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ABSTRACT 
 

Estimation at a specific time or also known as the filtering technique in estimation and 
control theory is a method to estimate the desired parameters from indirect and 
uncertain observations, taking into account the system and measurement errors. One of 
the applications that implements estimation technique is the simultaneous localization 
and mapping (SLAM) of a mobile robot. SLAM is one of the navigation techniques 
which enables the mobile robot to move autonomously and observes its surrounding in 
an unknown environment. SLAM does not require a priori map, but with the aid of 
sensors on board, the mobile robot incrementally builds a map of the environment and 
use this map to localize its position. Therefore, an estimation technique is used to 
provide the approximate location of mobile robot and landmarks at any time based on 
the measurement data that are recursively recorded by the sensors. In mobile robot 
SLAM, extended Kalman filter (EKF) has been one of the most preferable estimators 
due to its relatively simple algorithm and efficiency of the estimation through the 
representation of the belief by a multivariate Gaussian distribution; unimodal 
distribution, with a single mean annotated with a corresponding covariance uncertainty. 
Nonetheless, EKF-based SLAM suffers from high computational cost due to the update 
process of covariance matrix. One of the objectives of this thesis is to propose an 
alternative method to simplify the structure of covariance matrix by means of matrix 
diagonalization method using eigenvalues. The non-diagonal parts of the covariance 
matrix are cross-correlation elements, which represent the correlation between the 
position of the robot and the landmarks. In diagonalizing the covariance matrix, these 
terms would be eliminated. However, this thesis has proven that the cross-correlation 
elements are important to ensure the accuracy of the estimation; hence it should be 
integrated in the diagonalization process. In EKF-based SLAM, measurement data are 
required at each time step to complete the estimation process. Sudden absence of these 
data might affect the state estimation and the covariance value. Hence, this thesis also 
investigates the impact of this phenomenon, which is addressed as intermittent 
measurement condition. The requirement of Gaussian distribution behavior of 
measurement and system noises has limited the use of extended Kalman filter in all 
conditions. In mobile robot SLAM, the noise characteristics might be unknown. 
Therefore, H∞ filter is used instead of EKF under this condition. One of the biggest 
challenges in implementing H∞ filter-based SLAM is the manual parameter tuning. 
Thus, this thesis also proposes a sufficient condition for the estimation of H∞ filter-
based SLAM by providing a lower boundary of the selection for the parameter gamma 
under specific assumptions and environmental conditions. All of these issues are 
examined and investigated from an estimation-theoretic perspective through 
mathematical analysis. Theorems, lemmas and propositions are proposed to represent 
the findings of the analysis. The results obtained were validated through simulation 
analysis. 
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ABSTRAK 
 

Anggaran pada masa tertentu atau secara khususnya dalam teori anggaran dan kawalan 
dipanggil sebagai teknik penapisan, adalah salah satu kaedah untuk menganggarkan 
sesuatu parameter yang dikehendaki daripada hasil pemerhatian secara tidak langsung 
dan tidak menentu, dengan mengambil kira kemungkinan berlakunya kesilapan 
daripada sistem dan teknik pengukuran. Salah satu aplikasi yang menggunakan teknik 
anggaran ini adalah penyetempatan dan pemetaan serentak (SLAM) oleh robot mudah 
alih. SLAM adalah salah satu teknik navigasi yang membolehkan robot mudah alih 
untuk bergerak dengan sendirinya dan memerhatikan persekitaran sekelilingnya yang 
belum dikenali. SLAM tidak memerlukan peta yang telah tersedia, namun dengan 
bantuan penderia yang diletakkan diatas robot, robot mudah alih mampu untuk 
membina peta persekitarannya secara berperingkat dan seterusnya menggunakan peta 
ini untuk menyetempatkan kedudukannya. Oleh yang demikian, teknik anggaran ini 
akan digunakan untuk menganggarkan kedudukan robot mudah alih dan mercu tanda 
berdasarkan kepada data pengukuran yang direkodkan oleh penderia. Dalam proses 
SLAM oleh robot mudah alih, penapis Kalman lanjutan (EKF) adalah salah satu 
penganggar yang paling kerap digunakan kerana algoritmanya yang mudah dan 
kecekapan anggarannya, melalui perwakilan kepercayaan oleh taburan Gaussian dengan 
berbilang pembolehubah; agihan ekaragam, dengan min tunggal beranotasikan sebuah 
ketidakpastian kovarian sepadan. Walaubagaimanapun, SLAM berasaskan EKF 
memerlukan kos pengkomputeran yang tinggi disebabkan oleh proses mengemaskini 
matriks kovarian. Oleh yang demikian, salah satu objektif tesis ini adalah untuk 
mencadangkan satu kaedah alternatif untuk memudahkan struktur matriks kovarian 
melalui kaedah pepenjuruan matriks menggunakan nilai eigen. Bahagian-bahagian yang 
bukan pepenjuru matriks kovarian adalah dipanggil sebagai elemen sekaitan silang, 
yang mewakili hubungan antara kedudukan robot dan mercu tanda. Dalam teknik 
memenjurukan matriks kovarian, sebutan-sebutan ini akan dihapuskan. 
Walaubagaimanapun, tesis ini telah membuktikan bahawa unsur sekaitan silang ini 
adalah penting untuk memastikan ketepatan anggaran; oleh itu, ia perlu disepadukan 
dalam proses pepenjuruan tersebut. Dalam proses SLAM berasaskan EKF, pengukuran 
data diperlukan pada setiap langkah masa untuk menjayakan proses anggaran. 
Kehilangan data ini secara tiba-tiba mungkin boleh memberi kesan kepada keadaan 
anggaran dan nilai kovarian. Oleh itu, satu lagi objektif tesis ini adalah untuk mengkaji 
kesan fenomena ini, yang dinyatakan sebagai syarat ukuran terputus-putus. Keperluan 
akan sifat taburan tingkah laku dan kehinggaran sebagai Gaussian telah menghadkan 
penggunaan penapis Kalman lanjutan untuk digunakan pada semua keadaan. Dalam 
proses SLAM oleh robot mudah alih, ciri-ciri kehinggaran mungkin tidak diketahui. 
Oleh yang demikian, penapis H∞ adalah lebih tepat untuk digunakan berbanding EKF 
dalam keadaan ini. Salah satu cabaran yang paling besar dalam melaksanakan SLAM 
berasaskan penapis H∞ adalah parameter yang digunakan perlu ditentukan secara 
manual oleh pengguna. Oleh itu, tesis ini juga mencadangkan satu syarat yang 
mencukupi bagi penganggaran SLAM berasaskan penapis H∞ dengan mencadangkan 
nilai minima bagi pemilihan parameter gamma dibawah andaian dan keadaan 
persekitaran yang tertentu. Kesemua isu-isu ini diteliti dan dikaji dari perspektif teori 
anggaran melalui analisis matematik. Teorem, lema dan usul dicadangkan untuk 
mewakili hasil analisis. Seterusnya, keputusan yang diperolehi disahkan melalui analisis 
simulasi. 
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  CHAPTER 1
 
