structure of the active suspension system was decomposed into two loops namely 

outer loop and inner loop controllers. Outer loop controller is used to calculate the optimum 

target force to reject the effects of road disturbances by using skyhook control and 

proportional-integral-derivative (PID) control system, while, the inner loop controller is 

used to keep the actual force close to this desired force. The results of the study show that 

the inner loop controller is able to track well the target force ranging from sinusoidal, 

square, saw-tooth and step functions of target force. The performance of outer loop 

controller also shows significant improvement in terms of body acceleration, body 

displacement and tire displacement, and spring deflection as compared to the passive 

suspension system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRAK 

 

Tesis ini membentangkan pemodelan dan simulasi pengesan kawalan kuasa dari aktuator 

hidraulik yang diaplikasikan dalam satu perempat struktur model kereta suspensi aktif 

menggunakan sistem kawalan “skyhook”. Struktur kawalan dari sistem suspensi aktif 

dibahagikan kepada dua bahagian iaitu kawalan pusingan luar dan kawalan pusingan dalam. 

Kawalan pusingan luar digunakan untuk mengira kuasa optimum yang disasarkan untuk 

menyingkirkan kesan daripada gangguan permukaan jalan dengan menggunakan sistem 

kawalan “skyhook” dan juga sistem kawalan “proportional-integral-derivative (PID)”, 

sementara kawalan pusingan dalam digunakan untuk memastikan kuasa sebenar 

menghampiri kuasa yang dikehendaki. Keputusan yang diperolehi berdasarkan analisis 

mendapati, sistem kawalan dalam  mempunyai kebolehan untuk mengesan kepelbagaian 

jenis kuasa disasarkan merangkumi fungsi “sinusoidal”, “square”, “saw-tooth”, dan “step”. 

Begitu juga dengan prestasi sistem kawalan luar menunjukkan penambahbaikan dalam 

aspek pecutan badan, pemindahan badan, pemindahan tayar, dan pesongan pegas seperti 

yang dibandingkan dengan sistem suspensi pasif. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

A car suspension system is the mechanism that physically separates the car body 

from the wheels of the car. The performance of the suspension system has been greatly 

increased due to increasing vehicle capabilities. Appleyard and Wellstead (1995) have 

proposed several performance characteristics to be considered in order to achieve a good 

suspension system. These characteristics deal with the regulation of body movement, the 

regulation of suspension movement and the force distribution. Ideally the suspension 

should isolate the body from road disturbances and inertial disturbances associated with 

cornering and braking or acceleration. The suspension must also be able to minimize the 

vertical force transmitted to the passengers for their comfort. This could be achieved by 

minimizing the vertical car body acceleration.  

 

The suspension system can be categorized into passive, semi-active and active 

suspension system according to external power input to the system. A passive suspension 

system is a conventional suspension system consists of a non-controlled spring and shock-

absorbing damper. The commercial vehicles today use passive suspension system as means 

to control the dynamics of a vehicle’s vertical motion as well as pitch and roll. Passive 

indicates that the suspension elements cannot supply energy to the suspension system. The 

suspension spring and damper do not provide energy to the suspension system and control 

only the motion of the car body and wheel by limiting the suspension velocity according to 
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the rate determined by the designer. Hence, the performance of a passive suspension system 

is variable subject to the road profiles.  

 

The semi-active suspension has the same elements but the damper has two or more 

selectable damping rate. In early semi-active suspension system, the regulating of the 

damping force can be achieved by utilizing the controlled dampers under closed loop 

control, and such is only capable of dissipating energy (Williams, 1994). Two types of 

dampers are used in the semi- active suspension namely the two state dampers and the 

continuous variable dampers. The disadvantage of these dampers is difficulties to find 

devices that are capable in generating a high force at low velocities and a low force at high 

velocities, and be able to move rapidly between the two.  

 

An active suspension is one in which the passive components are augmented by 

hydraulic actuators that supply additional force. Active suspensions differ from the 

conventional passive suspensions in their ability to inject energy into the system, as well as 

store and dissipate it. The active suspension is characterized by the hydraulic actuator that 

placed in parallel with the damper and the spring. Since the hydraulic actuator connects the 

unsprung mass to the body, it can control both the wheel hop motion as well as the body 

motion. Thus, the active suspension now can improve both the ride comfort and ride 

handling simultaneously.  

