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Abstract. Nonlinear structural identification is essential in engineering. As new materials are being used and 
structures become slender and lighter, nonlinear behaviour of structures becomes more important. There have 
been many studies into the development and application of system identification methods for structural 
nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to 
identify nonlinearity in large structural systems. Much work has been undertaken in the development of 
nonlinear system identification methods (e.g. Hilbert Transform, NARMAX, and Proper Orthogonal 
Decomposition), however, it is arguable that most of these methods are cumbersome when applied to realistic 
large structures that contain mostly linear modes with some local nonlinearity (e.g. aircraft engine pylon 
attachment to a wing).  In this paper, a multi-shaker force appropriation method is developed to determine the 
underlying linear and nonlinear structural properties through the use of the measurement and generation of 
restoring force surfaces. One undamped mode is excited in each multi-shaker test. Essentially, this technique is 
a derivative of the restoring surface method and involves a non-linear curve fitting performed in modal space. 
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a derivative of the restoring surface method and involves a non-linear curve fitting performed in modal space. 
A reduced finite element model is established and its effectiveness in revealing the nonlinear characteristics of 
the system is discussed. The method is demonstrated through both numerical simulations and experiments on a 
simple jointed laboratory structure with seeded faults, which represents an engine pylon structure that consists 
of a rectangular wing with two stores suspended underneath.

1 Introduction
Linear identification in structural dynamics is matured 
and well established [1-3]. Nowadays, nonlinear 
identification is become a very popular area in structural 
dynamics. Most of engineering structures exhibit some 
degree of nonlinearity characteristics especially when the 
deformations are large [4-5]. Nonlinear systems have a 
range of behaviour not seen in linear vibrating systems. 
Furthermore, nonlinear dynamic analysis becomes very 
important for the identification of damage in structures. 
Detection, localisation and quantification of nonlinearity 
are very common in nonlinear structural dynamics area 
[6-7]. Five typical sources of nonlinearities in structural 
dynamics were as follows: geometric nonlinearity, inertia 
nonlinearity, material nonlinearity, damping dissipation 
and boundary conditions. 

There have been many studies on the use of system 
identification methods to identify structural nonlinearity, 
which include changes in natural frequencies, mode 
shapes and damping ratios. Masri and Caughey [8]
introduced the restoring forces surface (RFS) to identify 

nonlinearity in single-degree of freedom (SDOF) systems 
by exploiting Newton’s 2nd law to directly measure 
restoring and dissipative forces in the system. RFS was 
extended by [9] to identify multi-degree of freedom 
(MDOF) systems by transforming the equations of 
motion from physical to modal coordinate space. RFS is 
more efficient than the Weiner -kernel approach in 
identifying nonlinear dynamic systems of the types 
considered. The parametric identification method by 
force state mapping technique was developed [10], which 
is similar to RFS.  Dimitriadis and Cooper [11] attempted 
to identify MDOF systems using a variant of RFS 
method, which considers time response at similar 
amplitudes, and subsequently, constant nonlinear 
restoring forces could be achieved. Kerschen et al. [12]
applied RFS method for two different cases: a 
symmetrical nonlinear beam with piecewise linear 
stiffness and an asymmetrical nonlinear beam with 
bilinear stiffness. The nonlinear identification method 
recently proposed [13-14] is based on the measured linear 
and nonlinear Frequency Response Functions (FRFs). 
The method is easy to implement and requires standard 
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testing methods. The data required is limited with 
measured linear and nonlinear FRFs. A method or 
procedure for the identification of non-linear single and 
multi-degree of freedom using restoring forces method 
with three types of nonlinearity was simulated by [15].
Noel et al. [16] demonstrated that the Restoring Force 
Surface (RFS) method can provide a reliable 
identification of a nonlinear spacecraft structure. The 
nonlinear component comprises an inertia wheel mounted 

Mode 5Mode 4

Mode 3Mode 2Mode 1

nonlinear component comprises an inertia wheel mounted 
on a support, the motion of which is constrained by eight 
elastomer plots and mechanical stops. Several adaptations 
to the RFS method are proposed, which include the 
elimination of kinematic constraints and the 
regularization of ill-conditioned inverse problems.

