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Abstract : In this study, the mathematical modeling for heat generation/absorption effects on a stagnation point 

flow over a stretching surface in porous medium, with convective boundary conditions is considered. The non 

linear partial differential equations are transformed to the ordinary differential equations by similarity 

transformation before being solved numerically using the Runge-Kutta Fehlberg method. Numerical solutions are 

obtained for the surface temperature, heat transfer coefficient, local Nusselt number and skin friction coefficient as 

well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various  

values of the permeability parameter, heat source/sink parameter, Prandtl number, stretching parameter and 

conjugate parameter are analyzed and discussed. 

 

Keywords: Convective boundary conditions, heat generation/absorption, porous medium, stagnation point flow, 

stretching surface. 

 

 

1. Introduction  
 

Flow of a viscous fluid past a stretching sheet is a classical problem in fluid dynamics. Crane 

[1] was the first to study the convection boundary layer flow over a stretching sheet. The heat and 

mass transfer on a stretching sheet with suction or blowing was investigated by Gupta and Gupta [2]. 

They considered an isothermal moving plate and obtained the temperature and concentration 

distributions. Chen and Char [3] studied the laminar boundary layer flow and heat transfer from a 

linearly stretching, continuous sheet subjected to suction or blowing with prescribed wall temperature 

and heat flux.  

Stagnation flow towards a shrinking sheet was then investigated by Wang [4] who considered 

the prescribed wall temperature case. Forced convection boundary layer flow at a forward stagnation 

point with Newtonian heating has been investigated by Salleh et al. [5]. Ishak et al. [6] studied the 

MHD stagnation point flow towards a stretching sheet. Recently, Mohamed et al. [7] extended the 

works by Ishak et al. [6] with introduce the thermal radiation effects in Newtonian heating case.  

In considering the heat generation/absorption effects, Chamkha and Issa [8] investigated these 

field with considered thermophoresis on hydromagnetic flow. Layek et al. [9] studied the heat and 

mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching 

sheet with heat absorption/generation and suction/blowing before being extended by Hamad and 

Ferdows [10] in nanofluid and Mahmoud and Waheed [11] in micropolar fluid. Also, Ibrahim and 

Shanker [12] and Mukhopadhyay and Layek [13] investigated the heat effects with MHD and variable 

fluid viscosity effects, respectively.  

Since the early paper by Luikov et al. [14], many contributions to the topic of conjugate heat 

transfer have been made. The conjugate/convective boundary condition,  has been used only quite 

recently by Aziz [15] who studied the laminar thermal boundary layer over a flat plate. This Blasius 

flow with the conjugate boundary condition then has been revisited by Rashidi and Erfani [16] and 

Magyari [17]. Merkin and Pop [18], Yao et al. [19], Yacob et al. [20] and Yacob and Ishak [21] 

investigated the boundary layer flow past a shrinking/stretching sheet with convective boundary 
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conditions in a viscous fluid, nanofluid or micropolar fluid, respectively. Recently, Mohamed et al. 

[22] solved the  stagnation point flow over a stretching sheet with convective boundary conditions.  

According to Layek et al. [9], fluid flow and heat transfer towards a porous stretching sheet 

have an important bearing on several technological processes. Some metallurgical processes involve 

the cooling of continuous strips or filaments by drawing them through a quiescent fluid. The rate of 

cooling can be controlled and final product of desired characteristics can be achieved if strips are 

drawn through porous media. With this motivation, the aim of this study is to solve the problem of 

heat generation/absorption effects on a stagnation point flow over a stretching surface in porous 

medium with convective boundary conditions. Since this problem has not been considered before 

hence, the reported results are considered new 

 

2.  Mathematical Formualation 
 

A steady two-dimensional steady flow on a stagnation-point past a stretching plate immersed in 

an incompressible porous viscous fluid of ambient temperature, T  
are considered. It is assumed that 

the stretching velocity ( )wu x  and the external velocity ( )eu x  are of the forms ( )wu x ax  and 

( )eu x bx  where a  and b  are constants. The physical model and coordinate system of this problem 

is shown in Figure 1. It is further assumed that the plate is subjected to the convective boundary 

conditions. The boundary layer equations are 

 

 0
u v

x y

 
 

 
 (1) 

  
2

2

1

e
e e

duu u u
u v u u x u

x y dx y k




  
    

  
 

(2) 

 
2

2

o

p

QT T T
u v T T

x y y C





  
   

  
 (3) 

 

 

 
Figure 1. Physical model and the coordinate system 

 

 

subject to the boundary conditions (see Aziz [15]) 
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( ),eu u x T T     as   y    (4) 

 

where u  and v  are the velocity components along the x  and y  directions, respectively. Further, T  

is temperature, fT
 
is the temperature of the hot fluid under the flat plate, 1k

 
is the permeability of the 

porous medium, 
 
is the kinematic viscosity, oQ  is the dimensional heat generation or absorption 

coefficient,   is fluid density, pC  is the specific heat, k
 
is the thermal conductivity,   is the 

thermal diffusivity and 
fh  is the heat transfer coefficient. 

