Potential Of Porous Co₃O₄ Nanorods As Cathode Catalyst For Oxygen Reduction Reaction In Microbial Fuel Cells

Ravinder Kumar^a, Lakhveer Singh^a, A.W. Zularisam^a, Faisal I. Hai^b ^aFaculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia ^bStrategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Australia

ABSTRACT

This study aims to investigate the potential of porous Co_3O_4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co_3O_4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5 mg/cm^2 , 1 mg/cm^2 , and 2 mg/cm^2) of Co_3O_4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co_3O_4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of $503 \pm 16 \text{ mW/m}^2$, which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co_3O_4 nanorods that provided the higher number of active sites for oxygen.

KEYWORDS: Microbial fuel cell; Co₃O₄ nanorods; Oxygen reduction reaction

DOI: 10.1016/j.biortech.2016.09.003