This paper presents the identification of nonlinear 
wing structure using combination force appropriation and 
restoring force method. Test structure in this paper 
represent the configuration wing structure with two stores 
which nonlinear pylon connection between them.

2 Finite Element (FE) Analysis of Wing 
Structure

Fig. 2. FE Mode Shape of Wing Structure

3 Experimental Modal Analysis (EMA)
The overall test structure used in this project is 

intended to represent roughly the configuration of an 
aircraft wing having two under-wing stores with 
nonlinear pylon connection between them. Fig. 3 shows 
the arrangement of the wing model, supported from a 
frame through bungee cords in a free-free boundary 
configuration. Two Data Physics V4 shakers were 
attached to the center line of the wing via force 
transducers and driven by Data Physics power amplifiers. 
The natural frequencies, damping ratios, modal masses 
for the first five modes, extracted from FRF matrix using Two engine pylons are designed and attached to a 

rectangular wing structure. The FE model of the wing 
structure is shown in Fig.1 which consists of 852 solid 
elements (CHEXA) and 40 plate elements (CQUAD4). 
There are 1824 nodes and free-free boundary condition is 
applied to this model. 

for the first five modes, extracted from FRF matrix using 
PolyMAX parameter estimation method are shown in 
Table 2.

Fig. 3. Physical Wing Structure Arrangement

Fig. 1. FE Model of Wing Structure

NASTRAN code for normal mode analysis (SOL 
103) is developed and used to compute natural 
frequencies and mode shape of wing structure. The
results are shown in Table 1 and Fig. 2 respectively. 

Table 1. FE Natural Frequencies of Wing Structure

Mode Natural Frequencies (Hz)

1 15.25
2 18.40
3 33.10
4 78.10

Table 2. Experimental frequencies, damping ratio and modal 
mass of overall structure of wing model by performing double 

shaker test.

Mode Experimental 
Natural 

Frequencies (Hz)

Damping 
Ratio
(%)

Modal 
Mass 
(kg)

1 15.09 0.76 2.15
2 18.40 0.91 2.44
3 32.33 0.32 1.66
4 78.01 0.09 0.99
5 135.08 0.27 1.17

4 Nonlinear Modal Model4 78.10
5 134.80

M and K matrices are extracted from FE model by 
using matlab code of pch output file. However, C
matrices can be developed using proportional damping 
(Rayleigh Method) is commonly used in nonlinear 
dynamics analysis. M, K and C matrices will be used in 
nonlinear modal model.

4 Nonlinear Modal Model
The equations of motion of discretised structures in 

the physical space can be expressed as 

𝐌�̈�+ 𝐂�̇�+𝐊𝐱 + 𝐠��(�̇�,𝐱) = 𝐟(𝑡)                                 (1)

where M, C and K are n×n mass, damping and stiffness 
matrices; gnl is an n×n nonlinear stiffness matrix, f(t)is 
applied nodal force vector and x(t) is the vector of 
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physical displacements. The equations can be obtained 
for example, from finite element modelling of a structure. 
Transformation by  𝐱 = 𝚽𝐩    leads to

                       
𝚽�𝐌𝚽�̈�+𝚽�𝐂𝚽�̇�+𝚽�𝐊𝚽𝐩 +𝚽�𝐠��(𝚽𝐩) =
 𝚽�𝐟(𝑡)                    (2)

where 𝚽 is the modal vector matrix. By using 
orthogonality of the modes, equation (2) become

