Four Different Methods to Hybrid Simulated Kalman Filter (SKF) with Particle Swarm Optimization (PSO)

Badaruddin Muhammad, Zuwairie Ibrahim, Kamil Zakwan Mohd Azmi Faculty of Electrical and Electronics Engineering Universiti Malaysia Pahang 26600 Pekan, Malaysia

> Khairul Hamimah Abas Faculty of Electrical Engineering Universiti Teknologi Malaysia 81310 Skudai, Johor, Malaysia

Nor Azlina Ab Aziz, Nor Hidayati Abd Aziz Faculty of Engineering and Technology Multimedia University, 75450 Melaka, Malaysia

> Mohd Saberi Mohamad Faculty of Computing, Universiti Teknologi Malaysia 81310 Johor, Malaysia

Abstract—This paper presents a performance evaluation of a new hybrid Simulated Kalman Filter and Particle Swarm Optimization (SKF-PSO), for continuous numerical optimization problems. Simulated Kalman filter (SKF) was inspired by the estimation capability of Kalman filter. Every agent in SKF is regarded as a Kalman filter. Inspired by the bird flocking, Particle Swarm Optimization (PSO), has been introduced in 1994. Four methods (models) to hybridize SKF and PSO are proposed in this paper. The performance of the hybrid SKF-PSO algorithms is compared against the original SKF using CEC2014 benchmark dataset for continuous numerical optimization problems. Based on the analysis of experimental results, we found that model 3 and model 4 are performed better than the original SKF.

Keywords— Simulated Kalman Filter, Hybrid Simulated Kalman Filter, Continuous Numerical Optimization Problems

1. INTRODUCTION

The main objective of an optimization problem is to find the best combination of real-valued variables of a fitness function such that the value of the fitness is maximum or minimum. This can be achieved efficiently by employing a population-based optimization algorithm. The simulated Kalman filter (SKF) [1] and Particle Swarm Optimization (PSO) [2] are examples of population-based optimization algorithms. SKF has been applied to solve various optimization problems [3]–[8]. In this study, hybridization between SKF with PSO is presented. Specifically, 4 different methods to hybrid SKF with PSO are presented in this paper.

2. SIMULATED KALMAN FILTER ALGORITHM

The simulated Kalman filter (SKF) algorithm is illustrated in Figure-1(a). Consider *n* number of agents, SKF algorithm begins with initialization of *n* agents, in which the states of each agent are given randomly. The maximum number of iterations, t_{max} , is defined. The initial value of error covariance estimate, P(0), the process noise value, Q, and the measurement noise value, R, which are required in Kalman filtering, are also defined during initialization stage. Then, every agent is subjected to fitness evaluation to produce initial solutions. The fitness values are compared and the agent having the best fitness value at every iteration is registered as X_{best} . The-best-so-far solution in SKF is named as X_{true} . The X_{true} is updated only if the $X_{best}(t)$ is better than the X_{true} . The subsequent calculations are largely similar to the predict-measure-estimate steps in Kalman filter. Finally, the next iteration is executed until the maximum number of iterations, t_{max} , is reached.

3. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) is illustrated in Figure-3. Consider *n* number of particle, PSO begins with initialization of *n* particles, in which the coordinates of *i*th particle, $x_i(0)$, are given randomly. The maximum number of iterations, t_{max} , and initial velocity of *i*th particle, $v_i(0)$, are also defined during the initialization. Then, every particle is subjected to fitness evaluation to produce initial solutions. Personal best, *pbest*, and global best, *gbest*, are updated. After that, the velocity and position are updated. Lastly, the next iteration is executed until the maximum number of iterations, t_{max} , is reached.

4. Hybrid SKF-PSO Algorithm

Note that even though the SKF follows predict-measure-estimate steps as in Kalman filter, the states are not updated during the predict step. Hence, in the proposed hybrid SKF-PSO algorithm, PSO is employed as the prediction operator in SKF. In this study, four different approaches to employ PSO as the prediction operator are investigated.

A. Hybrid SKF with PSO: PSO as prediction Operator (Model-1)

In this approach, the velocity is updated and next position is predicted according to the rule of PSO. It is applied to each particle as a prediction operator to the original SKF algorithm. The hybrid SKF-PSO (PSO as prediction operator) algorithm is shown in Figure-2.

B. Hybrid SKF-PSO: PSO as Prediction operator when better solution is found (Model-2)

In this second approach, the velocity is updated and next position is predicted only if a better solution compared to existing position is found. The hybrid SKF-PSO (PSO as prediction operator when better solution is found) algorithm is shown in Figure-3.

C. Hybrid SKF-PSO: PSO as Prediction operator with Jumping Rate (Model-3)

In this third approach, an additional variable is introduced in hybrid SKF-PSO, which is the jumping rate, J_r , that is a predefined constant in the range of [0,1]. Prediction based on PSO is performed if jumping rate condition is satisfied. Once jumping rate condition is satisfied, the velocity is updated and next position is predicted. The hybrid SKF-PSO (PSO as prediction operator with jumping rate) algorithm is shown in Figure-4.

