Superoxide Radical Biosensor Based on a 3D Enzyme/Carbon Nanotube Conductive Networks

A. K. M. Kafi1,*, N. S. Azmi, Mashitah M. Yusoff1, and Maxwell J. Crossley2

1Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Kuantan 26300, Malaysia
2School of Chemistry, The University of Sydney, Sydney 2006, Australia

We report on a novel 3-dimensional (3D) network of crosslinked Cytochrome C/Carbon Nanotube (CytC/CNT) on a thiol-modified gold surface which can establish direct electrical communication between the redox center of Cytochrome C and the electrode. Cyclic voltammograms (CVs) results showed a pair of well defined redox peaks for Cytochrome C, located at about −0.03 and +0.06 V, cathodic and anodic respectively. Additionally, the formal potential \(E_0 \) of adsorbed Cyt c was found to be 15 mV, a value close to that of native Cyt c. Based on 3D Cytochrome c and carbon nanotube network, a sensitive superoxide radical biosensor has been proposed. The biosensor showed high sensitivity and lower detection limit of 0.3 \(\mu \)M of superoxide.

Keywords: 3D Crosslinked Networks, Cytochrome C, Superoxide, Biosensor.

1. INTRODUCTION

The superoxide anion radical (\(O_2^\cdot - \)) is the primary species of the so-called reactive oxygen species (ROS) is generated in significant quantities as result of univalent reduction of oxygen.\(^1\) In appropriate production of superoxide anion (\(O_2^\cdot - \)) has been known to be directly or indirectly involved in various pathologies such as cardiovascular dysfunction, ischemia and neurodegenerative diseases.\(^2\) Therefore, the quantitative detection of superoxide radicals and the characterization of the influence of antioxidants on their concentration are of great interest.\(^3\) However, due the lack of a sensitive and specific method the detection of superoxide is a challenging analytical problem.\(^4\) At the same time, the measurement of superoxide generated in biological systems is a difficult task because of its high reactivity and short half-life.\(^5\) Till now, few detecting methods for the determination of \(O_2^\cdot - \) have been proposed, such as electron spin resonance (ESR), spectrophotometry, and chemiluminescence method.\(^6\) However, nearly all of these assays have some drawbacks for various reasons. As an alternate sensitive detection method for \(O_2^\cdot - \), electrochemical biosensors have received extension attention because of easy construction, easy use and high sensitivity.\(^7\)-\(^9\) The electrochemical biosensor for superoxide radical is based on either superoxide dismutase (SOD) or cytochrome c (Cyt c) modified electrodes.\(^10\) It is already reported that SOD based biosensors for superoxide detection faces reproducibility problem due to poor immobilization technique.\(^11\) On the other hand, Cyt c based biosensors have shown more stability. Direct electron transfer (DET) of Cyt c has been investigated in order to construct sensitive electrochemical biosensor at various matrixes.\(^12\) However, DET of Cyt c on those matrixes has shown poor performances. Various kind of materials including nanostructured martials play an important role in electron shuttling for electrochemical biosensor, biofuel and capacitors.\(^13\)-\(^20\) Recently, we have reported an excellent method to generate three-dimensional electrically wired Hemoglobin (Hb) electrodes that showed high electron-transfer turnover rates.\(^21\) In that system, 4-aminophenol-modified Hb in the presence of 4-aminophenol-functionalized carbon nanotube (CNT) had created a three-dimensional bis-aniline-crosslinked CNT/Hb network. The resultant bis-aniline crosslinked network was redox active and able to medicate the electron from redox site of Hb to the base electrode. In this work, we have extended work to a new application of the 3D enzyme/CNT network by focusing on a construction of three-dimensional (3-D) conductive Cyt c network with CNT onto the thiol-modified gold (Au) electrode. In order to obtain the 3-D network, CNTs modified with electropolymerizable aniline and 4-aminophenol-modified Cyt c were coelectrolytically polymerized on the thiol-modified Au electrode surface. Proteins have many NH2-containing...