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Abstract— Inspired by the estimation capability of Kalman filter, we have recently introduced novel estimation-based 

optimization algorithm called simulated Kalman filter (SKF). Every agent in SKF is regarded as a Kalman filter. Based on 

the mechanism of Kalman filtering and measurement process, every agent estimates the global minimum/maximum. 

Measurement, which is required in Kalman filtering, is mathematically modelled and simulated. Agents communicate among 

them to update and improve the solution during the search process. However, the SKF is only capable to solve continuous 

numerical optimization problem. In order to solve combinatorial optimization problems, three extended versions of SKF 

algorithm, which is termed as Angle Modulated SKF (AMSKF), Distance Evaluated SKF (DESKF), and Binary SKF 

(BSKF), are proposed. A set of traveling salesman problems is used to evaluate the performance of the proposed algorithms. 

Keywords—simulated kalman filter; traveling salesman problem; combinatorial optimization  

 

1. INTRODUCTION 
 

In solving discrete optimization problems, algorithms such genetic algorithm (GA) [1] have been originally developed to 

operate in binary search space. However, not all optimization algorithms are originally developed to operate in binary search 

space. An example of these algorithms is simulated Kalman filter (SKF), which has been recently introduced by Ibrahim et al. 

in 2015 [2]. In order to solve discrete optimization problems with SKF, modification or enhancement is needed. In this paper, 

three extended versions of SKF algorithm, which is termed as Angle Modulated SKF (AMSKF) [3], Distance Evaluated SKF 

(DESKF) [4], and Binary SKF (BSKF) [5], have been proposed. 
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2. SIMULATED KALMAN FILTER  

 

Every agent in SKF is regarded as a Kalman filter. Based on the mechanism of Kalman filtering and measurement process, 

every agent estimates the global minimum/maximum. Measurement, which is required in Kalman filtering, is mathematically 

modelled and such simulated. Agents communicate among them to update and improve the solution during the search 

process. The simulated Kalman filter (SKF) algorithm is illustrated in Fig. 1.  

 

Consider n number of agents, SKF algorithm begins with initialization of n agents, in which the states of each agent are given 

randomly. The maximum number of iterations, tmax, is defined. The initial value of error covariance estimate, 𝑃(0), the 

process noise value, 𝑄, and the measurement noise value, 𝑅, which are required in Kalman filtering, are also defined during 

initialization stage.  

 

Then, every agent is subjected to fitness evaluation to produce initial solutions {X1(0), X2(0), X3(0), …, Xn-2(0), Xn-1(0), 

Xn(0)}. The fitness values are compared and the agent having the best fitness value at every iteration, t, is registered as 

Xbest(t). For function minimization problem, 

 

𝑿𝐛𝐞𝐬𝐭(𝑡) = min𝑖∈1,….,𝑛 𝑓𝑖𝑡𝑖(𝑿(𝑡))                                                                 (1) 

 

whereas, for function maximization problem,  

 

𝑿𝐛𝐞𝐬𝐭(𝑡) = max𝑖∈1,….,𝑛 𝑓𝑖𝑡𝑖(𝑿(𝑡))                                                                 (2) 

 

The-best-so-far solution in SKF is named as Xtrue. The Xtrue is updated only if the Xbest(t) is better ((𝑿𝐛𝐞𝐬𝐭(𝑡) < 𝑿𝐭𝐫𝐮𝐞 for 

minimization problem, or 𝑿𝐛𝐞𝐬𝐭(𝑡) > 𝑿𝐭𝐫𝐮𝐞 for maximization problem) than the Xtrue. The subsequent calculations are largely 

similar to the predict-measure-estimate steps in Kalman filter. In the prediction step, the following time-update equations are 

computed. 

 

𝑿𝒊(𝑡|𝑡) = 𝑿𝒊(𝑡)                                                                               (3) 

 

𝑃(𝑡|𝑡) = 𝑃(𝑡) + 𝑄                                                                            (4) 

 

where Xi(t) and Xi(t|t) are the current state and current transition/predicted state, respectively, and P(t) and P(t|t) are the 

current error covariant estimate and current transition error covariant estimate, respectively. Note that the error covariant 

estimate is influenced by the process noise, Q.  

