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Abstract. Modern manufacturing industries nowadays encounter with the challenges to 
provide a product variety in their production at a cheaper cost. This situation requires 

for a system that flexible with cost competent such as Mixed-Model Assembly Line. 

This paper developed a mathematical model for Mixed-Model Assembly Line 
Balancing Problem (MMALBP). In addition to the existing works that consider 

minimize cycle time, workstation and product rate variation, this paper also consider 

the resources constraint in the problem modelling. Based on the finding, the modelling 
results achieved by using computational method were in line with the manual 

calculation for the evaluated objective functions. Hence, it provided an evidence to 

verify the developed mathematical model for MMALBP. Implications of the results and 

future research directions were also presented in this paper. 

1. Introduction 

Over the year, assembly line balancing (ALB) problem has earned a lot of attention. The purpose of 

ALB is to distribute different tasks to the operators for a various workstation on the line in a way where 

the tasks do not violate any of the precedence restrictions and some measurements of effectiveness are 
being optimized [1]. ALB has been evaluated widely in the relevant literature by Becker and Scholl [2, 

3]. Mixed-Model ALB is categorized under general assembly line balancing which produce several 

models having similar characteristics on a single assembly line [4]. Usually in a mixed-model assembly 
line, the models being assembled have differences in the set of tasks associated with each model, the 

processing times, precedence relations, and amount of production. With all due respect to all of these 

conditions, Mixed-Model Assembly Line Balancing Problem (MMALBP) has been categorized as an 
NP-hard combinatorial optimization problem as well as CPU time-consuming [5]. 

 

Mixed-model assembly lines solution procedures in the relevant literature was proposed by 

Thomopoulos [6]. Thomopoulos classify the procedures into three categories: meta-heuristics and 
heuristics, hybrid, and mathematical model solutions. In general, there are MMALBP-I and MMALBP-

II, which aim to minimize number of workstations for a given amount of cycle time and to minimize 

cycle time for a given number of workstations respectively [7]. Due to the current scenario of global 
market, companies changed single model lines into mixed-model lines in order to provide diversity and 
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meet customized customer needs on time in a perceptive manner [8]. In addition to that advantage, 

mixed-model lines do not require a new set-up process between model changes, provide a continuous 

flow of materials, reduce the inventory levels of final items, and very flexible with respect to model 

changes [9]. 
 

In MMALBP context, different problem model has been proposed with various objective functions. 

A mixed integer linear programming model has been proposed by Akpinar and Baykasoglu with the 
objectives to minimize the total number of workstations subjected to assignment, capacity and zoning 

constraints [10]. Two objectives being handled by Yagmahan that utilized an approach of multi-

objective ant colony optimization which is maximizing the smoothness index between stations and 

minimizing the number of workstations by considering the precedence constraints [11]. Tiacci considers 
buffer allocation problem and assembly line balancing problem simultaneously by using genetic 

algorithm approach. The objective function called normalize design cost (NDC) is introduced and 

subjected to precedence restriction [12]. 
 

The mixed-model parallel two-sided assembly considered by Kucukkoc consist an objective function 

of minimize total number of utilised workstations, as well as to ensure a smooth workload (WS) among 
the stations from cycle to cycle and the constraints are model and task occurrence constraint, task 

assignment, and operation direction constraint [13]. Ant colony optimization algorithm for balancing 

mixed-model assembly lines (ANTBAL) is used by Vilarinho and Simaria together with an objective 

function to balance the workloads within each workstation and maximize weighted line efficiency by 
considering zoning and capacity constraints [14]. Hamzadayi aims at minimizing the number of the 

stations required on the line, smoothing the workload of stations between cycles as well as smoothing 

the workload of all stations within any cycle by take into account the restriction of parallel and zoning 
constraints [15].  

 

Based on the literature review, there are some published works considering the resource constraint 

in their work but limited to a specific constraint. This paper will focus to propose a mathematical model 
for MMALBP-II to minimize general resource constraints along with the cycle time and product rate 

variation. MMALBP-II has been chosen because one of the objective functions in this paper is to 

minimize the cycle time for a given number of workstations and categorized under MMALBP-II 
problems. 

2. Problem description and formulation  

In this paper, the MMALB problem is formulated with the aims to minimize total cycle time, resources 
and product rate variation (PRV) by considering the resources constraint. In order to explain the problem 

formulation, an example of assembly problem consists of six tasks for three different models as shown 

in Fig.1. The general assumptions of the problem are as follows: 

 

 A number of J models will be assembled on a mixed model assembly line. 

