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Abstract—the stagnation flow and heat transfer of a Williamson viscous fluid towards a stretching surface with slip 

conditions and viscous dissipation is studied. With the help of similarity transformation, the governing equations are 

converted to nonlinear ordinary differential equations and then solved numerically by Runge-Kutta-Fehlberg (RKF) 

technique. Numerical results for the local Nusselt number and skin friction coefficient as well as the temperature and velocity 

field are elucidated through tables and graphs. The influence of Prandtl number, stretching parameter, non-Newtonion 

Williamson fluid parameter, Eckert number, thermal and velocity slip parameter on the flow and heat transfer characteristics 

are analyzed and discussed. 

 

Keywords—Numerical solution; Slip Condition; Stagnation point flow; stretching sheet; non-Newtonian Williamson Fluid; 

Viscous Dissipation. 

 

 

1. INTRODUCTION 
 

The study of non-Newtonion fluids has attracted attention for many researchers’ nowdays. In fact, it has many theoretical and 

technical applications both in industries and engineering processes. In addition, the boundary layers flow of non-Newtonion 

fluids has been used in the aerodynamic extrusion of plastic sheets, glass fiber, paper production, manufacturing of polymer 

sheets (Nadeem et al. [1]), oil recovering and food processing (Das et al. [2]). In view of their difference with Newtonion 

fluids, many models of non-Newtonion fluilds have been proposed such as the Jefferey fluid (Das et al. [2]), the second-grade 

fluid (Nadeem et al. [3]), the Casson fluid (Ramesh and Devakar [4]), the micropolar fluid (Borrelli et al. [5]), the Williamson 

fluid (Nadeem et al. [6]) and so much more. In this studied the Williamson viscous fluids are considered. 

 

Williamson [7] was the first who discussed the flow of pseudoplastic materials and developed a model equation to illustrate 

the flow of pseudoplastic fluids. Next,  Nadeem et al. [6] investigated the flow of a Williamson fluid over a stretching sheet. 

The homotopy analysis is being used to solve the nonlinear differential equation. After that, Khan et al. [8] investigated the 

boundary layer flow of Williamson fluid with chemically reactive species using scaling transformation and homotopy 

analysis method. It is found that the Williamson model of non-newtonian fluid is very much similar to the blood and almost 

completely describes of blood flow. The homotopy analysis is considered to solve analytical solution of the governing 

problem. In addition, Nadeem and Hussain [9]considered the flow and heat transfer analysis of Williamson nanofluid. The 

governing non-linear equations are solving analytically using homotopy analysis method. 
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The flow near the stagnation point refers to the vertical flow hit perpendicularly the horizontal surface which generated the 

stagnation line. The external velocity is employed in the negative y-direction perpendicular to the flat plate while the 

stretching velocity is applied along the horizontal surface (Wang [10];Salleh et al. [11]). According to Wang [10], the utmost 

pressure, utmost heat transfer and the utmost rates of mass deposition are encountered by the stagnation region. Problem 

associated with boundary layer flows on stagnation point and stretching surface has fascinated many researchers.  

 

Hiemenz [12] was the first who proposed the problem involved stagnation point and managed to solve exact value for Navier-

Stokes equations. Next, Chao and Jeng [13] investigated the unsteady stagnation point heat transfer. After that, Mahapatra 

and Gupta [14] was also investigated the stagnation point flow with heat transfer and solved using finite difference method 

known as Thomas algorithm.Then, Nazar et al. [15] extended the same problem of Mahapatra and Gupta [14] by consider 

micropolar fluid. The Keller-box method is being used to solve the system of nonlinear ordinary differential equations and as 

a matter of fact, increadible concurrence with Mahapatra and Gupta [14] for resultant Newtonian fluid. In addition, Ishak et 

al. [16] considered the mixed convection stagnation-point flow towards a vertical stretching sheet. The transformed ordinary 

differential equations are solving numerically by using Keller-box method. After that, unsteady linear viscouselastic fluid 

model over a stretching/shrinking sheet in the region of stagnation point flows was analyzed by Khan et al. [17] and solved by 

using homotopy analysis method. Then, Makinde et al. [18] studied the buoyancy effects on MHD stagnation point flow and 

heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. It is found that both the skin friction 

coefficient and the local Sherwood number decrease while the local Nusselt number increases with increasing intensity of 

buoyancy force. In addition, MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet was 

discussed by Ibrahim et al. [19]. The governing non-linear boundary-layer equations were solving numerically by using 

Runge-Kutta fourth order method with shooting technique. This paper found that the heat transfer rate at the surface increases 

with the magnetic parameter when the free stream velocity exceeds the stretching velocity. Furthermore, Nandy and 

Mahapatra [20] investigated effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a 

stretching/shrinking surface with convective boundary boundary conditions. Moreover, flow and heat transfer of nanofluids at 

a stagnation point flow over a stetching/shrinking surface in porous medium with thermal radiation was analyzed by Pal et al. 

