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Abstract. Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads
to the advancement of structural condition monitoring. The monitored aircraft wings have the
capability to give real-time response under critical loading circumstances. The main objective
of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to
view real-time changes when the structure undergoes some static loadings and dynamic impact.
The implementation of matched edge filter FBG interrogation system to convert wavelength
variations to strain readings shows that the structure is able to response instantly in real-time
when undergoing few loadings and dynamic impact. This smart monitoring system is capable
of updating the changes instantly in real-time and shows the weight induced on the composite
aircraft wings instantly without any error. It also has a good agreement with acoustic emission
(AE) sensor in the dynamic test.

1. Introduction

Studies over the last decades have shown great interest in the use of composite structures such as fibre
reinforce polymer (FRP) in engineering applications due to their high strength-to-weight ratio [1, 2].
Aerospace engineering is one of the major and critical engineering applications that implement the use
of composite structures. According to [3], deployment of composite structures in Boeing 787 aircraft
has increased by 38 percent compared to Boeing 777 aircraft, which utilizes 12 percent of composite
structures in its manufacturing. Materials used in manufacturing the Boeing 787 aircraft are shown in
Figure 1. Aircraft wings and fuselage employ the most composite materials and they are always the
critical areas that prone to deformation and damage. Due to the layer by layer lamination, composite
structures are prone to unforeseen damage such as cracks and delamination [4-6] after a certain period
of performance. The damage must be monitored prior to further enormous deformation that can affect
performance or the cause of catastrophic, which is the sudden damage of the structure.

The monitoring of a structural health condition is known as structural health monitoring (SHM).
SHM is a process that involves the observation of dynamic response from an arrangement of sensors
periodically over time [2]. The implementation of SHM in composites will lead to the development of
smart structure in which the structure can give real time stimulation according to the environmental
changes that it experienced. The topic of smart structure is relatively new and is commencing to be
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gualified as a distinct field of applied since in 1980 [7]. The smart structure can have distinct ways of
analysis method where it can be examined as a whole structure or only focused on a specific part of it,
which is a single structural element [8].
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Figure 1. Materials utilization in Boeing 787 manufacturing

Aircraft wings experienced the most deflection during take-off, in which this phenomenon must be
monitored before severe damage happened to the wings. Several studies [2, 3, 9-12] have been carried
out with the embedment of Fibre Bragg Grating (FBG) sensors in the aircraft's composite structures,
especially wings, and it is acknowledged that properties such as small diameter, multiplexing ability
and immunity to electromagnetic fields [13-16] are the primary attractive characteristics of FBGs in
replacing conventional sensors like piezoelectric and strain gauge for SHM in composites. However,
the search for a robust and interactive real-time monitoring system that can alert the end user instantly
is still far behind in achieving the idealized concept of smart structure. This drawback has caught the
intention of the authors in developing a robust real-time monitoring system to monitor the deflection
of the aircraft wings. At the end of this study, for a proof of concept, a fiberglass plate lamination to
represent the aircraft wing was fabricated. The FBG instrumentation system and real-time MATLAB
processing software are illustrated when the structure undergoes several static loads experimentation.

2. Fibre Bragg Grating (FBG) sensor instrumentation and working principle

The use of FBGs in composites has shown great interest during the'le¢at2@y [17]. FBGs sensing
principle enquires light source to sense the physical phenomenon.The basic working principle of FBG
is by reflecting a specific wavelength of the emitted light source depending on the Bragg properties
[18] as shown in Figure 2.
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Figure 2. The working principle of FBG sensor

Transmitted light

As the optical fibre is in tension, the gap of the Bragg gratings will be wider and vice versa when
the optical fibre is in compression. The advantages of FBG as compared to the electrical sensor are
shown in Table 1 [19]. The gratings area of FBG is a laser-inscribed region, which reflects the narrow
band light corresponding to the Bragg wavelength{as calculated by Equation [P0] wherea is the
grating period and is the refractive index of the grating.

Ap = 2nA Q)
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The refractive index of the grating is fixed when the Fexperienced stra, which results in the
linearity between the grating period estrain.Therefore, any change in the measurementresult in
the shift of the reflected wavelength. The wavelength will shift tpositiveregionwhen expanding
and vice versa wherontracting.The relative change in the wavelengtie given ¢ Equation 2 [21],
whereC; is the coefficiat of strait &, Cy is the coefficient of temperature aad@ is the change in the
temperature.

