Role Of Organic Loading Rate In Bioenergy Generation From Palm Oil Mill Effluent In A Two-Stage Up-Flow Anaerobic Sludge Blanket Continuous-Stirred Tank Reactor

Santhana Krishnan, Lakhveer Singh, Mimi Sakinah, Sveta Thakur, Zularisam A. Wahid, Omar A. Ghrayeb

ABSTRACT

This contribution presents the technical possibilities for continuous hydrogen and methane production using an optimum organic loading rate of palm oil mill effluent in a two-stage reactor at a thermophilic temperature of 55 °C. The influence of four organic loading rates, namely, 30, 40, 50, and 60 kg COD/(m³ d) for hydrogen production and 8.3, 10.2, 13.1, 15.8 kg COD/(m³ d) for methane production, were investigated. Hydrogen production was controlled in an up-flow anaerobic sludge blanket reactor at a constant hydraulic retention time of 12 h. The maximum hydrogen content, volumetric hydrogen production rate and hydrogen yield were found to be 45%, 2.5 L H₂/d and 33.48 mL H₂/g COD, respectively, at the organic loading rate of 50 kg COD/(m³ d). The effluent from the hydrogenogenic reactor was further digested into methane in the continuous stirred tank reactor at a hydraulic retention time of 5 d. The maximum volumetric methane production rate and methane yield were 10.58 L CH₄/d and 0.11 m³ CH₄/kg COD, respectively, at an organic loading rate of 13.1 kg COD/(m³ d). A total chemical oxygen demand removal of 91% was achieved in this two-stage process. The scientific contribution of this two-stage technology with an optimized organic loading rate may play a significant role in degrading palm oil mill effluent and developing an energy-efficient strategy for waste management.

KEYWORDS

Renewable energy; Organic loading rate; Dark fermentation; Hydrogen production; Methane production; COD removal

DOI: 10.1016/j.jclepro.2016.10.165