[21]. This paper found that skin friction coefficient increases for both stretching/shrinking sheet with increases in volume 

fraction of the nanoparticles. 

 

Meanwhile in considering the viscous dissipation effects, from literature study it is found that Gebhart [22] is the first person 

investigated viscous dissipation in free convection flow. After that, the viscous dissipation effects on unsteady free convective 

flow over a vertical porous plate was analyzed by Soundalgekar [23]. Then, Vajravelu and Hadjinicolaou [24] studied the 

viscous dissipation effects on the flow and heat transfer over a stretching sheet.  In addition, the heat transfer in microtubes 

with viscous dissipation discussed by Tunc and Bayazitoglu [25]. Then, Nield et al. [26] investigated viscous dissipation 

effects on force convection through parallel channel in a porous medium with uniform temperature and axial conduction. 

Recently, Cortell [27] investigated the effects of viscous dissipation and radiation on thermal boundary layer over a 

nonlinearly stretching sheet. Moreover, MHD effects on heat transfer over stretching sheet embedded in porous medium with 

variable viscosity, viscous dissipation and heat source/sink was investigated by Dessie and Kishan [28]. After that, 

Gnaneswara Reddy et al. [29] was analyzed the effects of viscous dissipation and heat source on unsteady MHD flow over a 

stretching sheet. The governing non-linear partial differential equations are solved by applying Keller Box method. Then, Pal 

and Mandal [30] investigated mixed convection-radiation on stagnation point flow of nanofluids over a stretching/shrinking 

sheet in a porous medium with heat generation and viscous dissipation. These papers conclude the important note that 

addition of nanoparticles into base fluid produced an increase in the skin firction coefficient. 

 

Besides of others’ investigations, the flow field obeys the no slip conditions. It is known that no slip conditions state that a 

solid body will not be having any velocity relative to the body at the control surface of the moving fluid in contact 

(Prabhakara and Deshpande [31]). According to Bhattacharyya et al. [32], the no slip assumptions is not applicable for all 

cases of fluid flow. It is due to some situations where the no slip conditions may be replaced with partial or slip condition. 

Meanwhile, slip conditions is the action when fluid at plate surface will have none zero velocity. Martin and Boyd [33] 

analyzed the momentum and heat transfer in a laminar boundary layer with slip flow. Futhermore, Aman et al. [34] studied 

the slip effects in mixed convection boundary layer flow on vertical surface near the stagnation-point while Sahoo [35] 

considered partial slip on stretching sheet embedded in non-Newtonian fluid. Moreover, Raisi et al. [36] investigated forced 

convection laminar flow of nanofluid through a microchannel in the presence as well as in the absence of slip effects. 

Recently, Mahmoud and Waheed [37] as well as Nandy and Mahapatra [20] observed the slip and heat generation/absorption 

effects on MHD stagnation flow past a stretching surface in nanofluid and micropolar fluid, respectively. In addition, Ibrahim 

and Shankar [38] was studied MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet 

with velocity, thermal and solutal slip boundary conditions. Next, heat transfer analysis due to an unstedy stretching/shrinking 

cylinder with partial slip condition and suction was investigated by Abbas et al. [39]. Moreover, Das et al. [2] was analyzed 

the radiative flow of MHD Jeffery fluid past a stretching sheet with surface slip and melting heat transfer. Then, stagnation 

point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of 

homogeneous-heterogeneous reactions was studied by Abbas et al. [40]. The governing partial differential equations are solve 
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numerically by using shooting method. The result of this paper show that for the shrinking sheet, dual solutions exist in the 

certain range involved parameters, while for stretching sheet, the solutions are unique. 

 

The aim of present work is to investigate the flow and heat transfer analysis of Williamson viscous fluid on the stagnation 

point past a stretching surface in the presence of viscous dissipation and slip conditions. A similar transformation is first used 

to transform the governing non linear partial differential equations into an ordinary differential equations system before RKF 

method is used numerically. Present problem has not been studied before, and then the results reported here are new. 

 

2. MATHEMATICAL FORMULATIONS 
 

Consider the steady two-dimensional flow of a Williamson fluid over a stretching plate as shown in Figure 1. The external 

and stretching velocities are  eu x ax  and  wu x c x , where a and b are constants. It is further assumed that the plate is 

subjected obey the slip conditions. The boundary layer equations are (Salleh et al. [41]): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: Physical model of the coordinate system 
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where u and v are the velocity in the x and y axises,   2

wT x T bx   is the wall temperature,  is the kinematic viscosity, T 

is the fluid temperature, *  is the dimensional velocity slip parameter, *  is the dimensional thermal slip parameter, k  is 

the thermal conductivity,   is the fluid density, pC  is the specific heat,   is the time constant and   is the dynamic 

viscosity. 