It is introduce the following similarity variables (see Salleh et al. [23] and Aziz [15]): 
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where   is the stream function defined as u
y





and ,v
x


 


 which identically satisfies 

Equation (1). Thus,   

 
1

2( ), ( ) ( ),u bxf v b f      (6) 

 

where prime denotes differentiation with respect to .  Substituting (5) and (6) into Equations (2) and 

(3), the following nonlinear ordinary differential equations are obtained: 

 
2 ( 1) 1 0f ff f K f          (7) 

1
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where Pr



  is the Prandtl number, 

1

K
k b


  is the permeability parameter for the porous medium 

and 
p

Qo

b C



  is the heat source  0   or sink  0   parameter. The boundary conditions (4) 

become 

 

(0) 0, (0) , (0) (1 (0))f f           (CBC) 

( ) 1, ( ) 0f        as     (9) 

where 
a

b
   is the stretching parameter. Further, 

1
2

1

fh k
a


  
  

 
  is the conjugate parameter for 

the convective boundary conditions. It is noticed that 0   is for the insulated plate and    is 

when the surface temperature is constant  (CWT).  

The physical quantities of interest are the skin friction coefficient fC  and the local Nusselt 

number xNu  which are given by 
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The surface shear stress w  and the surface heat flux wq are given by  
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with    is dynamic viscosity. Using the similarity variables in (5) give   
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is the local Reynolds number.  

 

3.   Results and Discussion 
 

The Equations (7) and (8) subject to the boundary conditions (9) were solved numerically using 

the Runge-Kutta Fehlberg method with five parameters considered, namely the permeability 

parameter ,K  heat source/sink parameter ,  Prandtl number Pr, stretching parameter   and 

conjugate parameter .
 
From the numerical solution, it is known that the wide boundary layer 

thicknesses   from 1 to 12 is suitable to provide accurate numerical results. In order to validate the 

efficiency method used, the comparison has been made. Table 1 and 2 show the comparison between 

the present results for (0)f   
and (0)  

for the case constant wall temperature (CWT) with 

previously published results. It has been found that they are in good agreement. We can conclude that 

this method works efficiently for the present problem, and we are also confident that the results 

presented here are accurate.  

 

Table 1. Comparison for the values of (0)f   with previous results 

  
(0)f   

Wang [4] Yacob and Ishak [21] Mohamed et al. [22] Present 
 

2 -1.88731 -1.887307 -1.8873066 -1.8873069 

1 0 0 0 0 

0.5 0.71330 0.713295 0.7132949 0.7132947 

0 1.232588 1.232588 1.2325877 1.2325877 

 

Table 2. Comparison for the values of (0)  (CWT) with previous results 

 when 0, 0, 0K   
 
and .   

Pr  
(0)  

Eckert [24] Salleh et al. [5] Present 

0.7 0.496 0.4959 0.4958 

0.8 0.523 0.5228 0.5227 

1 0.570 0.5705 0.5704 

5 1.043 1.0436 1.0433 

7 - 1.1786 1.1782 

10 1.344 1.3391 1.3386 
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Tables 3 and 4 present the values of 
1 2

(0), (0),
Re

x

x

Nu
  and 

1
2Ref xC  for various values of 

K   when Pr 0.72, 1, 0     and 0.5, 0, 0.5.    It is observed that, for fixed value of ,  an 

increase of K  results to the decrease of (0)  while 
1 2

(0),
Re

x

x

Nu
  and 

1
2Ref xC  increase. 

Meanwhile, when K
  

is fixed, the presents of heat generation (heat source) 0,  have influence to 

the increase of (0)  while (0)  and 
1 2Re

x

x

Nu
 decrease. This is realistic where the increase amount of 

heat (heat source) enhanced the temperature on plate surface. Furthermore, since 
1 2Re

x

x

Nu
 is decreasing,   

this situation indicates that the presents of heat generation have reduced the fluid capibilities in 

convective heat transfer hence attend the fluid to pure conduction.. On the other side, the presents of 

heat absorption (heat sink) 0,   
have results oppositely. Also, from Table 4, it is found that the 

presents of heat generation/absorption give no effects on reduced skin friction coefficient, 
1

2Re .f xC   

 

Table 3. Values of (0) and (0)
 
for various values of K   

when Pr 0.72, 1, 0     and 0.5, 0, 0.5.    