 
 
 

INTRODUCTION 
 

 

1.1 Background of Study 
 

This chapter presents a general overview of navigation activities in mobile 

robot. The simultaneous localization and mapping of mobile robot is discussed; the 

problem that motivates this study is explained. The objectives are listed and followed by 

the scopes, of which this thesis is limited to. This chapter is concluded by underlining 

the organization of the thesis. 

 

1.1.1 Navigation of Mobile Robot 
 

Navigation is a non-trivial issue in mobile robots. In order to autonomously 

navigate and perform useful tasks such as surveillance, exploration in hazardous area, or 

as a transporter in the industry, a mobile robot is required to know its exact position and 

orientation in either known or unknown environment. Navigation of mobile robot is 

normally based on three activities: path planning, localization and map building. In 

these activities, the mobile robot either has been provided by a prior map, in which its 

current position is located, or the mobile robot is well notified about its current position, 

therefore requires it to build the map of that environment. In path planning, the mobile 

robot may also have been provided with an initial map. Its task is to find the path to 

move from its initial position to the target position without collision. 

 

However, if the mobile robot needs to be operated in an unknown environment 

or in an area where no information of the map is available, the robot needs to perform 

two simultaneous activities for the navigation purposes. It needs to map the

 
 



 
 

environment and concurrently localize its position. This technique is called 

simultaneous localization and mapping (SLAM), or concurrent mapping and 

localization (CML). 

 

1.1.2 Simultaneous Localization and Mapping 
 

Simultaneous localization and mapping provides a condition where a mobile 

robot is assigned to observe an unknown environment and incrementally constructs a 

map of the environment that it has recognized. It attempts to localize itself on the 

constructed map recursively until its task is achieved. These activities are accomplished 

with the aid of proprioceptive (e.g., from an odometer) and exteroceptive (e.g., from a 

laser scanner) sensors on board. Using the data fed by the sensors and the algorithm to 

transfer the information obtained in the robot reference frame, the mobile robot is able 

to estimate its current position and the position of the detected feature or landmarks to 

the users or operators. However, this process is susceptible to errors that may be 

generated from various sources such as the sensors, modeling, system, and algorithm. 

Figure 1.1 depicts a simple notion of SLAM. 

 

Studies were conducted in an attempt to minimize the errors by either focusing 

on developing a better algorithm or using appropriate sensors based on the environment 

conditions and situations. In developing a better algorithm, applying estimation 

technique or estimators is one of the preferred approaches. Estimators such as Gaussian 

or nonparametric filters will provide an estimation of the robot and landmarks position 

from the noisy data recorded by the sensors. Several Gaussian filters have been 

implemented in mobile robot SLAM such as the Kalman filter and its derivatives 

(extended Kalman filter, unscented Kalman filter, and compressed Kalman filter), 

information filter, and H∞ filter. These filters are commonly based on the probabilistic 

theory. On the other hand, particle filter and histogram filter are the examples of 

nonparametric filters. 

 

Nevertheless, there are several concerns with regards to using estimators in 

mobile robot SLAM, such as uncertainties, high computational cost, data association, 

dynamic environment and model approximation. These issues have brought up a huge 

area for the researchers to focus on. 
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Figure 1.1. Simultaneous localization and mapping: mobile robot makes relative      
measurements with some uncertainties. 
 