 

Although various control laws have been proposed to control the active suspension 

system, the methods were successful applied in computer simulations based only but not in 

real applications. Therefore, a real active suspension system is needed to implement and 

test the developed control strategy. A quarter car models are chosen as an initial model of 

controlling the active suspension system due to the simplicity of the model. Modeling of 

the quarter car suspension as well as the non-linear hydraulic actuator including its force 

tracking controller for an active suspension system is investigated in this study. 
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1.2 PROBLEM STATEMENT 

 

The statement of the problem of this project is expressed as follow:  

 

To model and simulate skyhook controller for active suspension system that can 

improved car performance on various condition of road profile. For an active suspension 

hydraulic actuators is apply to supply additional force to the system. In this case, the 

control systems need to be develop and the force that needs to be injected to the hydraulic 

need to be determined. 

 

1.3 OBJECTIVES 

 

The objectives of this project are as follows: 

 

i. To develop hydraulic model. 

ii. To develop force tracking controller. 

iii. To develop skyhook controller to an active quarter car suspension using 

hydraulic actuator. 

 

1.4 PROJECT SCOPE 

 

This project is about modeling and simulation of skyhook controller for active 

suspension system. The quarter car modeling was based on passive suspension system. 

MATLAB software is being used in purpose to develop program for modeling and 

analyzing the system controller created. In this software, block diagram will be form based 

on the required equation using SIMULINK and then being analyzed by giving variable 

target value to get the desired force match with the various input from road profiles. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION  

 

The suspension system can be categorized into passive, semi-active and active 

suspension system according to external power input to the system and/or control 

bandwidth (Appleyard and Wellstead, 1995). A passive suspension system is a 

conventional suspension system consists of a non-controlled spring and shock-absorbing 

damper as shown in Figure 2.1. The semi-active suspension has the same elements but the 

damper has two or more selectable damping rate as shown in Figure 2.2. An active 

suspension is one in which the passive components are augmented by actuators that supply 

additional force as shown in Figure 2.3.  

 

2.2 PASSIVE SUSPENSION SYSTEM 

 

The commercial vehicles today use passive suspension system to control the 

dynamics of a vehicle’s vertical motion as well as pitch and roll. Passive indicates that the 

suspension elements cannot supply energy to the suspension system. The passive 

suspension system controls the motion of the body and wheel by limiting their relative 

velocities to a rate that gives the desired ride characteristics. This is achieved by using 

some type of damping element placed between the body and the wheels of the vehicle, such 

as hydraulic shock absorber. Properties of the conventional shock absorber establish the 

tradeoff between minimizing the body vertical acceleration and maintaining good tire-road 

contact force. These parameters are coupled. That is, for a comfortable ride, it is desirable 
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to limit the body acceleration by using a soft absorber, but this allows more variation in the 

tire-road contact force that in turn reduces the handling performance. Also, the suspension 

travel, commonly called the suspension displacement, limits allowable deflection, which in 

turn limits the amount of relative velocity of the absorber that can be permitted. By 

comparison, it is desirable to reduce the relative velocity to improve handling by designing 

a stiffer or higher rate shock absorber. This stiffness decreases the ride quality performance 

at the same time increases the body acceleration, detract what is considered being good ride 

characteristics. 

 

An early design for automobile suspension systems focused on unconstrained 

optimizations for passive suspension system which indicate the desirability of low 

suspension stiffness, reduced unsprung mass, and an optimum damping ratio for the best 

controllability (Thompson, 1971). Thus the passive suspension systems, which approach 

optimal characteristics, had offered an attractive choice for a vehicle suspension system and 

had been widely used for car. However, the suspension spring and damper do not provide 

energy to the suspension system and control only the motion of the car body and wheel by 

limiting the suspension velocity according to the rate determined by the designer. Hence, 

the performance of a passive suspension system is variable subject to the road profiles. 
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Figure 2.1: The passive suspension system 

 

Source: Thompson (1971) 

 

2.3 SEMI-ACTIVE SUSPENSION SYSTEM 

 

In early semi-active suspension system, the regulating of the damper force can be 

achieved by utilizing the controlled dampers under closed loop control, and such is only 

capable of dissipating energy (Williams, 1994). Two types of dampers are used in the semi-

active suspension namely the two state dampers and the continuous variable dampers.  