K  
0.5    0   0.5   

(0)  (0)  (0)  (0)  (0)  (0)  

0 0.5728 0.4272 0.6660 0.3340 0.8647 0.1353 

0.01 0.5727 0.4273 0.6659 0.3341 0.8643 0.1357 

0.1 0.5722 0.4278 0.6649 0.3351 0.8614 0.1386 

1 0.5681 0.4319 0.6572 0.3428 0.8398 0.1602 

10 0.5543 0.4457 0.6331 0.3669 0.7810 0.2190 

 

Table 4. Values of 
1 2Re

x

x

Nu
and 

1
2Ref xC

 
for various values of K   

when Pr 0.72, 1, 0     and 0.5, 0, 0.5.    

K  

0.5    0   0.5   

1 2Re

x

x

Nu
 

1
2Ref xC  1 2Re

x

x

Nu
 

1
2Ref xC  1 2Re

x

x

Nu
 

1
2Ref xC  

0 0.7458 1.2326 0.5015 1.2326 0.1565 1.2326 

0.01 0.7461 1.2366 0.5017 1.2366 0.1570 1.2366 

0.1 0.7476 1.2722 0.5040 1.2722 0.1609 1.2722 

1 0.7603 1.5853 0.5216 1.5853 0.1908 1.5853 

10 0.8041 3.3917 0.5795 3.3917 0.2804 3.3917 

 

Tables 5 and 6 present the values of 
1 2

(0), (0),
Re

x

x

Nu
   and 

1
2Ref xC  for various values of 

   when Pr 0.72, 1, 1K  
 
and 0.5, 0, 0.5.    It is suggested that, for fixed value of ,  an 

increase of stretching parameter   results to the decrease of (0)  and 
1

2Ref xC while (0)  and 

1 2Re

x

x

Nu
 increase. Physically, as   increases, the ratio of stretching over external velocity increases and 
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thus enhance the fluid move away from the stagnation region rapidly. This situation reduced the plae 

surface temperature. Next,  as table goes horizontally, as   is fixed, the heat generation/absorption, 

  
influence are similar as in Table 3.  

 

Table 5. Values of (0) and (0)
 
for various values of    

when Pr 0.72, 1, 1K    and 0.5, 0, 0.5.     

  
0.5    0   0.5   

(0)  (0)  (0)  (0)  (0)  (0)  

0 0.5681 0.4319 0.6572 0.3428 0.8397 0.1603 

1 0.5298 0.4702 0.5963 0.4037 0.7114 0.2886 

2 0.5002 0.4998 0.5529 0.4471 0.6353  0.3647 

3 0.4761 0.5239 0.5195 0.4805 0.5830  0.4170 

5 0.4388 0.5612 0.4705 0.5295 0.5141 0.4859 

7 0.4106 0.5894 0.4353 0.5647 0.4667 0.5333 

10 0.3783 0.6217 0.3966 0.6034 0.4188 0.5812 

100 0.1758 0.8242 0.1771 0.8229 0.1786 0.8214 

 

Table 6. Values of 
1 2Re

x

x

Nu
and 

1
2Ref xC

 
for various values of    

when Pr 0.72, 1, 1K    and 0.5, 0, 0.5.    

  

0.5    0   0.5   

1 2Re

x

x

Nu
 

1
2Ref xC  1 2Re

x

x

Nu
 

1
2Ref xC  1 2Re

x

x

Nu
 

1
2Ref xC  

0 0.7603 1.5853 0.5216 1.5853 0.1909 1.5853 

1 0.8875 0 0.6770 0 0.4057 0 

2 0.9992 -2.1327 0.8086 -2.1327 0.5741 -2.1327 

3 1.1004 -4.7153 0.9249 -4.7153 0.7153 -4.7153 

5 1.2789 -11.0073 1.1254 -11.0073 0.9451 -11.0073 

7 1.4355 -18.5727 1.2973 -18.5727 1.1427 -18.5727 

10 1.6434 -31.9356 1.5214 -31.9356 1.3878 -31.9356 

100 4.6883 -1002.9126 4.6465 -1002.9126 4.5991 -1002.9126 

 

 Figure 2 shows the temperature profiles ( )   for various values of   when 

Pr 0.72, 1, 1K    and 1.   From figure, it is concluded that the presence of heat generation 

( 0)   assist to the increase of temperature profiles. This is due to the fact that heat source add more 

heat to the plate which increases its temperature profiles. This results to the increase of thermal 

boundary layer thickness. Meanwhile, the presence of heat absorption ( 0)   affects to the decrease 

of the temperature profiles as well as boundary layer thickness since the heat is removed from the 

plate. 