D. Hybrid SKF-PSO: PSO as Prediction operator with Jumping Rate and when better solution is found (Model-4)

An additional variable is introduced in hybrid SKF-PSO, which is the jumping rate, J_r , that is a predefined constant in the range of [0,1]. Prediction based on PSO is performed if jumping rate condition is satisfied. Once jumping rate condition is satisfied, fitness evaluation is performed again after the velocity is updated and next position is predicted. Then, agents move to the predicted position if better solution is found at the predicted position. The hybrid SKF-PSO (PSO as prediction operator with jumping rate and when better solution is found) algorithm is shown in Figure-5.

Figure 1: (a) The simulated Kalman filter (SKF) algorithm (b) The Particle Swarm Optimization (PSO)

5. EXPERIMENTS

The CEC2014 benchmark functions [9] have been employed for performance evaluation of the newly proposed algorithms. Thirty functions are available, which consist of 3 unimodal functions, 13 multimodal functions, 6 hybrid functions, and 8 composition functions, as shown in Table-1. Table-2 shows the setting parameters used in Hybrid SKF-PSO experiment including SKF parameters. The search space for all the test functions is [-100,100] for all dimensions.

6. RESULTS AND DISCUSSION

The experimental result in terms of averaged values for CEC2014 benchmark functions are tabulated in Table-3. Result in bold represent the best performance. To rank the result, Friedman test method is used. The result in Table-4 shows that, the hybrid SKF-GSA (Model-3) and Hybrid SKF-GSA (Model-4) are ranked higher compared to original SKF algorithm.

Based on the averaged performances, Wilcoxon signed rank test is performed and the result is tabulated in Table-5. The level of significant chosen here is $\sigma = 0.05$. It is found that statistically, the newly proposed SKF-PSO (Model-3) is significantly superior to the original SKF in solving continuous numerical optimization problems.

7. CONCLUSION

The primary objective of this study is to perform performance evaluation of the 4 newly introduced hybrid SKF-PSO algorithm. The findings show that our new Hybrid SKF-PSO (Model-3) is statistically significant compared to the original SKF algorithm

Figure 2: The computational model 1

Figure 3: The computational model 2

Figure 4: The computational model 3

Figure 5: The computational model 4

Function ID	Туре	Ideal Fitness	
F1		100	
F2	Unimodal	200	
F3		300	
F4		400	
F5		500	
F6		600	
F7		700	
F8		800	
F9		900	
F10	Multimodal	1000	
F11		1100	
F12		1200	
F13		1300	
F14		1400	
F15		1500	
F16		1600	
F17	Usbrid	1700	
F18		1800	
F19		1900	
F20	Tryond	2000	
F21		2100	
F22		2200	
F23		2300	
F24		2400	
F25	Composition	2500	
F26		2600	
F27		2700	
F28		2800	
F29		2900	
F30		3000	

Table 1: The CEC2014 benchmark problems.

	-		
Experimental Parameters			
Number of agent	100		
Number of dimension	50		
Number of run	50		
Number of iteration	10,000		
Search space	[-100.100]		
rand	[-1,1]		
SKF Parameters			
Error covariance estimate, P	1000		
Process noise, Q	0.5		
Measurement noise, R	0.5		
PSO Parameters			
$\omega_{ m max}$	0.9		
ω_{\min}	0.1		
Cognitive coefficient, c_1	2		
Social coefficient, c_2	2		
SKF-PSO Parameters			
Jumping rate, J _r	0.2		

Table 2: Setting parameters for Hybrid SKF-PSO.

Function	SKF	SKF-PSO	SKF-PSO	SKF-PSO	SKF-PSO
		(MODEL-1)	(MODEL-2)	(MODEL-3)	(MODEL-4)
F1	4702013.17	94642657.63	7485558	9190373	8040916
F2	24498691.7	128169629.1	3361.991	1653467	2499.413
F3	18147.7005	22204.49728	5400.831	6766.293	10197.71
F4	532.77148	1447.603694	582.437	642.6912	564.0094
F5	520.010016	521.0380178	521.0924	520.0467	520.022
F6	633.441686	631.7937166	632.6218	625.8339	631.5916
F7	700.246225	700.1206971	700.0328	700.9502	700.037
F8	807.981323	853.0536415	801.194	824.6129	804.0395
F9	1059.13877	1062.437812	1053.9	1050.618	1060.904
F10	1335.18324	1579.77401	1157.123	1278.715	1341.456
F11	6249.36725	13412.69654	6086.102	5808.529	6175.303
F12	1200.23641	1202.479962	1203.003	1200.149	1200.293
F13	1300.55973	1300.621589	1300.559	1300.593	1300.564
F14	1400.30009	1400.369487	1400.304	1400.268	1400.308
F15	1551.6584	1534.043637	1537.349	1524.813	1546.723
F16	1619.12553	1621.925586	1622.221	1618.265	1618.914
F17	908272.092	6286354.919	4093009	796747.1	8591204
F18	6941389.77	85131.98555	25199.36	2466.73	2987.862
F19	1950.223	1964.527028	1933.611	1946.369	1937.8
F20	34799.058	10634.96951	3157.536	3018.307	7585.159
F21	1186640.91	1073502.953	320294.1	348777	242007.8
F22	3429.10583	3511.708839	3394.301	3337.167	3378.551
F23	2645.68902	2666.833461	2646.646	2647.005	2645.491
F24	2667.24977	2673.073218	2661.464	2657.402	2664.494
F25	2730.40182	2731.467837	2724.178	2726.652	2724.693
F26	2766.38525	2700.547515	2759.11	2776.515	2733.87
F27	3883.3415	3863.798829	4779.875	3709.012	4183.174
F28	7223.36965	10325.0302	11437.62	6688.577	9891.017
F29	5997.83017	9350.688913	478667.6	4092.679	375658.3
F30	19753.2888	249763.1993	2542082	43411.62	505305.3