1.2 Problem Statement 
 

The main goal in the development of SLAM algorithm using an estimator is to 

obtain an optimum solution of the estimation. This includes an accurate and consistent 

estimation, low computational cost, ability to handle uncertainties and robustness. One 

of the most popular estimators in mobile robot SLAM is Kalman filter due to its 

simplicity and computational efficiency (Thrun et al., 2005). In Kalman filter-based 

SLAM, the estimation is based on how effective the filter reduces the uncertainties 

generated during the observation. These uncertainties, calculated iteratively to 

continuously identify the efficiency of estimation, are presented in the form of 

covariance matrix, which is an essential parameter in this thesis. Larger uncertainties 

would normally lead to more erroneous estimation; hence, smaller uncertainties are an 

apparent target to ensure a better estimation. 

 

One of the drawbacks of Kalman filter-based SLAM is the process to generate 

the covariance matrix. The Kalman filter generally requires an update time of 2( )m , 

in which most of the computation time is used to update and calculate the covariance 

Initial robot position 

Uncertainties 

Measurements 

Global coordinate 

Moving direction 
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matrix. Parameter m  stands for the landmarks, and this number increases as more 

landmarks are detected. Therefore one of the aims of this thesis is to find the possible 

technique to simplify the structure of covariance matrix to reduce the computational 

cost of Kalman filter-based SLAM. 

 

However, the structure of the covariance matrix cannot be easily simplified 

since each term in the covariance matrix represents the variances and correlations of 

different parameters. The major parts of the covariance matrix are the cross-correlation 

elements, which represent the correlation between the position of the robot and the 

landmarks. Some of the approaches in simplifying the covariance structure are by 

eliminating the cross-correlation elements. Nonetheless, the cross-correlation cannot be 

simply removed and it is important to ensure the accuracy of the estimation. In this 

thesis, the importance of cross-correlation terms is proven by means of the 

mathematical approach. 

 

In general, SLAM of mobile robot is assumed to be conducted under the optimal 

conditions: no dynamic obstacles, the environment is planar and the measurement data 

are always available. In reality, these are not always the case, especially in terms of the 

continuous availability of the measurement data. In implementing the Kalman filter in 

SLAM, the measurement data are required at each time step for the correction of the 

state estimation. Sudden loss of these data might have an impact on the state estimation 

and the covariance value. Hence, this thesis also aims to investigate the impact of this 

phenomenon; addressed as intermittent measurement condition on the Kalman filter-

based SLAM to investigate the ability of Kalman filter in handling uncertainties. 

 

The main characteristic in implementing Kalman filter as an estimator is the 

Gaussian behavior of the noises. The noises in the system and from the measurement 

process must hold white Gaussian distribution criterion, in which zero mean with 

associated variance based on probability distribution function. This requirement has 

degraded the performance of the Kalman filter for the application of SLAM under the 

condition of unknown noise characteristics. Therefore, H∞ filter could be an alternative 

in this particular condition. However, there are certain conditions and parameters that 

need to be well defined to ensure the H∞ filter-based SLAM performs better than 
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Kalman filter-based SLAM. Improper tuning of the parameters will lead to the 

inconsistency of the estimation and to the finite escape time problem phenomenon. 

 

1.3 Research Objectives 
 

This research is conducted using an inductive method of general research 

strategy. The inductive methods analyze the observed phenomenon and identify the 

general principles, structures, or processes underlying the phenomenon observed (Nik 

Mohamed, 2014). The purpose of this kind of research is to develop explanations on the 

investigated subject or phenomenon. Therefore this thesis aims to perform a theoretical 

analysis to provide the knowledge on the abovementioned problems of mobile robot 

SLAM in the direction of system analysis, perspective of control, and estimation theory. 

By employing the inductive method and based on the research problems, this thesis was 

guided by the following research objectives: 

 

(i) To prove that the cross-correlation is important in Kalman filter-based 

SLAM of mobile robot by means of a mathematical approach. 

(ii) To diagonalize the covariance matrix of Kalman filter-based SLAM with the 

aim to reduce the computational cost. 

(iii) To scrutinize the behavior of covariance matrix and state estimation of 

Kalman filter-based SLAM under intermittent condition. 

(iv) To propose a sufficient gamma value in H∞ filter-based SLAM under 

specific conditions. 

 

1.4 Scope of Study 
 

The topic for each research problems of this thesis will be discussed in separate 

chapters. The covariance matrix is the main dependent variable of the study in all 

research problems. The issues are investigated and theoretically analyzed based on the 

pre-defined specific environmental conditions and assumptions. The results of the 

analysis are presented by several propositions, lemmas and theorems. The proposed 

theorems are validated against simulation analysis. The scope of this thesis is, however, 
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limited to the theoretical framework and simulation. The experimental work is not a part 

of the present study, but it is going to be addressed in the future work. Generally, the 

area of study involved in this thesis is shown by Figure 1.2. 

 

1.5 Thesis Overview 
 

The remainder of this thesis is organized as follows. 

 

Chapter 2 presents the literature review of the development in simultaneous 

localization and mapping of the mobile robot by focusing on the issues of estimators 

and uncertainties. However, the related works concerning the research problems of this 

thesis are discussed in detail in each dedicated chapter. 

 

Chapter 3 explains the research methodology used in this thesis and provides the 

fundamental of the theoretical formulations of the models, the Kalman filter, and H∞ 

filter. 

 

Chapter 4 covers the first research problem, the importance of cross-correlation 

elements. This chapter concludes the first objective of the thesis. 