 

The next step is measurement, which is a feedback to estimation process. Measurement is modelled such that its output may 

take any value from the predicted state estimate, 𝑿𝑖(𝑡|𝑡), to the true value, 𝑿true. Measurement, Zi(t), of each individual 

agent is simulated based on the following equation: 

 

𝒁𝒊(𝑡) = 𝑿𝒊(𝑡|𝑡) + sin(𝑟𝑎𝑛𝑑 × 2𝜋)  ×  |𝑿𝒊(𝑡|𝑡) − 𝑿𝒕𝒓𝒖𝒆|                                                (5) 

The sin(𝑟𝑎𝑛𝑑 × 2𝜋) term provides the stochastic aspect of SKF algorithm and 𝑟𝑎𝑛𝑑  is a uniformly distributed random 

number in the range of [0,1].  
 

The final step is the estimation. During this step, Kalman gain, 𝐾(𝑡), is computed as follows: 

 

𝐾(𝑡) =
𝑃(𝑡|𝑡)

𝑃(𝑡|𝑡)+𝑅
                                                                                 (6) 

 

Then, the estimation of next state, Xi(t+1), and the updated error covariant are computed based on Eqn. (7) and Eqn. (8), 

respectively. 

 

𝑿𝑖(𝑡 + 1) = 𝑿𝑖(𝑡|𝑡) + ∆i                                                                       (7) 

 

𝑃(𝑡 + 1) =  (1 − 𝐾(𝑡))  ×  𝑃(𝑡|𝑡)                                                                (8) 

 

where ∆i = 𝐾(𝑡)  ×  (𝒁𝑖(𝑡) − 𝑿𝑖(𝑡|𝑡)). Finally, the next iteration is executed until the maximum number of iterations, tmax, is 

reached. 
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Figure 1: The original simulated Kalman filter (SKF) algorithm. 

 

 

3. DISTANCE EVALUATED SIMULATED KALMAN FILTER ALGORITHM 
 

In population-based search algorithm, generally, agents are randomly positioned in the search space. Then, the agents move 

in the search space to find global minimum or maximum. During the beginning of the search, exploration is preferred to 

make sure the search covers almost all regions in the search space. In this stage of search process, the position between agents 

is normally far with each other. As the search process continues, during the end of the search, exploration is no longer 

preferred because fine-tuning or exploitation is more preferred. During exploitation, agents becomes closer to each other and 

hence, the distance among them decreases.  

 

The position of agents in a search space during a typical search process is illustrated in Fig. 2, Fig. 3, and Fig. 4. Normally, as 

the iteration continues, the distance between agents and the best-so-far solution decreases. This distance plays an important 

role in the proposed distance evaluated simulated Kalman filter algorithm (DESKF). In DESKF, the distance is mapped into a 

probabilistic value [0,1] and then the probabilistic value will be compared with a random number [0,1] to update a bit string 

or solution to a combinatorial optimization problem. In detail, most of the calculations in the proposed DESKF are similar to 

the original SKF. Modifications are needed only during initialization and generation of solution to combinatorial optimization 

problem. 
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Figure-2. Position of agents at the beginning of the search. 

 

 

 

Figure-3. Position of agents during the middle of the search. 

 

 

 

Figure-4. Position of agents at the end of the search. 
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During the initialization of agents, in SKF, the states of each agent are given randomly. An additional initialization is 

introduced in DESKF. Every agent is associated with a random bit string as well. The length of the bit string is problem 

dependent and subjected to the size of the problem. Thus, 2 types of variables are associated with an agent in SKF: 

continuous variable, x, which is produced as estimated value of SKF (which is also similar to the position of agents in a 

search space), and a bit string, Σ, which is usually used to represent solution to a combinatorial optimization problem.  