 

The two state dampers switched rapidly between states under closed-loop control. 

In order to damp the body motion, it is necessary to apply a force that is proportional to the 

body velocity. Therefore, when the body velocity is in the same direction as the damper 

velocity, the damper is switched to the high state. When the body velocity is in the opposite 

direction to the damper velocity, it is switched to the low state as the damper is transmitting 

the input force rather than dissipating energy. The  disadvantage of this system is that while 

it controls the body frequencies effectively, the rapid switching, particularly when there are 
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high velocities across the dampers, generates high-frequency harmonics which makes the 

suspension feel harsh, and leads to the generation of unacceptable noise. 

 

The continuous variable dampers have a characteristic that can be rapidly varied 

over a wide range. When the body velocity and damper velocity are in the same direction, 

the damper force is controlled to emulate the skyhook damper. When they are in the 

opposite directions, the damper is switched to its lower rate, this being the closest it can get 

to the ideal skyhook force. The disadvantage of the continuous variable damper is that it is 

difficult to find devices that are capable in generating a high force at low velocities and a 

low force at high velocities, and be able to move rapidly between the two.  

 

 

Figure 2.2: The semi-active suspension system 

 

Source: Williams (1994) 

 

2.4 ACTIVE SUSPENSION SYSTEM 

 

Active suspensions differ from the conventional passive suspensions in their ability 

to inject energy into the system, as well as store and dissipate it. (Crolla, 1988) has divided 
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the active suspensions into two categories; the low-bandwidth or soft active suspension and 

the high-bandwidth or stiff active suspension. Low bandwidth or soft active suspensions are 

characterized by an actuator that is in series with a damper and the spring as shown in 

Figure 2.3(a). Wheel hop motion is controlled passively by the damper, so that the active 

function of the suspension can be restricted to body motion. Therefore, such type of 

suspension can only improve the ride comfort. A high-bandwidth or stiff active suspension 

is characterized by an actuator placed in parallel with the damper and the spring as 

illustrated in Figure 2.3(b). Since the actuator connects the unsprung mass to the body, it 

can control both the wheel hop motion as well as the body motion. The high-bandwidth 

active suspension now can improve both the ride comfort and ride handling simultaneously. 

Therefore, almost all studies on the active suspension system utilized the high-bandwidth 

type. Various types of active suspension model are reported in the literature either modeled 

linearly (used most) or non-linear; examples are Macpherson strut suspension system (Al-

Holou et al., 1999, Hong et al., 2002). 

 

 

   (a) Low bandwidth              (b) High bandwidth 

 

Figure 2.3: Types of active suspension system 

 

Source: Crolla (1988) 
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2.5 QUARTER CAR MODEL 

 

The vehicle model considered in this study is a quarter car models. The quarter car 

model for passive suspension system consists of one-fourth of the body mass, suspension 

components and one wheel as shown in Figure 2.4(a). The quarter car model for active 

suspension system, where the hydraulic actuator is installed in parallel with the spring, is 

shown in Figure 2.4(b). 

 

 

   (a) Passive suspension system   (b) Active suspension system 

 

Figure 2.4: The quarter car model 

 

 The assumptions of a quarter car modeling are as follows: the tire is modeled as a 

linear spring without damping, there is no rotational motion in wheel and body, the 

behavior of spring and damper are linear, the tire is always in contact with the road surface 

and effect of friction is neglected so that the residual structural damping is not considered 

into vehicle modeling. The equations of motion for the sprung and unsprung masses of the 

passive quarter car model are given by: 

 

 



10 

 

                                     

                                                  

 

Whereas, the equations of motion for the sprung and unsprung masses of the active quarter-

car model are given by: 

 

                                           

                                                      

 

Where, 

 

Ms = sprung mass 

Ks = spring stiffness 

Kt   = tire stiffness 

Mu = unsprung mass 

Cs = damping constant 

Zr    = road profile 

Zs = sprung mass displacement 

Zu = unsprung mass displacement 

Fa   = actuator force 

 

Due to the tire stiffness, vertical force acting on the contact point between tire and 

the road will be created when the tire hits a certain road profile. Then, the vertical force is 

transferred to the wheel resulting in vertical acceleration of the wheel. Part of the vertical 

force is damped out by the suspension elements, whereas, the rest is transferred to the 

vehicle body via the suspension elements. The vehicle body will move vertically in 

response to the vertical force of the suspension elements. The performance criteria of the 

suspension system to be investigated in this study are body acceleration (    ), body 

displacement (  ), suspension working space (      ) and wheel displacement (    ). 