Table 3: The average fitness value obtained by SKF, SKF-PSO (Model-1), SKF-PSO (Model-2), SKF-PSO (Model-3), and SKF-PSO (Model-4). Numbers in bold indicate the best fitness.

Table 4: Friedment test result.

Algorithm	Ranking	Score
Hybrid SKF-PSO (MODEL-3)	1	2.2000
Hybrid SKF-PSO (MODEL-4)	2	2.7666

The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang

Hybrid SKF-PSO (MODEL-2)	3	2.8000
Original SKF	4	3.1333
Hybrid SKF-PSO(MODEL-1)	5	4.1333

Comparison	R ⁻	\mathbf{R}^+
Hybrid SKF-PSO(MODEL-1) vs SKF	127	338
Hybrid SKF-PSO(MODEL-2) vs SKF	274	191
Hybrid SKF-PSO(MODEL-3) vs SKF	351	114
Hybrid SKF-PSO(MODEL-4) vs SKF	271	194

Table 5: Wilcoxon test result.

ACKNOWLEDGEMENT

The authors will like to thank Universiti Malaysia Pahang for providing internal financial support through grant GRS1503120. This work is also financially supported by the Fundamental Research Grant Scheme awarded by the Ministry of Education (MOE) to Universiti Teknologi Malaysia (UTM) (Vote No. 4F615).

REFERENCES

- Kennedy J. and Eberhart R. C. 1995. Particle swarm optimization. IEEE International Conference on Neural Networks, Vol. IV, pp. 1942-1948.
- [2] Z. Ibrahim., N. H. A. Aziz, N. A. A. Aziz, S. Razali, M. I. Shapiai, S. W. Nawawi, and M. S. Mohamad, "A Kalman filter approach for solving unimodal optimization problems," ICIC Express Lett., vol. 4, no. 5, pp. 1–8, 2015.
- [3] Z. Ibrahim, N. H. Abdul Aziz, N. A. Ab. Aziz, S. Razali, M. I. Shapiai, S. W. Nawawi, and M. S. Mohamad, A Kalman Filter Approach for Solving Unimodal Optimization Problems, ICIC Express Letters, Vol. 9, Issue 12, pp. 3415-3422, 2015.
- [4] Z. Md Yusof, Z. Ibrahim, I. Ibrahim, K. Z. Mohd Azmi, N. A. Ab Aziz, N. H. Abd Aziz, and M. S. Mohamad, Angle Modulated Simulated Kalman Filter Algorithm for Combinatorial Optimization Problems, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 7, pp. 4854-4859, 2015.
- [5] Z. Md Yusof, Z. Ibrahim, I. Ibrahim, K. Z. Mohd Azmi, N. A. Ab Aziz, N. H. Abd Aziz, and M. S. Mohamad, Distance Evaluated Simulated Kalman Filter for Combinatorial Optimization Problems, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 7, pp. 4904-4910, 2015.
- [6] Z. Md Yusof, I. Ibrahim, S. N. Satiman, Z. Ibrahim, N. H. Abd Aziz, and N. A. Ab Aziz, BSKF: Binary Simulated Kalman Filter, Third International Conference on Artificial Intelligence, Modelling and Simulation, pp. 77-81, 2015.
- [7] Z. Md Yusof, S. N. Satiman, K. Z. Mohd Azmi, B. Muhammad, S. Razali, Z. Ibrahim, Z. Aspar, and S. Ismail, "Solving Airport Gate Allocation Problem using Simulated Kalman Filter," Int. Conf. Knowl. Transf., 2015.
- [8] A. Adam, Z. Ibrahim, N. Mokhtar, M. I. Shapiai, M. Mubin, I. Saad, Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals, SpringerPlus, Vol. 5, No. 1580, 2016.
- [9] http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014