 

 
 

Control 
Theory 

Estimation 
Theory 

System 
Analysis 

Figure 1.2. Area of study. 

Navigation of mobile robot (SLAM) 
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Chapter 5 delineates the whole discussion of the second research problems, the 

simplification of the covariance matrix by means of the diagonalization method. This 

completes the second objective of this thesis. 

 

Chapter 6 describes the impact of the intermittent measurement on the Kalman filter-

based SLAM; this is to prove the ability of Kalman filter in handling uncertainties, and 

therefore fulfills the third objective of the thesis. 

 

Chapter 7 discusses the performance analysis of H∞ filter in mobile robot SLAM, and 

provides the conditions and a boundary of parameter selection in which H∞ filter 

outperforms the Kalman filter. This chapter accomplishes the final objective of the 

thesis. 

 

Chapter 8 concludes the thesis with a summary of the contributions and suggestions of 

the future research directions with regards each issue. 

 

The publications generated from this thesis are listed in the appendix. 
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  CHAPTER 2
 
 
 
 

LITERATURE REVIEW 
 

 

2.1 Introduction 
 

In this chapter, a brief overview of the state of art in simultaneous localization 

and mapping of mobile robot is presented. The first section describes the history and 

types of localization and mapping in mobile robot in brief. Section 2.3 emphasizes on 

the development of SLAM in mobile robot in general. The subsequent section focuses 

on the improvement of Kalman filter-based SLAM and related issues that have been 

discussed in the Chapter 1. However, the related literatures on each research problem 

are not presented here since they are discussed in the dedicated chapters. 

 

2.2 Localization and Mapping in Mobile Robot 
 

Prior to the merging of the localization and mapping in mobile robot, these two 

activities were performed individually. Localization is a process of defining the position 

of mobile robot in a map. Generally, there are two types of localization strategies: 

relative or local localization, and absolute or global localization. In the local localization 

(e.g. wheel-based odometry and dead-reckoning), the mobile robot tracks its position 

based on its initial position using the information provided by the on-board sensors 

(Barshan and Durrant-Whyte, 1995, and; Borenstein and Liqiang, 1996). In global 

localization, the mobile robot determines its position with respect to a global reference 

frame with an assist from the beacons, landmarks or satellite-based signals (e.g. GPS) 

(Leonard and Durrant-Whyte, 1991a; Betke and Gurvits, 1997; Eom et al., 2010, and; 

Park and Park, 2014). Local localization suffers from the sensor noises and limitations, 

uncertain measurements, and wheel slippage, while costly installation of beacons, 

 
 



 
 

dependencies towards landmarks, and poor availability of satellite signal are some of 

the disadvantages of global localization (Betke and Gurvits, 1997; Goel et al., 1999; and 

González et al., 2009). Therefore, an alternative technique was proposed, which 

employed a probabilistic localization that utilizes the probability function to estimate 

the position of the mobile robot using the measurement data with prior knowledge of 

the environment and measuring devices. Chatila, Laumond and Crowley were the first 

to employ Kalman filter in mobile robot localization with the aid of a priori map 

(Chatila and Laumond, 1985; and Crowley, 1989). 

 

With regards to the mapping, the earliest map was represented by fine-grained 

grids developed by Elfes and Moravec (Elfes, 1987; and Moravec, 1988); it is termed as 

the occupancy grid maps. The grids model the occupied and the free space of the 

environment by means of a collection of discretized pixels. This type of representation 

was then being used by (Borenstein and Koren, 1991; and Thrun, 2003). Other types of 

mapping techniques are the topological and metric map. The topological map represents 

an environment using a collection of nodes connected via arcs and their 

interconnections (Kuipers and Byun, 1991, and; Choset and Keiji, 2001). The metric 

representations directly describe the robot environment in an absolute coordinate 

system. This type of map is also known as the feature-based map, since the data are in 

fact the collection of landmarks locations and the correlated uncertainty between them 

(Leonard and Durrant-Whyte, 1991b; and Dissanayake et al., 1999). An example of a 

metric approach is the simultaneous localization and mapping algorithms. 

 

2.3 Development of Simultaneous Localization and Mapping 
 

The earliest development of the simultaneous localization and mapping in 

mobile robot was initiated by Cheeseman and Smith (Smith and Cheeseman, 1986; and 

Smith et al., 1990). They introduced a representation of the mobile robot position and 

the position of all landmarks in a joined state vector combination with a full covariance 

matrix, which is known as a stochastic map. Smith et al. discussed the concept in the 

context of feature-based mapping with point landmarks. These works pioneered the 

probabilistic approach by means of an estimator such as the Kalman filter to 

concurrently solve the localization and mapping problem in mobile robot. 
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The research in navigation, and simultaneous localization and mapping of 

mobile robot was started by the Robotics Research Group, University of Oxford in 

1990s. Hugh Durrant-Whyte, J. J. Leonard, J. K. Uhlman, M. Csorba, S. J. Julier, and 

P. M. Newman were among the researchers from the group that have strengthened the 

fundamentals of mobile robot SLAM using Kalman filter, and implemented SLAM on 

the ground and underwater mobile robot (Leonard, 1990; Leonard and Durrant-Whyte, 

1991a, b; Uhlmann, 1995; Csorba, 1997; Julier, 1997; and Newman, 1999). Since then, 

SLAM has become a highly active field of research.   