(2.1) 

(2.2) 
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Performance of the suspension system is characterized by the ability of the suspension 

system in reducing those four performance criteria effectively. 

 

2.6 INNER LOOP CONTROLLER 

 

The structure of force tracking control of hydraulic actuator is shown in Figure 2.5. 

The hydraulic actuator model take two input namely spool valve position and real time 

piston speed. Proportional Integral control is implemented which takes force tracking error 

as the input and delivers control voltage to drive the spool valve. The forcing functions are 

selected to represent real world situations which depending on the type of road disturbance, 

and may be represented by sinusoidal, saw-tooth, square, step functions and/or their 

combinations. 

 

 

Figure 2.5: Force tracking control of hydraulic actuator 

 

Source: Sam et al. (2005) 

 

2.6.1 Hydraulic Actuator Model 

 

A complete set of a hydraulic actuator consists of five main components namely 

electro hydraulic powered spool valve, piston cylinder, hydraulic pump, reservoir and 

piping system as shown in Figure 2.6. Power supply is needed to drive the hydraulic pump 

through AC motor and to control the spool valve position. The hydraulic pump will keep 

the supply pressure at the optimum level. The spool valve position will control the fluid to 
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come in or out to the piston cylinder which determines the amount of force produced by the 

hydraulic actuator. 

 

The hydraulic actuators are governed by electro hydraulic servo valve allowing for 

the generation of forces between the sprung and unsprung masses. The electro hydraulic 

system consists of an actuator, a primary power spool valve and a secondary bypass valve. 

As seen in Figure 2.7, the hydraulic actuator cylinder lies in a follower configuration to a 

critically centered electro hydraulic power spool valve with matched and symmetric 

orifices. Positioning of the spool u1 directs high pressure fluid flow to either one of the 

cylinder chambers and connects the other chamber to the pump reservoir. This flow creates 

a pressure difference PL across the piston. This pressure difference multiplied by piston area 

Ap is what provides the actuator force FA for the suspension system. The derivative of FA is 

give by:  

 

               
            

 
              

   

 
                     

 

 

 

 

 

Figure 2.6: Diagram of a complete set of hydraulic actuator 

 

Source: Donahue (2001) 

(2.3) 
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Figure 2.7: Physical schematic and variables for the hydraulic actuator 

 

Source: Donahue (2001) 

 

Dynamics for the hydraulic actuator valve are given as the followings: the change in 

force is proportional to the position of the spool with respect to center, the relative velocity 

of the piston, and the leakage through the piston seals. A second input u2 may be used to 

bypass the piston component by connecting the piston chambers. The bypass valve u2 could 

be used to reduce the energy consumed by the system. If the spool position u1 is set to zero, 

the bypass valve and actuator will behave similar to a variable orifice damper. Spool valve 

positions u1 and u2 are controlled by a current-position feedback loop. The essential 

dynamics of the spool have been shown to resemble a first order system (Donahue, 2001) 

as the followings: 

 

              

 

 

(2.4) 
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The parameters of hydraulic actuator model are taken from (Donahue, 2001) as the 

followings: 

 

A
p         

=   0.0044 m
2 

α
            

=   2.273e9 N/m
5 

C
d1       

=   0.7  

C
d2       

=   0.7  

w        =  0.008 m  

P
s          

=  20684 kN/m
2 

 

ρ        =  3500 m/s
2 

C
tm       

=  15e-12  

τ         =  0.001 sec
-1 

 

2.7 OUTER LOOP CONTROLLER 

 

The outer loop controller is used for disturbance rejection control to reduce 

unwanted vehicle’s motions. The inputs of the outer loop controller are vehicle’s states 

namely body velocity and wheel velocity, whereas the output of the outer loop controller is 

the target force that must be tracked by the hydraulic actuator. On the other hand, the inner 

loop controller is used for force tracking control of the hydraulic actuator in such a way that 

the force produced by the hydraulic actuator is as close as possible to the target force 

produced by the disturbance rejection control.  
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Figure 2.8: Controller structure of the active suspension system 