Now, we introduce the following similarity variables (Salleh et al. [42]): 
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where   is the stream function 
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By using above functions, Equation (1) is identically satisfies.  

 

Thus, we obtain 

 ( )u cxf  , 
1

2( ) ( )v c f                                   (6) 

 

here prime represents differentiation with respect to  . By using (5) and (6), equations (2) and (3), becomes: 
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a
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noticed that 0   is when the wall temperature remains constant (CWT).  

The skin friction coefficient fC  and the local Nusselt number Nu  are given as 
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The surface shear stress w  is defined as  
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Using the similarity variables in (5) give   
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3. RESULTS AND DISCUSSION  
 

Equations (7) and (8) with corresponding boundary conditions (9) and (10) are solved numerically with the help of  Runge-

Kutta-Fehlberg method. To study the flow behavior, we considered different parameters, namely the Prandtl number Pr , the 

dimensionless velocity slip parameter  , the dimensionless thermal slip parameter  , the stretching parameter  , the non-

Newtonion Williamson parameter  and the Eckert number Ec . In order to validate the efficiency of the method used, the 

comparison values of reduced skin friction coeffienct (0)f   has been made.  

 

Tables 1 and 2 show the comparison result with the previously published results for different values of   and .  It is found 

that the results present in both tables are in a good agreement, therefore we are confident with the results accuracy in this 

problem. 

 

Table 3 presents the various values of the non-Newtonion Williamson parameter .  The results found that as   increases the 

 0  decreases as well as  0f  . The trend of decreasing in  0   and  0f  is just the values declining slowly. 

 

Table 4 presents the various values of the dimensionless thermal slip parameter  . The results found that as   increases the 

 0 decreases as well as  0 . The trend of decreasing in  0   and  0f  is just the values declining slowly. 

 

Table 5 presents the various values of the dimensionless velocity slip parameter  . The results found that as   increases the 

 0 decreases meanwhile the  0  increases. The trend of decreasing in  0   is just the values declining slowly and for 

incresing in  0 the values ascending slowly. 

 

Figure 2 points the temperature profiles for various values of  Pr. Since the value of Pr rises, it is found that the value of the 

wall temperature and the thickness of the thermal boundary layer dropped. Physically, its means when we, the thermal 

diffusivity decreased as Pr increases and these phenomena lead to the decrease of the energy ability and which results the 

thermal boundary layer decreases.  

 

Figure 3 demonstrates the temperature profiles for various values of  . The data found in Figure 3 were similar to Figure 2, 

where as  rises, the value of the wall temperature and the thickness of thermal boundary declines. 

 

 

Table 1. Comparison of the present results to those obtained in previous works when Pr 1 , 0Ec  , 

0  and 0 
 

 
  

Mahapatra and 

Gupta [14] 
Nazar et al. [43] 

Ishak et al. [16] Present 

 0f    0f    0f    0f   

0.1 - 0.9694 - 0.9694 - 0.9694 - 0.96938 

0.2 - 0.9181 - 0.9181 - 0.9181 - 0.91810 

0.5 - 0.6673 - 0.6673 - 0.6673 - 0.66726 

2 2.0175 2.0176 2.0175 2.017502 

3 4.7293 4.7296 4.7294 4.729282 

  

  

Table 2. Comparison of the present results to those obtained in previous works when Pr 3 , 0Ec  , 0  , 0  and 0 
 

 

  

Nadeem et al. [6] Nadeem and Hussain [9] Present 

 0f    0f    0f   

0.1 -1.03446 - -1.034527 

0.2 - -1.076 -1.076289 
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Table 3. Values of  0   and  0f   for the various values of   when Pr 1 ,  1  , 3  , 1Ec  and 1  . 

   0    0f   

0.1 0.63632 1.43531 

3 0.61729 1.18022 

5 0.61588 1.09802 

7 0.61585 1.03969 

9 0.61628 0.99467 

 

Table 4. Values of  0  and  0   for the various values of   when Pr 1 ,  1  , 3  , 1Ec  and 1  . 

   0   0   

0.7 0.47236 0.75377 

3 0.17279 0.27574 

9 0.06509 0.10388 

13 0.04599 0.07339 

20 0.03038 0.04848 

 

 

 

Table 5. Values of  0  and  0   for the various values of   when Pr 1 , 1  , 3  , 1Ec  and 1  . 