 

SLAM has been applied in a wide range of applications such as in mining 

(Nuechter et al., 2004, and; Zlot and Bosse, 2014), underwater robot or vehicle 

(Newman, 1999; West and Syrmos, 2006; Ribas, 2008; Wang et al., 2013; and Paull et 

al., 2014) and unmanned air vehicles (Kim and Sukkarieh, 2003; and Grzonka et al., 

2012) using various techniques such as the 3D visualization (Henry et al., 2014, and; 

Zlot and Bosse, 2014), multiple robot navigation (Saeedi et al., 2011; Forster et al., 

2013; and Lazaro et al., 2013), vision-based strategies (Davison et al., 2007, and; Celik 

and Somani, 2013), and learning strategies by means of artificial intelligence 

(Chatterjee and Matsuno, 2007; Saeedi et al., 2011; and Fu et al., 2014). Figure 2.1 

shows some of the applications of SLAM in robotics. Recently, SLAM has been 

implemented not only in the robot or vehicle but also in medical instruments such as the 

wireless capsule endoscopy (Body-SLAM) (Bao, 2014) and home appliances (Lee et 

al., 2012).  

 

Besides the type of applications mentioned above, there are huge research areas 

and issues that can be explored in SLAM as depicted in Figure 2.2. Since SLAM can be 

applied in a multitude of devices and applications, the issues and problems in SLAM 

differ from one application to another. For instance, in selecting the sensors (sonar, laser 

scanners (Rogers et al., 2014), wheel encoder, gyroscope or cameras), the problems that 

might arise are such as noises, accuracy, cost of implementation, in addition to the 

quality and quantity of information gained depending on the application of interest. 

Camera is the most preferred device nowadays due to its fast reaction and feedback, 

high accuracy, and low in cost. Nonetheless, it suffers from the initialization problem of 

landmark position (Mohammadloo et al., 2013; Guerra et al., 2014; and Valiente et al., 

2015). 
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Figure 2.1. Application of SLAM in various terrains and environments. 
 

(a) Autonomous underwater vehicle (Oberon) developed by Australian Centre for 
Field Robotics at the University of Sydney, Australia. 

 Source: Newman (1999) 
 

(b) Hexarotor MAV with on-board sensing and processing developed by Robotics 
Institute of Carnegie Mellon University, USA. 

 Source: Likhachev (2013) (Likhachev, 2013) 
 

(c) RWI B21 indoor mobile robot at the Computer Science and Artificial 
Intelligence Laboratory, Massachusetts Institute of Technology, USA. 

 Source: Thrun et al. (2005) 
 

(d) The Groundhog robot built to map abandoned mines, developed by Stanford 
Artificial Intelligence Laboratory, Stanford University, USA. 

 Source: Thrun et al. (2005) 
 
 
 

(a) (b) 

(c) (d) 
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Figure 2.2. Issues and studies on the problems in SLAM.  
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Other than the sensors, an adequate knowledge of the environment is also vital 

to ensure correct implementation of SLAM. SLAM is developed based on the 

conditions and limitations of the environment: either in indoor or outdoor application 

(Oh et al., 2014; Brand et al., 2015; Dong-Il et al., 2015; and López et al., 2015), or in 

static or dynamic environment (Todoran and Bader, 2015). The localization and 

mapping technique, in addition to the control architecture are equally important in 

establishing an optimal and robust SLAM. Moreover, data association is one of the 

challenging problems in SLAM. The problem arises when the detected landmark from 

the observation cannot be properly identified from the landmarks stored in the existing 

map. It is important to identify the correct correspondences between sensed and mapped 

landmarks. Various solutions to the problem have been proposed (Neira and Tardos, 

2001; Gil et al., 2006; Bosse and Zlot, 2008; Baum et al., 2015; Brekke and Chitre, 

2015; and Zhang et al., 2016). This thesis, on the other hand, focuses on the estimator 

used in SLAM, particularly the H∞ and Kalman filter in investigating the possible 

technique to reduce the computational cost, handling the uncertainties and robustness as 

explained in Section 1.2. Literatures regarding these issues are presented in Section 4.2, 

5.2, 6.2 and 7.2. Moreover, linearization error, consistency and convergency are some 

of other concerns in applying the estimator in SLAM (Castellanos et al., 2004; Bailey 

and Durrant-Whyte, 2006; Bailey et al., 2006; Castellanos et al., 2007; Huang and 

Dissanayake, 2007; Paz et al., 2008; Li et al., 2009, and; Saha and Chakravorty, 2016). 

However these problems are beyond the scope of the thesis. 

 

2.4 Solutions to SLAM 
 

An approach that is able to tolerate uncertainties in SLAM is the probabilistic 

technique. This technique, which is based on Bayesian approach is preferred to the more 

complex, computationally expensive behavior-based SLAM and mathematical-based 

SLAM (Thrun et al., 2005). The probability-based approach takes into account these 

limitations reasonably well as it does not require extensive mathematical computation or 

the demand of high reliability sensors to estimate the position. The extended Kalman 

filter (EKF) is an example of the probabilistic techniques. EKF’s application in SLAM 

has become popular in the early 2000s and still receives high attention among 

researchers (Dissanayake et al., 2001; Nieto et al., 2006; Castellanos et al., 2007; Huang 

and Dissanayake, 2007; Paz et al., 2008; and D'Alfonso et al., 2013). An early 
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development of EKF-based SLAM was proposed by Gamini Dissanayake et al. 