85 — C.e + CoAT )
A

Table 1. Comparison between optical fibre sensor anelectrica sensor

Media  Technology Electrical noise immunit Mez:ouers?ent Sensor Configuratic Mounting
Electrical Foil gauges Low ~ 100 kHz Single poin Surface
mount
Vibrating Moderate ~1kHz Single poin Embeddable
wire
Optical Fibrebragg Complete <1 kHz Multi sensa Surface
grating mount and
embeddable

In order forFBG to function, arinterrogation systemyhich is the signal transmitter and rece,
is neededMatched edge filter deteion interrogation system is ttemplest and cheapest in cas
comparedo other interrogation syste[22]. The configuration of the matched edge filteterrogation
system is shown ini§ure 3 below

Broadband light source

Photo detector H FBG filter

Figure 3. Matched edge filter system configuration

The system istarted off with broadband light source emitted light across the optical circulat
into the FBG sensor. Gratings on the FBG will reflect the light back to the ofircular, which is
functioningto circulate and convey the light passes through the FBG filter and into th« detector.
The photo detectarr Photodiode (PD) functiorto convert the light source into an electrical sign:
be processed by the expdrhe shaded ar is the light intensity identified by the phcdetector when
the FBG sensor undergoes tension or compre [22].

3. Experimentation

3.1. Sample fabrication

A ten-layerwoven fibreglass composite plate with hanc-up lamination was fabricated to repres
the aircraft wing structure. The dimension of the composite plate is 40 cm x 40 cm x 0.8it was
cured with the use of glycidyl (GL) epoxy and hardener as. A single 1550 nnFBG sensor was
positioned in the middle of the ninth and tenth layer of the composite plate. Figure 4(a the
woven fibreglass used anigbre 4(b) shows the cured composite plate with embedded FBG
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Photodiode Data acquisition system

FBG sensc

Circulator FBG filter Broadband light source
Figure 4. Fabrication process (a) Woven fibreg, Figure 5. Matched edge filter interrogatic
(b) Embedded FBG sen: configuratior

3.2. Experimental set-up

Matched edge filtemterrogation syste, as shown in Figure Syas set up for the experimentati
Broadbandight source of power 20mW and 99.9% reflectivity of both FBG sensor and filter,-
port optical circular was used in the interrogation sysPDA10CSEC photodiode manufactured
THORLABS was used for the conversion of light wavelength to an electrical voltage signal. M
data acquisition system froMATIONAL INSTRUMENTS was connected to PD for data acquis.
Figure 6 shows the set-upthie experimentatio

3.3. Experimental procedure

For the static loading test,veeight support star as shown in Figure 6(ayas placed on top of tt
compositeplate so that the distributi of loads isequal and the same at all time. 10 N and 20
loads as in Figure 6(lwyere applied on the composite p. The composite plate was first subjecte
10 N load, andhe voltage reading and weight measurement reawere recorded and the ndition
of the composite plate wabbserved. The experiment wepeated for a load of 20 N, 30 N, 40 N i
50 N. MATLAB software was used to create grical user interface (GUI) agrtual instrumentatiol
tool to display the reaime deflection of the composite plate as it undergoes static point loading
grid of -10 to 10 in x- and yaxis, and 0 to 100 in axis artificial sample elements with four fix
locations was programmed atitk prediction of strain distribution was based on the voltage re:
from the FBG.

S SN

Weightsupport star 20 N 10 N

Figure 6. Experimental s-up: (a) Weight support stand, (b) Lo

For thedynamic impact test, an AE sensor was attato the surface of theomposit: plate at the
same position as the FBG ser as shown in Figure 7. Three timesimiact were induced with an
impact hammer at a distance of 15 cm awom both the sensorglacement. The composite pli
was clamped at fowside corner for a better performancand away from surrounding perturbat
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MATLAB GUI with sampling rate of 1000 Hz for botH-BG and AE sensors was programme
capture the raw impact signal simultaneously. These raw signals we transformed usir Fast
Fourier Transform (FFT) to thieequency domain and acquittatl frequency length of 500 F The
real-time natural frequency from both senswas thencaptured simultaneously and compared !
theoretical prediction using ABAQL.

In Abaqus'FEA analysis, four points of the plawere fixed as the boundary ccitions and the
maximum frequency to be obtained was set at 5C. Figure 8(a) shows theur fixed points as th
boundary conditios of the composite plate anigure 8(b) shows the meshedmposite plat Table
2 tabulateshe mechanical properties of the nrial [23].

Figure 7. Dynamic impact test experimental setup

(@)

Figure 8. Abaqus analysiga) Fixed points of the boundary condits, (b) Meshed composite pl:

Table 2. Mechanical properties of the material
Ew=Ey[Mpa] EzMpa] V=V, V.=V, Gy[Mpal G,,=Gy[Mpa] p[kg/m’
60500 62356  0.075 0.4693 3900 170( 1100

4. Results and discussion

Table 3 shows the summarization of the static loading results. From the results of the experirr
the composite plate condition shows that it is in a flat condthat impliesit does not experience a
strain when no loadsiapplied. This condition can be verified from the weight measured reading
it showed O N. The sicture condition started deflect slightlywhen the 10 N load vs applied to the
composite.

