

Correlation between Electronic Structure and Electron Conductivity in MoX₂ (X = S, Se, Te)

Saifful Kamaluddin bin Muzakir saifful@ump.edu.my / 019 276 3844

Universiti Malaysia Pahang 26600 Pekan, Pahang Darul Makmur Tel: +609 424 5000 • Fax: +609 424 5555

SUPERCAPACITOR

Capacity = High Energy Density Speed = High Power Density

Application in Electric Bike:

- 1. Battery: Main source
- 2. Supercapacitor: Acceleration

High Energy Density Low Power Density

Low Energy Density High Power Density

Symmetric Supercapacitor (SSC)

- 1. Working potential of each AC electrodes are ca. 0 to -0.9 V (Zhang et al., 2015).
- 2. A combination of two similar electrodes produces maximum working potential of an SSC device ca. 0.9 V.

Asymmetric Supercapacitor (ASC)

Pseudocapacitor (PC) electrode

Activated Carbon (AC) Electrode

- 1. Potential window of a SC could be widen using an ASC device structure.
- 2. Example of a PC-type material is MoSe₂.
- The working potential of an MoSe₂-electrode is ca. 0 to 0.7 V (Aziz et al., 2016)
- 4. The potential window widens:

Pseudocapacitive TMD-ASC

(a) Electrochemical-charge storage:

Chemisorption of electrolyte cations at the surface of TMD e.g., $MoSe_2$ with Mo oxidation states of +4, +5, and +6 (Stark et al, 1969).

 $(Mo^{+6}Se_2) + Li^+ + 1e^- \Box \bigoplus_{discharge}^{charge} (Mo^{+5}Se_2Li)_{surface/bulk}$

(b) Electrostatic-charge storage:

Intercalation pseudocapacitance charge storage mechanism at surface and bulk of TMD.

Communitising Technology

Performance of TMD-ASCs

Specific capacitance, C_s obtained by MoS_2 and $MoSe_2$ -based electrodes with various device structures.

Single crystal molybdenum selenide nanoneedles produced C_s ca. 601 F/g (Aziz et al, 2016)

Specific capacitance, C_s obtained by TMDs-based electrode with various type of optimization.

Increasing Power Density of TMD-ASCs

- $v_d = \mu \times E \tag{Eq. 1}$
- $\sigma = \eta \times e \times \mu \tag{Eq. 2}$
- $\mu = (e \times \tau)/m_e^*$ (Eq. 3)
- $m_e^* = (2\hbar^2/9t_o^2 r_o^2)E_G$ (Eq. 4)

 $\sigma \propto 1/E_G$

- (a) Current Collector (b)
- v_d = drift velocity of electron in TMD
- μ = electron mobility in TMD
- E = applied electric field
- σ = electron conductivity in TMD
- η = concentration of electron
- *e* = charge of electron

- τ = relaxation time between electron scatterings
- $m_e^*~$ = effective mass of electron in TMD
- \hbar = reduced Plank's constant
- t_o = electron hopping parameter
- r_o = equilibrium bond length
- E_G = bandgap

Electronic properties of TMDs

Zhang et al. (2014), Shaw et al, (2014), and Hosseini et al. (2015)

Problem: What is the correlation between thickness of a monolayer and conductivity?

Properties of basic crystal of TMDs

Optimized structure of basic crystal of TMDs; calculated at B3LYP/lanl2dz level of theory

Electronic properties of MoSe₂

Ground state electron density

Excited state electron density

Ground & excited state electron density

RED: Ground state electron density GREEN: Excited state electron density

Overlapped area: $(MoSe_2)_3 < (MoTe_2)_3$

(MoS ₂) ₃		(MoSe ₂) ₃		(MoTe ₂) ₃	
Atom	Site	Atom	Site	Atom	Site
Мо	3 partial overlap	Мо	3 partial overlap	Мо	3 partial overlap
S	2 non overlap + 4 partial overlap	Se	6 partial overlap	Те	6 partial overlap

Conclusions

- 1. $MoS_2 (t_{-Offset} = 1.0 \text{ nm})$, $MoSe_2 (t_{-Offset} = 0.4 \text{ nm})$, and $MoTe_2 (t_{-Offset} = 0.3 \text{ nm})$ showed a trend of increasing conductivity i.e., $MoS_2 (0.3 \text{ S/m}) < MoSe_2 (10.0 \text{ S/m}) < MoTe_2 (22.0 \text{ S/m})$.
- 2. The increment of electron conductivity of the MoX_2 is due to increment of possibility of wave functions overlap between the ground state and excited state electrons.
- 3. A monolayer thickness which is similar to its exciton Bohr radius ($t_{-Offset} = 0$) is hypothesized would show maximum area of overlapping orbitals of excited state and ground state electron; therefore optimum conductivity could be achieved.