Effect of Organic Loading Rate on Hydrogen (H₂) and Methane (CH₄) Production In Two-Stage Fermentation Under Thermophilic Conditions Using Palm Oil Mill Effluent (POME)

```
Santhana Krishnan<sup>a</sup>, Lakhveer Singh<sup>a</sup>, Mimi Sakinah<sup>a</sup>, Sveta Thakur<sup>a</sup>, Zularisam A. Wahid<sup>a,</sup>, Johan Sohaili<sup>b</sup>
```

^a Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia

^b Faculty of Civil Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia

ABSTRACT

The present study dealt with hydrogen and methane production in a sequential up-flow anaerobic sludge blanket (UASB) and continuous stirred tank reactor (CSTR) at thermophilic temperature. The POME was used as a suitable substrate of carbon source. The effect of various OLR was investigated from 25 kg-COD/m³·d to 125 kg-COD/m³·d at a constant hydraulic retention time (HRT) of 6 h. The UASB-H₂ reactor was operated successfully at the OLR of 75 kg-COD/m³·d when the proportion of H₂ in biogas, volumetric production rate of H₂, specific hydrogen production rate (SHPR) and H₂ yield reached the maximum values of 35%, 2.1 l/d, 175.15 ml H₂/g MLVSS-d and 49.22 ml H₂/g COD_{applied} respectively. Further, the effluent from the UASB was directly fed into the CSTR at various OLR ranging from 4 kg-COD/m³·d to 20 kg-COD/m³·d for CH₄production. The maximum CH₄ content, volumetric production rate of CH₄, specific methane production rate (SMPR) and CH₄ yield obtained were 65%, 13 l/d, 325.13 ml CH₄/g MLVSS-d, and 155.87 ml CH₄/g COD_{applied} respectively. The effluent from the recycle ratio of 1:1 to UASB unit and pH was maintained at 5.5, subsequently resulted in COD removal of 85%.

KEYWORDS: Renewable energy; Anaerobic digestion; Acidogenesis; Methanogenesis

DOI: 10.1016/j.esd.2016.07.002