 Assembly tasks for different models are almost similar, so we can suppose a combine 

precedence diagram for all of the models. Now, if some models do not use some tasks in their 

assembly process, the relevant task time will be 0. 

 Operating or processing times related to a task is the same for each different models. 

 Each task type is assigned to only one station regardless of models. Hence, tasks are not 

assigned to different stations for different models. 

 Each operator works only on a single station, only one operator carries out the assembly tasks 

on each station and the tasks are undividable. 

 Assembly models will be assembling with the same rate and consecutively. 

 

By referring the above mentioned assumptions, the parameters and indices of the model will be as: 
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Notation Definition 

S number of workstations(fixed)  s=1,2…, S 

J number of product models to be assembled  j=1,2…, J 
Ne number of task   e=1,2…, Ne 

prei predecessor for task i based on precedence diagram 

ti execution time for task i 
DT total quantity of units or total demand 

dj demand for product j, j = 1, 2, . . ., a 

Xi,k total quantity of product/produced over stages 1 to k, k = 1, 2, . . ., Dt 
maxR maximum resources  r=1,2,…,maxR 

CT cycle time 

Tej shift task model time 

Te shift task time 
te task time 

Nj demand schedule for each model 

U production rates variation of production sequence 

Decision variables 

Uej 1 if task, e is used on model j ; 0,otherwise 

Xes 1 if task, e is assigned to workstation s; 0, otherwise 

Yrs 1 if resource, r is used in workstation s; 0,otheriwse 

 

 
2.1. Mathematical modelling 

A sample problem used in this paper for a modelling purpose is adapted based on Thomopoulos [16].  

The assembly data being considered are consist of six tasks for three different models as shown in Fig.1 
and indirectly depict the build relationship among all the tasks. The models consist of six tasks (denoted 

by 1 to 6). The task is represented by circles and the connecting arrows identify the immediate 

predecessor tasks. It shows which tasks can begin without any predecessor tasks, and which tasks have 

predecessor tasks. The sequence of tasks moves from left to right. 
 

Model 1      Model 2 
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Figure 1. Precedence diagram for model 1, 2 and 3 
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Model 1: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 

begin until Task 1 is completed. Also for instance, Task 5 cannot begin until Task 2 and 3 are completed. 

Lastly, Task 6 cannot begin until Task 4 and 5 are completed. 

Model 2: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 
begin until Task 1 is completed. Task 5 cannot begin until Task 3 is completed. Lastly, Task 6 cannot 

begin until Task 2 and 5 are completed. 

Model 3: Task 1 on the left-hand side of the diagram and have no predecessor tasks. Task 2 and 3 cannot 
begin until Task 1 is completed. Task 4 and 5 cannot begin until Task 2 is completed. Lastly, Task 6 

cannot begin until Task 3, 4 and 5 are completed.  

 

The other important data are needed such as assembly time, type of resources used on the line, and 
model demands. Each model has their own task time as well as precedence relation but with the help of 

the anticipated model mix, a joint precedence graph is deduced from Figure 1. 

2.2. Objectives function 
The first objective function considered is to minimize cycle time. In our work, the cycle time is based 

on the product demand. Second objective function is minimizing total number of resource. The usage 

of resources such as tool, worker, and workstation is inevitable in an assembly line. However, based on 
the literature review less attention has been paid to minimize total number of resources even though the 

effect it can give to the operation cost is significant. Third objective function is product rate variation 

(PRV) which is common problem in the MMALB based on [17] . The problem formulation for this 

problem is presented as follows: 
 

 

𝑓1 = 𝑚𝑖𝑛 ∑ ∑ 𝐶𝑇

𝐽

𝑗=1

𝑁𝑒

𝑒=1

 

 

(1) 

 

𝑓2 = 𝑚𝑖𝑛 ∑ ∑ 𝑌𝑟𝑠

𝑚𝑎𝑥𝑅

𝑟=1

𝑆

𝑠=1

 

 

(2) 

 

𝑓3 = min ∑ ∑ (𝑥𝑗,𝑘  − 𝑘  ×
𝑑𝑗

𝐷𝑇
)

2𝐽

𝑗=1

𝐷𝑇

𝑘=1

 

 

(3) 

 

Objective function 1, f1 in equation (1) is aim to minimize cycle time for a given number of 
workstation.  Equation (2) targeted to minimize resources used on assembly line and equation (3) aim 

to minimize product rate variation (PRV). These objective functions are subjected to these constraints:  