(Dissanayake et al., 2001, and; Huang and Dissanayake, 2007) notably due to its simple 

application and low computational cost as compared to other probabilistic approaches. 

In extended Kalman filter, the estimation is based on how effective the filter reduces the 

uncertainties that are generated during the observation. These uncertainties are 

calculated iteratively to continuously identify the efficiency of estimation; this is 

presented in the form of covariance matrix. Larger uncertainties lead to more erroneous 

estimation; hence, smaller uncertainties are an obvious target. The results of Huang et 

al.’s work (Huang and Dissanayake, 2007) suggest that the covariance matrix or 

uncertainties will converge if the mobile robot is able to continuously observe the 

landmarks. 

 

Unfortunately, SLAM demands further considerations for the environmental 

conditions. An assumption of Gaussian noise has restricted extended Kalman filter 

performance as the main player thus allowing space for a more robust approach such as 

the particle filter (PF) (Montemerlo and Thrun, 2003; and Pei et al., 2014). Nonetheless, 

the particle filter is more complex and computationally expensive in addition to being 

difficult to be applied online. Therefore, the H∞ filter approach for SLAM is proposed to 

mitigate the aforementioned issues as this particular technique is more robust as 

compared to the extended Kalman filter as far as the non-Gaussian noise is concerned 

(Simon, 2006, and; West and Syrmos, 2006) while having a much lower computational 

cost as compared to the particle filter (Simon, 2006; and Lewis et al., 2008). 

 

2.5 Summary 
 

The localization and mapping processes used to be performed separately until 

they were merged and executed simultaneously. Today, SLAM is used in a large 

number of applications such as in the mining sector, military technology, home 

appliances and medical devices.  There are several issues that need to be addressed 

when employing SLAM in any application. The Kalman filter is preferred due to its 

simplicity, ability to be applied online and computationally inexpensive. The related 

works concerning the specific research problems are presented in detail in each 

dedicated chapter: Section 4.2, Section 5.2, Section 6.2 and Section 7.2. 
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  CHAPTER 3
 
 
 
 

RESEARCH METHODOLOGY 
 

 

3.1 Introduction 
 

This chapter details the research methodology used in this thesis. The chapter 

begins with the theoretical formulations of the models employed to represent a mobile 

robot, the environment and the estimation method used in order to solve the 

simultaneous localization and mapping of a mobile robot. The discussions emphasize on 

the process and the observation models, in Section 3.2, and the map characteristics in 

Section 3.3. This is followed by a brief overview of the estimation techniques used in 

the study; Kalman filter and H∞ filter. Section 3.5 elaborates the overall process of the 

research in the form of a flow chart and a short description for each step. However, the 

detail explanation on the methodology used in each research problems and the 

algorithms of the simulations are presented in each dedicated chapter. 

 

3.2 System Models 
 

This thesis deals with two dimensional (2D) SLAM and the map is also 

represented as a 2D map. SLAM is represented through discrete time dynamical system 

equation using process and observation model. 

 

3.2.1 Process Model 
 

The process model in mobile robot SLAM describes the kinematics and 

movements of a mobile robot. The mobile robot moves in an environment and measures 

its relative distance to existing landmarks using sensors. This process is performed in 

 
 



 
 

order to locate its position and simultaneously detect and verify the position of the 

landmarks. On the other hand, the measurement process is represented using the 

observation model. 

 

The process model of the mobile robot localization and mapping at time 1k + , 

described as a function of state vector kX , control input ku  and process noise kw   

evaluated at time k , is defined as: 

 

 1 1 1( , , , )k k k kX f X u w k+ + +=   (3.1) 

 

The state vector of a 2D SLAM 3 2m
kX +∈  is a joint state-vector of robot position rX  

and position of landmark mX , which has the following structure: 

 

 [ ]T
k r mX X X=   (3.2) 

 

where the position of the mobile robot [ ]r r T
r k k kX x yθ=  is represented by the robot 

heading angle kθ  and the coordinates of the center of mobile robot with respect to the 

global coordinate frame ( , )r r
k kx y , as depicted in Figure 3.1. The state of the landmarks 

[ ]1 2
T

m mX =       are modeled as a set of point landmarks and described by the 

Cartesian coordinate ( , )i ix y , 1, 2, ,i m=  , where m  refers to the number of 

landmarks in the environment. Therefore, the full state of the SLAM can be described 

as follows: 

 

 1 1

Tr r
k k k k i iX x y x y x yθ =     (3.3) 

 

The control input of the robot movement is designated by [ ]T
k k ku γ ω= , 

where kγ  is a mobile robot turning rate and kω  is its velocity with associated process 

noises, δγ  and δω . The process noise kw  is a zero-mean Gaussian noise of δγ and δω  

with covariance kQ , i.e. ~ (0 , )k kw Q . Therefore, the whole process model for the 

complete system of mobile robot SLAM may be written as 

16 



 
 

 

Figure 3.1. Process and observation model of mobile robot SLAM. 
 