 Figures 3-5 show the temperature profiles ( )   
for various values of ,K   and Pr,  

respectively. For all Figures 3-5, as ,K   or Pr  increases, the temperature and thermal boundary 

layer thickness decrease. This is due to the fact that when Pr  increases, the thermal diffusivity 

decreases and these phenomena lead to the decreasing of energy ability that reduces the thermal 

boundary layer. Also, an increase of  K
 
which implies to the increase of porous elements represents a 

resistant to the convection ability that reduces the temperature profiles. 
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Figure 2. Temperature profiles ( )   for various values of   when Pr 0.72, 1, 1K    and 1.   

 

 

 
Figure 3. Temperature profiles ( ) 

 
for various values of K   

when Pr 0.72, 1, 0     and 0.5. 
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Figure 4. Temperature profiles ( )   for various values of   when Pr 0.72, 1, 1K    and 0.5.   

 

 

Figure 5. Temperature profiles ( )   for various values of Pr when 1, 1, 1K     and 0.5.   

 

Figure 6 shows the temperature profiles ( )   
for various values of .  Figure 6 consumes the 

contra trends compared to the temperature profiles in Figures 3-5. It is found that the increase of   

results to the increase of temperature profiles as well as the thermal boundary layer thickness. 
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Figure 6. Temperature profiles ( )   for various values of     

when Pr 0.72, 1, 1K    and 0.5.   

 

Next, Figures 7 and 8 present the velocity profiles ( )f   for various values of K  and ,  

respectively. In this study, only parameter K  and   will affect the fluid velocity and skin friction 

coefficient. Pr,  and   will not influence the fluid flow. From Figure 7, it is suggested that, when 

the stretching velocity is smaller than the external velocity ( 1)  , the flow has a boundary layer 

structure. Furthermore, it can be seen that when K  increases, the thickness of the boundary layer 

decreases which implies increasing manner of the magnitude of the velocity gradient at the surface 

which implies an increase of the skin friction coefficient (0).f    

The velocity profiles for different values of   which produce (0)f    
and ( ) 1f    as 

   
is plotted in Figure 8. When 1  , the flow has an inverted boundary layer structure and the 

thickness of the boundary layer decreases with .  On the other hand, when 1  , the flow has a 

boundary layer structure, which results from the fact that when / 1a b  , the external velocity of the 

surface bx
 
exceeds the velocity

 
of the stretching sheet ax . For this case, the thickness of the 

boundary layer increases with the increase of .  
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Figure 7. Velocity profiles ( )f   for various values of K   

when Pr 0.72, 1, 0     and 0.5.   

 

 

Figure 8. Velocity profiles ( )f  for various values of   when Pr 0.72, 1, 1K    and 1. 
 

 

4. Conclusion 

 
In this paper we have numerically studied the problem of heat generation/absorption effects on 

stagnation point flow past a stretching surface with convective boundary conditions. It is shown how 

the permeability parameter ,K  heat source or sink parameter ,  stretching parameter ,  prandtl 
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number Pr  and conjugate parameter   affects the values of the surface temperature, heat transfer 

coefficient, local nusselt number, skin friction coefficient as well as temperature and velocity profiles. 

As a conclusion, the thermal boundary layer thickness depends strongly on these parameters. It 

is found that the presence of heat generation ( 0)   assist to the increase of fluid temperature and  

thermal boundary layer thickness while the presence of heat absorption ( 0)   results oppositely. 

Next, the increase of ,K   and Pr  results to the decrease of temperature and thermal boundary layer 

thickness. The reason is that smaller values of Pr are equivalent to increasing thermal conductivity, 

and, therefore, heat is capable of diffusing away from the heated wall more rapidly than at higher 

values of Pr. However, the increase of conjugate parameter   leads to an increase the temperature. 

Furthermore, it is suggested that only K  and   affects the fluid flow velocity and skin friction 

coefficient. Pr,  and   are not affected the flow. This is clear from the ordinary differential 

equations 7 and 8. 
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