 
2.3. Constraints 

 
 

∑ 𝑋𝑒𝑠 = 1, 𝑒 = 1, … , 𝑛

𝑆

𝑠=1

 

 

(4) 

 

∑ 𝑋𝑎𝑠

𝑆

𝑠=1

− ∑ 𝑋𝑏𝑠

𝑆

𝑠=1

≤ 0, 𝑓𝑜𝑟 ∀(𝑎, 𝑏) ∈ 𝑝𝑟𝑒𝑖 

 

(5) 

 
∑ 𝑡𝑖(

𝑖∈𝑤𝑘

𝑋𝑒𝑠) ≤ 𝐶, 𝑠 = 1, … , 𝑆 
 

(6) 
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Constraint (4) is to ensure that each task can only be assigned to one workstation [18]. Inequality (5) 

describes the precedence constraints among the tasks. It ensures that no successor of a task is assigned 

to an earlier station than that task. Constraint (6) ensures that the sum of task times assigned to each 

station does not exceed the cycle time. The maximum cycle time being considered here is stated as 
reference cycle time, RefCT which is expressed as: 

 
 

𝑅𝑒𝑓𝐶𝑇 =
∑ 𝑠ℎ𝑖𝑓𝑡 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒, 𝑇𝑒

𝑛𝑜.  𝑜𝑓 𝑤𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠 
,    𝑠 = 1, … , 𝑆 

  (7) 

Since this paper involve multi-objective optimization, the weighted sum approach is used as follows: 
 

 

    ∑ 𝑤𝑖𝑓𝑖 (𝑥)

𝑀

𝑖=1

     ;  𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝜔𝑛𝑓𝑛(𝑥) 

 

   (8) 

In this case, the objective functions in equation 1, 2 and 3 needs to be normalized to ensure a 
consistent scaling to each of objective function. This is conducted by dividing the fitness value with the 

maximum value for each objective function. Thus, for future work the solution methods for solving this 

multi-objective problems are more simple and used a direct computation [19]. Equation (9) below 
represent the normalized fitness functions after using weighted sum approach. 

 
     𝐹(𝑋) = 𝑤1𝑓1

′(𝑥) + 𝑤2𝑓2
′(𝑥) + 𝑤3𝑓3′(𝑥)    (9) 

 

3. Numerical example 

The generation of a joint precedence graph based on a combination for all three models are demonstrated 

in Figure 2 whereas Table 1 depicts the precedence matrix for this example. All known solution 
procedures for MMALB problem rely on the joint precedence graph which is, thus, indispensable for 

solving such problems. In short, this joint precedence diagram is like a blueprint on how to assemble the 

unit.  

 
 

Figure 2. Joint precedence diagram 
 

The example problem contain six tasks and three different model overall as referring to Table 1 and 

Table 2. Both shows the precedence table and model usage, Uej respectively. Model is represented by 

model 1, 2 and 3 and the demand for each model is 5, 3, and 2 respectively. For the model usage, if any 
of the task e is used on certain model, it is marked with 1, and 0 if otherwise. 
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Table 1. Task, e, task time, te, predecessor element, p 

e te p 

1 25 - 

2 17 1 

3 8 1 

4 40 2 

5 11 2,3 

6 33 4,5 

 

Table 2. Task, e, task time, te, model usage, Uej 

e te Uej 
               1                                 2                                  3 

1 25 1 1 1 
2 17 1 1 1 

3 8 1 1 1 

4 40 1 0 1 

5 11 1 1 1 
6 33 1 1 1 

 

The modelling here also considers a resource that was used on the assembly lines. In this particular 

case, there will be three types of resources, RT included tools, machines, and jigs. Table 3 summarizes 
the resources usage. 

 

Table 3. Resources data tabulation 

T1: Tool 1, T2: Tool 2, T3: Tool 3, M1: Machine 1, M2: Machine 2, M3: Machine 3, J1: Jig 1, J2: Jig 2, J3: Jig 3 
 

Referring to mathematical model coded into MATLAB, all the selected sequence subjected to RefCT 

of 956.6667 minutes. Mean that, the specific tasks time that will be grouped into specific workstation 
must not exceed RefCT and only the last workstation can discard that rule since we will have the 

remaining task time to be converge at the last workstation which in this case workstation 3 (noted that 

maximum number of workstation is predetermined with total of three workstation). 