𝐌��̈�+ 𝐂��̇�+ 𝐊�𝐩 + 𝐠��� =   𝐟 ̅                                          (3)

where 𝐌� =𝚽�𝐌𝚽 = [M� 𝒓𝒓] and 𝐊� = 𝚽�𝐊𝚽 = [K�𝒓𝒓]
are diagonal matrices, and 𝐠��� = 𝚽�𝐠��. If the structure 
has proportional damping, 𝐂� = 𝚽�𝐂𝚽 = [C�𝒓𝒓] is also a 
diagonal matrix, and equation (3) reduces to

M� �� p̈� + C���ṗ� +K���p� + g���,� = f ̅�                             (4)

where 𝑝� is the rth modal displacement and other 
parameters in modal expression. Nonlinear terms, g���,�
refer to rth mode nonlinear restoring force and others 
mode allow for nonlinear cross-coupling terms. 

5 Nonlinear Identification of Wing 
Structure

Polynomial basis functions of order 3 were used for 
the nonlinear models to retain the order of the model as 
low as possible. Static load test on two pylons and wing 

𝑔��,�    = 𝑓� −𝑚��̈��−𝑐��̇�� − 𝑘�𝑝� − 𝐴�,�𝑝�� − 𝐵�,�𝑝��𝑝� −
 𝐶�,�𝑝��𝑝� −  𝐷�,�𝑝�𝑝�� − 𝐸�,�𝑝�𝑝�𝑝� −  𝐹�,�𝑝��̇���𝐺�,�𝑝�� −
 𝐻�,�𝑝��𝑝� − 𝐼�,�𝑝�𝑝�� −  𝐽�,�𝑝��                                            (7)                                                              

for r=1,2,3, where the unknowns to be evaluated where 
𝑐�, 𝑘�, 𝐴�,�, 𝐵�,�, 𝐶�,�, 𝐷�,�, 𝐸�,�, 𝐹�,�, 𝐺�,�, 𝐻�,�, 𝐼�,� and 
𝐽�,�. As the number of coefficient in this model is 
relatively small, the best model structure was chosen by 
implementing exhaustive search. Model structure 
selection is important part of nonlinear system 
identification method, because not every coefficient term 
should be included in the final model.  In addition, some 
of the  𝐴�,� to 𝐽�,� coefficients may have value of 0. The 
resulting model is the complete optimum best curve fit 
that given particular sets of candidate terms and data. 
Table 3 shows the estimates of the interest linear 
parameters, 𝑐� and 𝑘� determined from the nonlinear 
curve fits and compare with those obtained from the 
PolyMAX modal estimation model. It can be seen that 
the parameters are small differences between two set of 
estimation. Furthermore, Table 4 shows nonlinear term 
coefficients identified for first three modes of overall 
wing structure. A zero value denotes that the 
corresponding term was not included in the final model.

Table 3: Comparison linear direct term coefficients identified 
by combination force appropriation and restoring method with 
PolyMAX.

Mode
Force Appropriation and 
Restoring Forces Method

PolyMAX (MIMO 
Normal Mode Test)low as possible. Static load test on two pylons and wing 

were performed. Equation (5) and (6) below show the 
nonlinearity in the pylons and wing structure contains
cubic and quadratic terms. The curve for each pylon was 
fitted using a cubic polynomial and the equations were: 

𝐹� =   (2.65 × 10� )𝑥�� + (2.76 × 10� )𝑥��
+ (6.65 × 10�)𝑥� − 0.05                 (5)

𝐹� =   (2.93 × 10� )𝑥�� + (3.87 × 10� )𝑥��
+ (6.35 × 10�)𝑥� + 0.45                 (6)

where 𝐹� is the load on the first pylon, 𝐹� is the load on 
the second pylon, 𝑥� is the deflection of first load and 𝑥�
is the deflection of second load. From equation (5) and 
(6) it is shows that both assemblies pylon characteristic a 
slight symmetry, as the polynomial fits contain constant 
and second order terms.