 

2.7.1 Skyhook Controller 

 

The skyhook control introduced by (Karnopp, 1995) to provide an effective solution 

in terms of the simplicity of the control algorithm. The fictitious force computed from the 

added skyhook damper is called the actuator force (Fsky). The force, Fsky of this element 

according to skyhook control law is: 

 

        
           

 
       

 
             

                   
 

 

Where, Csky is a constant value and determined to be approximately 3000 N/m s
−1

 in the 

experimental system taken from (M. Valásek and W. Kortüm, 2001). 

 

The control strategy utilized a fictitious damper that is inserted between the sprung 

mass and the stationary sky as a way to suppress the vibration motion of the spring mass 

and as a tool to compute the desired skyhook force. The skyhook damper can reduce the 

(2.5) 
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resonant peak of the spring mass quite significantly and thus achieves a good ride quality. 

But, in order to improve both the ride quality and handling performance of a vehicle, both 

resonant peaks of the spring mass and the unsprung mass need to be reduced. It is known, 

however, that the skyhook damper alone cannot reduce both resonant peaks at the same 

time (Hong et al., 2002). 

 

 

 

Figure 2.9: A skyhook damper 

 

Source: Hong et al. (2002) 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

The development of an active suspension system for the vehicle is of great interest 

for both academic and industrial fields. The studies of active suspension system have been 

performed using various suspension models. In the quarter car model, the model takes into 

account the interaction between the quarter car body and the single wheel. Motion of the 

car is only in the vertical direction. Modeling of active suspension system in the early days 

considered that input to the active suspension system is a linear force. However due the 

development of new control theory, the force input to the active suspension system has 

been replaced by an input to control the actuator. Therefore, the dynamic of the active 

suspension now consist of the dynamic of the suspension and the dynamic of the hydraulic 

actuator. 

 

This project involves modeling and simulation of a block diagram by using 

MATLAB. In designing the model, the equation and the value constant are about to be 

determined. Hence, this section will discuss on the modeling the block diagram based on 

the equation. There are three major components in the controller systems which are the 

quarter car, inner loop controller and outer loop controller. 
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3.2 FLOW CHART 

 

In order to achieve the aim and the objective of the project, a methodology was 

constructed to have a proper guidance for a successful experimentation. A terminology of 

works and planning of the experiments conduct was shown in a flow chart to describe the 

detail of the project process. The flow chart is the best way to stay agile with the work in 

order to keep track of the work.  

 

3.3 QUARTER CAR 

 

The structure of the quarter is consists of one-fourth of the body mass, suspension 

components and one wheel. For an active suspension system, the hydraulic actuator was 

installed in parallel with the spring as shown in Figure 2.4(b). The modeling of the quarter 

car will be built in SIMULINK based on passive type suspension system referring to 

Equation 2.1 and Equation 2.2. 

 

3.4 INNER LOOP CONTROLLER  

 

The inner loop controller or force tracking controller structure consists of hydraulic 

actuator, dynamic spool valve, and PI controller as show in Figure 2.5. The hydraulic 

actuator takes two inputs namely the spool valve position and the real time piston speed. 

The modeling structure of force tracking controller is built in SIMULINK by referring to 

the Equation 2.3 and Equation 2.4. Proportional Integral control is then implemented which 

takes force tracking error as the input and delivers control voltage to drive the spool valve. 

The forcing functions are selected to represent real world situations which depending on the 

type of road disturbance, and may be represented by sinusoidal, saw tooth, square, step 

functions and/or their combinations. 
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Figure 3.1: Flow chart 
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3.5 OUTER LOOP CONTROLLER 

 

After complete modeling the inner loop and quarter car structure, both are then 

connected and the skyhook controller is implemented to the system to complete the outer 

loop controller. The actuator force (Fsky) of this element according to skyhook control law, 

can be obtain by referring to Equation 2.5. The outer loop functions as disturbance rejection 

control to reduce unwanted vehicle’s motions.  
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

4.1 SIMULATIONS 

 