 
1 1 1

1 1 1

( ) ( 1) ( 1)( 1) ( )

1 1

0 0
0 0 0 0

0
0 0 0 0 0

m m m

k k k k k

r k r k r kr k r k

m m

X F X u w

F u wX X
I

I

+ + +

+ ++

= + +

        
        
        = + +        
        
             

  

  





 

     

 

  (3.4) 

 

where 
i

I


 is an identity matrix with dimension of ( )i i× 

  and 0
i
 is the null matrix with 

a similar dimension as 
i

I


. Both matrices are dedicated for the landmarks state due to 

the stationary behavior of the landmark. 

 

3.2.1.1 Mobile Robot Model 
 

The mobile robot considered in this thesis is a two-wheel (uni-cycle) differential 

drive with the center of mass located below the axle of the robot, and are equipped with 

the range and bearing sensors onboard, as illustrated in Figure 3.2. The mobile robot is  
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r
kx

r
ky kθ
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X

Y

ir

(0) (0,0,0)rX =

kω

kg
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Figure 3.2. Process model of mobile robot. 
 

assumed to be operated on a planar plane with the wheel always remain vertical and that 

there is, in all cases, one single point of contact between the wheel and the ground 

plane. Furthermore, there is no slippage occurred at this single point of contact for all 

time. Thus, the process model of this type of mobile robot after the translation from 

robot reference frame to global reference frame is defined as follows (Martinelli et al., 

2005, and; Huang and Dissanayake, 2007): 

 

 

1

( 1) 1

1

( )

( ) cos ( )

( ) sin ( )

k k k

r r
r k k k k k

r r
k k k k

T

X x x T

y y T

θ θ γ δγ

ω δω θ

ω δω θ

+

+ +

+

+ +   
   
   = = + +
   
   + +   

  (3.5) 

 

where T  is the sampling rate or time interval of one movement step. 
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3.2.1.2 Landmark Model 
 

There are many different types of landmarks and landmark sensors that have 

been proposed in the literature. Among the common examples are (Frese, 2004): 

 

• Artificial landmarks: ultrasonic beacons, radio transmitters, infrared 

transmitters, laser reflectors, visual markers of specific color or pattern, 

inductive loops in the ground. 

• Natural landmarks: corners, walls, vertical lines, visual corners, doors, 

ceiling grates, trees. 

• Landmark sensors: ultrasonic transducers, laser range scanners, cameras. 

 

These landmarks are normally used in the hardware implementations. However, 

since this thesis involves no experimental work , the landmarks used for the discussion 

will be restricted to point landmarks in the planar plane, and are assumed to be 

stationary at all time. The landmark is described by two Cartesian coordinates ( , )i ix y  

and it is assumed that the sensors measure the location of the landmark relative to the 

robot’s current position ( , )r r
k kx y , as depicted in Figure 3.1. Hence the process model for 

the landmarks at time 1k +  is 

 

 
( 1) ( )

1( 1) 1( 1) ( 1) ( 1) 1( ) 1( ) ( ) ( )

m k m k

T T

k k i k i k k k i k i k

X X

x y x y x y x y

+

+ + + +

=

   =    

  (3.6) 

 

3.2.2 Observation Model 
 

The observation or measurement process performed by the sensors of the mobile 

robot in localization and mapping is represented by an observation model. In mobile 

robot SLAM, the observation of the i-th landmark possesses range and bearing readings, 

which indicate relative distance ir  and relative angle iφ  of the mobile robot to any 

observed landmarks in the environment. It is assumed that the mobile robot is equipped 

with the range and bearing sensors onboard and encoders at the wheels to measure the 
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speed. However the type of encoders is not of interest of this study since the thesis only 

focuses on the simulation work. The speed of the mobile robot is determined by the 

user. It is defined in the control input, ku . 

 

The observation model of the mobile robot SLAM is defined as in Eq. (3.7), 

where [ ]T
k rv φυ υ=  is the zero-mean Gaussian observation noise applied to the range 

and bearing observations with covariance kR , i.e. ~ (0 , )k kv R . In this thesis, the 

observation model is also addressed as the measurement model. Process and 

observation models of the mobile robot localization and mapping are illustrated in 

Figure 3.1 on page 17. 
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  (3.7) 

 

3.3 Characteristics of Maps 
 

As the mobile robot moves in the environment and scans the available 

landmarks, it maps the environment based on the measurement data gathered. The map 

consists of a set of landmarks with defined location. The landmarks may or may not be 

known in the mapping process. However in SLAM, the latter is always the case. 

 

The map can be defined in two forms; absolute and relative map (Newman, 

1999). An absolute map is the map in which all landmarks are registered in a Cartesian 

coordinate system by referring to the global coordinate frame. This map has a simple 

form, and is written in form of vector as follows: 
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  (3.8) 

 

Figure 3.3 illustrates the absolute map with three landmarks. 

 

In the relative map form, the landmarks are represented by the relationship 

between individual landmarks, as shown in Figure 3.4. These relationships are stored in 

the relative map states, such as that between the landmarks p  and q  is written as 

( , )p q . In the point landmarks, the state are simply the vector subtraction of two absolute 

landmark locations, ( , )p q q p= −   . The relative map is written in the vector form as 

follows: 

 

 ( , )

( , )

p q
r

q s

L

 
 
 =
 
 
 









  (3.9) 

 

In this thesis, an absolute map form is used to present the state of the landmarks. 

The selection is due to its simplicity, and to maintain the whole coordinates of both 

robot and landmarks, which are referred to the global coordinate frame. Moreover, the 

observations are made from the mobile robot relative to the landmarks position. 