   0   0   

0.7 0.43632 0.56368 

3 0.28625 0.71375 

9 0.26925 0.73075 

13 0.26776 0.73224 

20 0.26683 0.73317 

 

 

 
FIGURE 2: Temperature    for various values of Pr when 1, 1, 1Ec    , 1  and 1   
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FIGURE 3: Temperature    for various values of  when 1, Pr 1, 1Ec    , 1  and 1   

 

 

 

Figure 4 presented the temperature distribution for different values of Ec . Note, 0Ec   refers to the case when viscous 

dissipation is not present. From figure, the temperature profiles increases as Ec  increases. This is because of the fact that due 

to large viscous resistance there is more accumulation of heat energy in the fluid particles near the boundary. Also it is 

noticed that Ec  only give a small effect for boundary layer thickness. 

 

Next, Figures 5 and 6 present the temperature profile for various values of   βand  , respectively. Similar trends occurred 

between this both figure where the temperature profiles and boundary layer thicknessθ  decrease as   or   increases. 

Physically we can conclude that the present of both velocity and thermal slip parameter reduced the temperature and the 

boundary layer thickness. 

 

Figure 7 present the velocity profile and skin friction coefficient for several of the velocity slip parameter   respectively. 

From Figure 7, it is found that the velocity gradient decreases as   increases. 

 

Figure 8 present the temperature profile for various values of non-Newtonion Williamson parameter   respectively. From 

this figure, it is found that the temperature profiles and boundary layer thickness increases as   decreases. 

 

Figure 9 present the velocity profile and skin friction coefficient for various values of non-Newtonion Williamson parameter 

  respectively. From this figure, it is found that the velocity gradient increases as well as  decreases. 

 

Figure 10 and 11 illustrate the wall temperature and heat transfer coefficient with   for various values of Ec . Note, only 

positive values of   will discuss in this area. From this figure, it can be seen that no solution can be obtained as   past its 

critical value. Further, it is understand the values of   must be small because to high values of   will effect enough to stop 

the heat transfer process. In addition, the increase of Ec results to the increase of wall temperature and heat transfer 

coefficient as well as increase the range of   for which the solutions exists. It shown that when 1Ec   the physical 
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acceptable solution occur until 1 28.69035c  meanwhile the results for Ec increase to 7Ec  ,   stops at the critical point

1 51.03014c  . 

 

       
FIGURE 4: Temperature    for various values of Ec  when 1, Pr 1, 3    , 1  and 1   

 

                                           
FIGURE 5: Temperature    for various values of   when 1, Pr 1, 1Ec    , 1  and 1   
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FIGURE 6: Temperature    for various values of   when 1, Pr 1, 1Ec    , 1  and 3   

 

 
FIGURE 7: Velocity profiles  f   for various values of   when 1, Pr 1, 1Ec    , 1   and 3   
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FIGURE 8: Temperature    for various values of   when 1, Pr 1, 1Ec    , 1  and 3   

 

 

                                         
FIGURE 9: Velocity profiles  f   for various values of   when 1, Pr 1, 1Ec    , 1   and 3   
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FIGURE 10: Distribution of wall temperature    against with   for various values of Ec   when Pr 1, 1, 3    and

1 
 

  
 

                  

FIGURE 11: Distribution of heat transfer coefficient 

1

2ReNu


against with  for various values of Ec  when

Pr 1, 1, 3,    and 1   
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4. CONCLUSION 
 

In this paper, the stagnation flow and heat transfer of a Williamson viscous fluid towards a stretching surface with slip 

conditions and viscous dissipation is numerically studied. The values of the reduced Nusselt number and the skin friction 

coefficient as well as the temperatura and velocity profiles are affected by Prandtl number Pr , velocity slip parameter  , 

stretching parameter  , thermal slip parameter   , Eckert number Ec and non-Newtonion Williamson viscous fluid 

parameter. As a conclusion, the increases of Prandtl number, stretching parameter, dimensionless thermal and velocity slip 

parameter result to the decreasing in the wall temperature and also thermal boundary layer thickness. Meanwhile, the 

presence of viscous dissipation and non-Newtonion Williamson viscous fluid parameter results to increases of the wall 

temperature. 

 

In addition, the increase of Ec results to the increase of wall temperature and heat transfer coefficient as well as increase the 

range of   for which the solutions exists.  

 

Next, it is suggested that, in the presence of velocity slip parameter is decreased by the skin friction coefficient but not for 

non-Newtonion Williamson viscous fluid parameter the velocity gradient is increases while the Prandtl number, the stretching 

parameter, the thermal slip parameter and Eckert number gives no effect on the skin friction coefficient.  
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