 This section contains the results of simulations studies in both inner loop and outer 

controllers. The parameters of inner loop controller must be optimized separately until the 

hydraulic actuator is able to provide the actual target force as close as possible with the 

predefined target force. Then, the inner loop controller is integrated with the outer loop 

controller. In this configuration, the inner loop controller is used to track the optimum 

target force produced by the outer loop controller. The performance of the inner loop 

controller is characterized by its ability in tracking the target force with small amount of 

force tracking error. Whereas, the performance of the outer loop controller is characterized 

by the four performance criteria namely body acceleration, body displacement, tire 

displacement, and suspension deflection. 
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4.2 SIMULATION PERFORMANCE OF FORCE TRACKING CONTROLLER  

 

 The force tracking error of the hydraulic actuator model shown in Figure 4.1 using 

Proportional Integral controller for sinusoidal, square, saw-tooth and step functions of the 

target force are shown in Figures 4.2 till Figure 4.5 respectively. This is to check the 

controllability of the force tracking controller for a class of continuous and discontinuous 

functions. In this simulation study, the parameter of proportional gain P is set to 1.00 and 

for Integral gain I is set to 1.00. From these figures, it can be seen clearly that the hydraulic 

actuator model tracks the desired force well. 

 

 

 

Figure 4.1: Force tracking control for hydraulic actuator 
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(a) Sinusoidal function 

 

 

 

(b) Square function 

 

 

 

 Target force 
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 Target force 
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(c) Saw-tooth function 

 

 

 

(d) Step function 

 

Figure 4.2: Force tracking performance of the target force 
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4.3 SIMULATION PERFORMANCE OF QUARTER CAR MODEL 

 

 The quarter car model of passive suspension system is using sine wave function as a 

road profile, Zr,, by assigning the parameter for amplitude and frequency  as shown in 

Figure 4.6. This is to find the best response for all four parameters required, which are the 

body acceleration, body displacement, tire displacement, and spring deflection as shown in 

Figure 4.7 till Figure 4.18. In this simulation study, the amplitude is set to 0.10 and for 

frequency is set to be 2, 3 and 4 rad/sec as reference. 

 

 

 

Figure 4.3: Quarter car model of passive suspension system 
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4.3.1 Frequency, ω = 2 rad/sec 

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.4: Quarter car model performance at frequency, ω = 2 rad/sec 
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4.3.2 Frequency, ω = 3 rad/sec 

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.5: Quarter car model performance at frequency, ω = 3 rad/sec 
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4.3.3 Frequency, ω = 4 rad/sec 

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.6: Quarter car model performance at frequency, ω = 4 rad/sec 
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4.4 SIMULATION PERFORMANCE OF QUARTER CAR MODEL WITH 

SKYHOOK CONTROLLER 

 

The force tracking controller of inner loop is then attached to the quarter car model 

and make it the active suspension system. Here the skyhook controller, C, is then attached 

to the outer loop system as shown in Figure 4.19. By using tune by feel method, the value 

of C is to be determined, and the three different C parameter values is shown in Figure 4.20 

till 4.31. This is to find the best response due to the body acceleration, body displacement, 

tire displacement, and spring deflection compare to the quarter car model of passive 

suspension system. From the Figure 4.32 till Figure 4.35, the best value of C chosen to act 

with these four parameters would be -200. Here, even the values of C satisfied all the 

parameters, the step time response for C = -200 shows a better results compared to the 

others. 

 

 

 

Figure 4.7: Quarter car model with skyhook controller 
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4.4.1 Comparing Skyhook Controller with Passive Suspension System of Quarter 

Car Model 

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.8: Active suspension with skyhook control system vs. passive suspension system  

        at frequency, ω = 4 rad/sec 
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4.5 PID CONTROLLER 

 

Here, the final step where PID Controller, is then attached to the outer loop system 

as shown in Figure 4.36. By try an error, the value of P, I, and D is to be determined. The 

value of P is adjusted first, followed by the value of I and D. However, in this case, only 

the value of P and I are being adjusted since the D value does not influence the results as 

shown in Figure 4.37 till Figure 4.44. The final best response due to the body acceleration, 

body displacement, tire displacement, and spring deflection compare to the quarter car 

model of passive suspension system is obtain as shown in Figure 4.45 till figure 4.48. After 

performing the analysis at frequency = 2, 3, and 4 rad/sec and C = -200, the best value of P 

and I chosen to act with these four parameters would be 1100 and 300 respectively.  