 

In DESKF, for a particular dth dimension, the distance between an ith agent to the best-so-far solution at iteration t can be 

calculated as follows: 

 

𝐷𝑖
𝑑(𝑡) = 𝑥𝑖

𝑑(𝑡) − 𝑥𝑏𝑒𝑠𝑡−𝑠𝑜−𝑓𝑎𝑟
𝑑 (𝑡)                                                                   (9) 

 

In binary gravitational search algorithm (BGSA) [6], a function, as shown in Fig. 5, is used to map a velocity value into a 

probabilistic value within interval [0,1]. Similar function is used in DESKF. This distance value, 𝐷𝑖
𝑑(𝑡), is mapped to a 

probabilistic value within interval [0,1] using a probability function, 𝑆(𝐷𝑖
𝑑(𝑡)), as follows: 

 

𝑆 (𝐷𝑖
𝑑(𝑡)) = |tanh (𝐷𝑖

𝑑(𝑡))|                                                                     (10) 

 

After the 𝑆 (𝐷𝑖
𝑑(𝑡)) is calculated, a random number, rand, is generated and a binary value at dimension d of an ith agent, Σ𝑖

𝑑, 

is updated according to the following rule: 

 

   if 𝑟𝑎𝑛𝑑 < 𝑆 (𝐷𝑖
𝑑(𝑡))  

then Σ𝑖
𝑑(𝑡 + 1) = complementΣ𝑖

𝑑(𝑡 + 1)                                                       (11) 

   else Σ𝑖
𝑑(𝑡 + 1) =  Σ𝑖

𝑑(𝑡 + 1)  

 

4. ANGLE MODULATED EVALUATED SIMULATED KALMAN FILTER ALGORITHM 
 

The angle modulated SKF (AMSKF) algorithm is shown in Fig. 5. The main idea of the angle modulated approach in solving 

combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The shape of signal g(x) is 

determined by 4 variables, namely, a, b, c, and d, as shown in Eqn. (12).  

 

𝑔(𝑥) = sin(2𝜋(𝑥 − 𝑎) × 𝑏 × cos(𝐴)) + 𝑑                                                          (12) 

where A = 2𝜋(𝑥 − 𝑎) × 𝑐.  

 

Fig. 6 shows an example of g(x) plot for the case of a = 0, b = 1, c = 1, and d = 0. The region g(x) > 0 is called binary 1 

region and region g(x) < 0 is called binary 0 region. After that sampling based on sampling time, T, is executed to generate a 

bit string of length n. The required length of the bit string is problem dependent and determined by the size of a combinatorial 

optimization problem.  

 

The main advantage of angle modulated approach is that complex calculation in producing high dimensional bit string can be 

avoided. The search process in solving a combinatorial optimization problem can be done by tuning the values of a, b, c, and 

d only. In this work, the tuning is done by the SKF algorithm. 

 

3. BINARY SIMULATED KALMAN FILTER 
 

In order to solve a combinatorial optimization problem using SKF, the ∆i term in Eqn. (7) is mapped into a probabilistic value 

[0,1]. Then, the probabilistic value is compared to a random number [0,1] to update a bit string. In BSKF, most calculations are 

similar to the original SKF. Modifications are needed only during initialization and generation of solution to combinatorial 

optimization problem. 

 

During the initialization of agents, a random bit string, Σ𝑖 , is generated for each agent. Each bit in the bit string is associated to 

a dimension. The length of the bit string is problem dependent and subjected to the size of the problem. In this study, the term 

∆i is mapped to a probabilistic value within interval [0,1] using a mapping function, 𝑆(∆𝑖(𝑡)), as follows: 

 



The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang 

 

956 

 

 

Figure-5. The angle modulated SKF (AMSKF) algorithm. 

 

 

 

Figure-6. An example of g(x) plot. 

 

 

 

𝑆(∆𝑖(𝑡)) = |tanh(∆𝑖(𝑡))|                                                                  (13) 

 

After the 𝑆(∆𝑖(𝑡)) is calculated, a random number, rand, is generated and a binary value at dimension d of an ith agent, Σ𝑖
𝑑, 

is updated according to the following rule: 
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                        if         𝑟𝑎𝑛𝑑 < 𝑆(∆𝑖(𝑡)) 

 then Σ𝑖
𝑑(𝑡 + 1) = complementΣ𝑖

𝑑(𝑡 + 1)                                                               (14) 

         else Σ𝑖
𝑑(𝑡 + 1) =  Σ𝑖

𝑑(𝑡 + 1) 

         end 

 

4. EXPERIMENTS, RESULT AND DISCUSSION 
 

 

The three algorithms are applied to solve a set of TSP. The objective of TSP is to find the shortest distance from a start city to 

an end city while visiting every city not more than once. In this paper, 51 instances of TSPs are considered, from the size of 

51 cities to 1400 cities. These problems were taken from TSPLib [6]. Experimental setting parameters for SKF are shown in 

Table 1. Example of convergence curve are shown in Figure 7. 