 
In order to determine the performance for a particular assembly sequence, an evaluation needs to be 

conducted by comparing the objective functions. For assembly sequence [1 2 4 3 5 6], the procedure to 

e te Resources, RT 

1 25 T1 T2 J1 T3 - 

2 17 T1 M2 J2 - - 

3 8 J1 - - - - 

4 40 T2 M1 T1 - - 

5 11 T3 J3 - - - 

6 33 T3 M1 J2 M3 - 
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calculate objective functions are presented in the following sections. For this particular assembly 

sequence, the computational test from MATLAB give a result of 1300 minutes for cycle time, 15 

resources, and 2.9 rate of product variation. Based on the demand of 5, 3, and 2 for model 1, 2, and 3 

respectively, the mathematical model construct here can be calculated manually in order to verify the 
results for each objective function with the result obtained from computational model.  

3.1. Cycle time calculation 

For the sequence of task stated above, the task time for each task is tabulated in Table 4 below and the 
task distribution for each workstation is described together. 

Table 4. Task time for each sequence 

Sequence of task 1 2 4 3 5 6 

Model task time(minute) 625 425 520 200 275 825 

 

 625 }WS 1 

 425 + 520 = 945 }WS 2 

 200 + 275 + 825 = 1300 }WS 3 

 

Based on the manual calculation above, the maximum cycle time for the selected sequence is 1300 

minutes and we can assign the task to its own workstation subjected to RefCT. Task 1 is assigned to 

workstation 1, task 2 & 4 to workstation 2, and task 3, 5, & 6 to workstation 3 as shown in the Table 5 

below. 
 

Table 5. Workstation distribution 

 

Sequence of task 1 2 4 3 5 6 

Model task time(min) 625 425 520 200 275 825 

Workstation time(min 625 945 1300 

Workstation, s 1 2 3 

 

3.2. Resources used on the line 

Based on the assembly tasks assignment in section 3.1, the second objective function can be calculated. 
The manual calculation for the number of resources is illustrated in Table 6. The number of resources is 

determined by the different resource type in a workstation. For example, in workstation 2, since tasks 2 

and 4 used similar T1 resource, the total resources in this workstation is equivalent to 5.  
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Table 6. Resources used by each workstation 

Workstation 1                  2 3 

Sequence of task 1 2 4 3 5 6 

 

Resources type 

T1 T1 T1 J1 T3 T3 

T2 M2 T2 - J3 M1 

T3 J2 M1 - - M2 

J1 - - - - J2 

Yrs 
  ∑= 4                ∑= 5 ∑= 6 

 

Therefore, by using the objective function definition for resource used on assembly line given in 
equation (2), the summation of resources used by each workstation are as followed: 
 

                 𝑓2 = 𝑚𝑖𝑛 ∑ ∑ 𝑌𝑟𝑠

𝑚𝑎𝑥𝑅

𝑟=1

𝑆

𝑠=1

 

 = 4 + 5 + 6  

                = 15 resources 

 
3.3. Product rate variation (PRV) 

Product rate variation exist due to the nature of MMALBP itself which capable to assemble more than 

one product at a time and in this paper three different model being assemble on the same assembly 
line. The objectives of PRV problem is to achieve a stable production rate for each product. For 

instance, the target is to assemble 10 unit of particular product denoted by k, and we have a sequence 

of product, j. 

 
 

 

Based on the definition of objective function in (3), the value for each parameter have been calculated 
and summarized in Fig. 3. 

 

 

Figure 3.  Product rate variation summarization 
 

Hence, the summation of (𝑥𝑗,𝑘  − 𝑘  ×
𝑑𝑗

𝐷𝑇
)

2

 in the table is the PRV value that needed which resulted to 

2.9 for the selected sequence of product, j. 
 

Sequence of product, j 1 2 3 1 2 1 1 3 2 1 
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4. Conclusion and future work 

This paper proposed a mathematical model on MMALBP which consider minimize cycle time, 

minimize resources used on assembly line and minimize product rate variation (PRV) as the objectives. 

The computational model was developed using MATLAB software. In order to verify the output from 
the computational model, manual calculations had been carried out to compare the output.  

 

From the output of both methods, we can conclude that the objective function in term of its 
mathematical expression is valid to be used since the acquired results for each objective function is the 

same either for computerized method or manual computation. Future work will consist of an 

optimization procedure for the proposed models earlier by using an artificial intelligence approach such 

as genetic algorithm, particle swarm optimization and simulated annealing. 
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