Further investigation is dynamic test on overall 
wing structure using MIMO Normal mode test. This test 
was carried out on the unit to generate a freely decaying 
response. The existence of stiffness nonlinearity would be 
observed by a variation in natural frequency with
amplitude and of a damping nonlinearity by changing 
damping ratio with amplitude. Damping effect on this 
study is very small and not affects the identification so 
much. No nonlinear damping was considered as the 
random excitation test showed little evidence of
nonlinearity in the system. The finalized nonlinear curve 
fit was therefore of the form:

Mode Restoring Forces Method Normal Mode Test)
𝑐�, 

modal 
damping

𝑘�, 
modal 

stiffness

𝑐�, 
modal 

damping

𝑘�
, modal 
stiffness

     1        2.47    1.79E4      2.35   1.71E4
     2        3.24    3.13E4      3.17   3.34E4
     3        4.14    6.35E4      4.06   6.46E4

Table 4: Nonlinear term coefficients identified for first three 
modes

Coefficient Mode 1 Mode 2 Mode 3
𝐴�,� 3.76E8 0 −2.56E8
𝐵�,� −1.66E9 6.06E9 0
𝐶�,� −7.8E8 0 1.58E9
𝐷�,� 3.45E9 0 0
𝐸�,� 0 −1.53E10 6.37E10
𝐹�,� 0 0 −2.42E9
𝐺�,� 0 1.33E9 0
𝐻�,� 0 1.87E9 0
𝐼�,� 0 2.32E10 1.42E9
𝐽�,� −9.72E7 0 0

The final model structure in Equation (7), identified 
equation of motion for the overall wing structure can be 
written as:

2.15�̈�� + 2.47�̇�� + 1.79 × 10�𝑝� + 3.76 × 10�𝑝��
− 1.66 × 10�𝑝��𝑝� − 7.87 × 10�𝑝��𝑝�
+ 3.45 × 10�𝑝�𝑝�� − 9.72 × 10�𝑝��
= 𝑓� (𝑡)                                                 (8)
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2.44�̈�� + 3.24�̇�� + 3.13 × 10�𝑝� + 6.06 × 10�𝑝��𝑝�
− 1.53 × 10��𝑝�𝑝�𝑝� + 1.33 × 10�𝑝��
+ 1.87 × 10�𝑝��𝑝� + 2.32 × 10�� 𝑝�𝑝��
= 𝑓�  (𝑡)                                                  (9) 

�̈�� + 4.14�̇�� + 6.35 × 10�𝑝� − 2.56 × 10�𝑝��
+ 1.58 × 10�𝑝��𝑝� + 6.37
× 10��𝑝�𝑝�𝑝� − 2.42 × 10�𝑝�𝑝��
+ 1.42 × 10�𝑝�𝑝��   
= 𝑓�  (𝑡)                                                (10)

0.99�̈�� + 2.95�̇�� + 2.21 × 10�𝑝� = 𝑓� (𝑡)                 (11)

1.17�̈�� + 5.35�̇�� + 7.19 × 10�𝑝� = 𝑓� (𝑡)                 (12)

It should be noted that under appropriated 
excitation, the amplitudes of the cross coupled modal 
responses were about an order of magnitude lower than 
direct modal responses. Thus, all the cross coupled 
nonlinear terms in Equation (8) to (12) are at least an 
order of magnitude smaller than the direct nonlinear 
terms.

6 Conclusions
A nonlinear wing experimental structure was 

identified using the force appropriation and restoring 
forces method. In the pylon rotation degrees of freedom, 
discrete hardening stiffness nonlinearity was located. The 
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results presented evidence nonlinear stiffness at higher 
amplitudes for the first three modes. The combination 
nonlinear identification methods succeeded to estimate 
good quality nonlinear modal models for the mode 
interest. It can be conclude that mode 1 and 2 showed 
hardening stiffness nonlinearities, mode 3 just showed 
very weak nonlinearity because of small degree of 
rotation at engine pylon structure. However, mode 4 and 
5 behaved linearly for the wing structure.
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