 

 

Figure 4.9: Quarter car model of active suspension system 
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4.5.1 Frequency, ω = 2 rad/sec 

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.10: Active suspension system vs. passive suspension system at frequency,  

          ω = 2 rad/sec 
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4.5.2 Frequency, ω = 3 rad/sec  

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.11: Active suspension system vs. passive suspension system at frequency,  

          ω = 3 rad/sec 
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4.5.3 Frequency, ω = 4 rad/sec  

 

 

 

(a) Body acceleration 

 

 

 

(b) Body displacement 
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(c) Tire displacement 

 

 

 

(d) Spring deflection 

 

Figure 4.12: Active suspension system vs. passive suspension system at frequency, 

          ω = 4 rad/sec 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1  CONCLUSION 

 

 The study presents a skyhook controller for an active suspension system based on 

variable structure control theory, which is capable of satisfying all the design requirements 

within the actuators limitation. The Proportional-Integral-Derivative (PID) controller is 

presented and used to reject the effects of road induced disturbances on the quarter car 

model. The performance characteristics of the active suspension system are evaluated and 

then compared with the passive suspension system. The result shows that all three 

objectives are successfully achieved. 

 

 Force tracking performance of the hydraulic actuator model was investigated. The 

model development of the hydraulic actuator model was based on the previous paper study 

(Donahue, 2001). Proportional Integral control and spool valve dynamics was implemented 

for force tracking control of the hydraulic actuator. The results of the study show that the 

hydraulic actuator is able to provide the actual force close to the target force with 

acceptable force tracking error for sinusoidal, square, saw-tooth and step functions of target 

forces.  

 

The use of the skyhook controller along with the Proportional-Integral-Derivative 

(PID) controller is effective in controlling a vehicle compared to the counterparts. From the 

simulation results, it can be seen that the proposed controller shows significant 

improvement in reducing both magnitude and settling time of the body acceleration, body 
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displacement, tire displacement, and suspension deflection. The proposed controller is 

capable of satisfying all the requirements for active suspension design. 

 

5.2 RECOMMENDATION FOR THE FUTURE RESEARCH 

 

For future work, it is suggested that the quarter car model use for simulation in this 

thesis to be improved by using more complex type of suspension such as Macpherson 

suspension system. In this study, the constants in the skyhook controller, C and PID 

controller are determined using trial and error approach. Thus, it is recommended that 

specific and more reliable method can be used. In addition, the proposed control strategy 

could also be validated with the experimental study. 
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APPENDIX A1 

 

GANTT CHART/PROJECT SCHEDULE FOR FYP I 

 

 

 

 

 

 

 

 

Month January February March April 

Subject/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1. Introduction  

 Propose Project Title 

 Objective of Project 

 Discussion of Project Scope 

 Identify Problem Statement 

                

                

                

                

2. Modeling and Simulation (MATLAB)  

 Develop Hydraulic Actuator Model  

 Develop Force Tracking Controller 

                

                

3. Literature Review                 

4. Methodology                 

5. Presentation Preparation                 

6. Submission Proposal and Logbook                 

7. Presentation FYP I                 
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APPENDIX A2 

 

GANTT CHART/PROJECT SCHEDULE FOR FYP II 

 

 

 

 

 

 

 

Month July August September October November December 

Subject/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1. Modeling and Simulation (MATLAB)  

 Develop a Quarter Car Model of Passive 
Suspension System 

 Develop a Skyhook and PID Controller to 
an Active Quarter Car Suspension System 

              
       

              
       

2. Experimentation & Analyzing                      

3. Result & Discussion   

 Data Collection 

 Interpret Results 

                     

                     

4. Conclusion                      

5. Presentation Preparation                      

6. Presentation FYP II                      

7. Submission Draft & Final Report                      
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APPENDIX B1 

 

MATLAB WORKSPACE 
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APPENDIX B2 

 

SIMULINK LIBRARY BROWSER AND MODEL WORKSPACE 
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APPENDIX C1 

 

HYDRAULIC ACTUATOR MODEL 
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APPENDIX C2 

 

SPOOL VALVE DYNAMICS MODEL 
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APPENDIX C3 

 

PI CONTROLLER MODEL 
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