 

The averaged results are shown in Table 2 and Table 3. Based on these average performances, Friedman rank test is 

performed, which shows that the AMSKF is ranked first compared to DESKF and BSKF. However, Friedman Post Hoc 

analysis in Table 4, which is based on confidence level, 𝜎 = 0.05, shows that the algorithms perform as good as each other in 

solving TSP problems.  

 

 

Table 1: Experimental setting parameters. 

SKF parameters 

Parameter Value 

P 1000 

Q 0.5 

R 0.5 

rand [0,1] 

 

 

Figure-7. Example of convergence curve for TSP index 10 (DSJ1000) 
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Table 2: Average performance (1-23) 

 
AMSKF DESKF BSKF 

1  Berlin52 22874.864 22932.196 22847.638 

2  Bier127 544059.54 544106.72 542440 

3  Ch130 39357.698 39254.37 39267.001 

4  Ch150 46168.048 46270.792 46174.032 

5  D198 158018.62 157618.45 158476.86 

6  D493 411931.21 411998.9 411621.01 

7  D657 796174.92 796175.26 796929.4 

8  D1291 1646428.1 1645013.4 1648226.7 

9  D2103 3123015.2 3123370 3123722.9 

10  DSJ1000 523006026 524027900 523661043 

11  Eil51 1266.8089 1268.4167 2127.613 

12  Eil76 2039.9669 2052.8553 23782.281 

13  Eil101 2856.4297 2845.6591 2853.754 

14  FL1400 1581634.6 1581880.8 1581580.5 

15  FL1577 1295453.1 1294521 1295395 

16  GIL262 23851.59 23846.462 23853.898 

17  KROA100 136954.87 137042.97 137188.72 

18  KROA150 215813.74 216442.08 215796.9 

19  KROA200 291098.84 291940.41 291063.76 

20  KROB100 134818.21 134923.42 134786.51 

21  KROB200 285558.87 285802.7 286095.52 

22  KROC100 135858.77 135469.49 135539.31 

23  KROD100 131561.24 131622.26 131396.8 
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Table 3: Average performance (24-51) 

 
AMSKF DESKF BSKF 

24  KROE100 137716.4 138503.85 138610.66 

25  LIN105 98766.643 99036.194 99045.127 

26  LIN318 528817.07 527049.45 529112.66 

27  P654 1848103.2 1845492 1849636.9 

28  PCB442 707728.27 708486.35 708016.85 

29  PCB1173 1335123.6 1333055.1 1335923.2 

30  PR76 461175.97 461023.28 461949.66 

31  PR107 446571.49 446386.83 449263.34 

32  PR124 573148.53 580257.8 579691.23 

33  PR136 689959.69 690108.27 689880.39 

34  PR144 686191.06 682605.35 682410.76 

35  PR152 886368.97 886217.15 886457.25 

36  PR226 1477167 1479082.5 1482490.1 

37  PR264 954069.8 954199 958776.77 

38  PR299 667263.24 664536.98 666494.59 

39  PR439 1732577.2 1737005.4 1731522.6 

40  PR1002 6078577.3 6085012.6 6079543.2 

41  PR2392 14689847  14656690 14683027 

42  RAT99 6718.7332 6696.1764 6732.7713 

43  RAT195 19441.651 19422.964 19461.392 

44  RAT575 104311.85 103909.28 104247.95 

45  RAT783 167018.76 166512.95 166982.97 

46  RD100 45664.306 46096.301 45944.33 

47  RL1304 8908134.4 8917743 8916298.5 

48  RL1323 9303447 9303793.8 9302485.9 

49  RL1889 14159546 14171974 14157634 

50  ST70 2902.0918 2882.9964 2890.8754 

51  TS225 1410332.7 1411955.3 1409168.9 

 

 

Table 4: Friedman rank 

  AMSKF DESKF BSKF 

Ranking 1.8627 2.0000 2.1373 
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