Deflection of the composite plate sank slightly bigger the voltage increased to 3.7 V when
load was increased to 20 Whe colour at the middle of the composite plate condition turned b
indicate that strain experienced the most at the middle part. The maximum that can be measu
thin composié plate is 50 N with a voltage of 4 V. The composite plate detects the load
without any errorLinearity between the increase of weight and voltage are shoFigure 9. The
conversion of vltage to Newton was by calibration with the substituof linearity equation obtaine
from the linearity graph inigure 9
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Table 3. Summary of static loadings results

Load (N) Structure condition Voltage (V) Weight measured(N)
0 3.5 0
10 3.6 10
20 3.7 20
30 3.8 30
40 3.9 40
50 4.0 50

4.7
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= 43 -
> 41 7 y=001x+35
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Weight, Newton (N)
Figure 9. Voltage vs weight linearity graph

Figure 10 shows thenpact seismicraw sighal of FBG and AE sensor whileigure 11 shows one
out of three trials comparison between FBG and AE s natural frequency signeTable 4 tabulates
the summarization of natural frequency results fronh sensors while dble 5 shows the comparis
of average naturditequency from both the sensors with theoretical Abaqus an

ABAQUS FEA has predicted 4 modes of vibration for frequenelow 500 Hz. Mode shape
(99.5 Hz) and mode shape 4 (373.81 Hz) indicat dominance of flexural wave propagation. Th
wave propagation phenomena be further verifiedfrom the high amplitude of natural frequer
picked up by both the FBG (89.2 F401.3 Hz) and AE (91.2 Hz, 402 Hz) sensors. Both senso
sensitive to flexural type wave propagation in which this type of wave induced a natural axial <
the sensors. The FBG sensor also capable to captured slight twisting mode of waveion, which
are mode 2 and mode 3, wittsinilar predicted natural frequency ve of 181.02 Hz However, the
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amplitude was relatively smatiompare to flexural mode wave propagatiohhis signifies that the
embedded FBG sensa capable to captu all the important natural frequeies of various mode

wave propagation. Inigure 11, the natural frequency sharp peak stood out from the rest of th
signal.
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Figure 10. Comparison of impactignal between FBG and AEnsor
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Figure 11. Comparison of natural fruency between FBG and AE ser
Table 4. Summary of natural frequency results
Natural frequency (Hz)
Mode FBG AE
Triall | Trial2 | Trial3 | Average | Triall | Trial2 | Trial 3 | Average
1 90.8 89.1 89.2 89.7 88.7 20 91.2 89.87
2&3 | 1727 172.7 170.7 172 198.7 172 170.7 180.47
4 404 400.7 401.3 402 401.3 398.7| 402 400.7

On the other handhe signals acquired tFBG sensor and AE sensor heaevealed a very good

agreement. Both sensors able to pick up all modes predicted , in which the highest percenta
of natural frequency variationsetween both the sensors are only 4.69% for twisting mode
propagation and 0.32% for flexural waveopagation. Howeverfor FBG sens¢, several spectra can
be seen at the lower frequen@elow mode 1)which is not consistent with any natural freque
content either from ABAQUSimulation or AE sensor. These unwarspectraaresimply recognized
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as noise gjnal response due to utility or power line frequency. Proper filtering can be done to
out the undesirable signals.

Meanwhile AE sensor shows smoothersignal compare to FBG sensor. AE se is a direct type
of sensor where the strain signals directly converted to electricalgnal without any use of exterr
components such as phatetecto that can result in the formation of noistowever, FBG sensor h
shown its superiority in term of the ability to be embeddecomposite structure All in all, from the
dynamic impact results, a remark can be drawn that the embedded FBG sensor has a great |
replacing the conventional Ag&ensor for SHM in aircraft composite wir

Table 5. Summarization of dynamic impact test results

e | AsaqusMeSiape |y MEREI ey (o
1 99.5 89.7 | 89.87 0.19
2 181.02 172 | 180.47 4.69
3 181.02 172 | 180.47 4.69
4 373.81 402 400.7 0.32
5. Conclusion

The study has successfully presented the application «time structural health monitoring systt
of composite aircraft wing with the embedment of FBG sensor and the use of MATLAB GUI in
the structure is capabtd determinin the load induced instantly in reiire without any errc. The
natural frequency obtained from the FBG sensor has significant similarity with AE. All in all,
the main objective of thipaperto view real-time changes when the structurdengoes several sta
loadings and dynamic impactashieved
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