Therefore, the absolute map form is superior than its counterpart to represent the whole 

SLAM system in this thesis. 
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Figure 3.3. An absolute map with three landmarks. 
 

 

 

 

Figure 3.4. Three landmarks representation through a relative map. 
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Figure 3.5. Three types of estimation problem. 
 

Source: Gelb et al. (2001) 
 

3.4 Estimation of the State 
 

Estimation is a process of extracting desired information (i.e. parameters) from 

the indirect and uncertain observations (measurements) by utilizing the measurement 

errors, effects of disturbances on the system, control actions of the system, and prior 

knowledge of the information. There are three types of estimation problems namely 

filtering, smoothing, and prediction. If the time at which an estimation is desired 

coincides with the last measurement, the problem is called as filtering. When the time of 

estimation falls within the span of the measurement data, the problem is referred to as 

smoothing. The prediction, on the other hand, describes the problem in which the time 

of interest occurs after the last available measurement. The timeline that describes these 

three problems is illustrated in Figure 3.5 (Gelb et al., 2001). 
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Figure 3.6. Estimation in mobile robot SLAM using Kalman filter. 
 

The estimation approach in mobile robot SLAM is to develop a filtering process 

for the system, as the estimation is performed at the instant time of the measurement 

data. In this thesis, two types of filter (also known as estimators) will be examined; 

Kalman filter and H∞ filter. Both filters are recursive least squares estimators. They 

produce at time k  a minimum mean squared error of an estimate ˆ
kX +  of a state vector 

kX . This estimate is obtained by fusing a state estimate prediction ˆ
kX − , that evolves 

over time as a function of robot controls ku , with an observation kz  of the state vector 

kX . The estimate ˆ
kX +  is the conditional mean of kX  given all observations 

[ ]1, ,k kZ z z=   until the time k  is available. The state prediction and the measurements 

process describe the dynamical stochastic system of the mobile robot and its 

environment as illustrated in Figure 3.1 (on page 17). The state at time 1k +  is 

stochastically dependent on the state at time k  and the control 1ku + . Further, the 

measurement 1kz +  depends stochastically on the predicted state at time 1k + . Figure 3.6 

illustrates the example of the whole estimation process using Kalman filter. 
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3.4.1 Kalman Filter 
 

The Kalman filter is one of the Gaussian filters that model the quantities such as 

sensor measurements, controls, and the states of the robot and its environment as 

random variables. These variables are determined through probability functions, and 

represented as a belief. A belief is a concept to represent the state transition probability 

that reflects the robot’s internal knowledge about the state of the environment. Gaussian 

techniques possess the basic idea that the beliefs are represented by multivariate normal 

distributions and unimodal; they possess a single maximum, which is generally denoted 

as ( )2; ,X µ σ , a random variable that is represented through its mean, and its 

variance. Often, X  will be a multi-dimensional vector and are characterized by the 

density distribution functions of the following form: 

 

 ( ) ( ) ( ) ( )
1

12
1det 2 exp
2

Tp X P X P Xp µ µ− − = − − − 
 

  (3.10) 

 

where µ  is the mean vector, and P  is a positive semidefinite and symmetric matrix 

known as the covariance matrix. In general, if X  is a scalar value, 2P σ= . More 

explanations on the probabilistic robotic, Gaussian filters and all the concepts of 

probability distribution function of mobile robot focusing on SLAM are presented in 

(Thrun et al., 2005). In this thesis, only the important parameters will be explained for 

the sake of brevity. 

 

In the mobile robot SLAM, the position of the robot and landmarks are 

estimated by means of the Kalman filter (KF) based on the probabilistic concept 

explained earlier. The state vector is predicted based on the system’s previous 

information and is then estimated based on the measurement data obtained from the 

sensors as illustrated in Figure 3.6. The Kalman filter provides the mean that indicates 

the updated state vector ˆ
kX , and the covariance of the estimation kP , which designates 

the estimation error. The steps for localizing and mapping the mobile robot and the 

landmarks under linear and nonlinear assumptions using Kalman filter are described in 

the following subsections. 

25 



 
 

3.4.1.1 Linear Assumption 
 

In a linear system, the process model of SLAM from time k  to time 1k +  is 

described as 

 

 1 1 1 1 1k k k k k kX F X G u w+ + + + += + +   (3.11) 

 

where kX  is the state of the mobile robot and landmarks, 1kF +  is the state transition 

matrix, 1kG +  is the control matrix that mapped the control inputs 1ku +  into the state 

space, and 1kw +  is the zero-mean Gaussian process noise with covariance 1kQ + . On the 

other hand, the observation model is defined as 

 

 1 1 1 1

i r

k k k k
i

r
z H X v

φ

υ

φ υ
−

+ + + +

+ 
 = = +
 + 

  (3.12) 

 

where 1kH +  is the observation matrix that describes the parameter captured from the 

observation and Eq. (3.12) is equivalent to the Eq. (3.7). 

 

The Kalman filter is used to estimate the mobile robot pose and landmark 

location. It recursively computes the estimation of a state kX  according to the process 

and observation model in Eq. (3.11) and Eq. (3.12). An estimate at the time 1k +  can be 

obtained through the expected values of the process model on the first k  observations, 

 

 1 1 1 1
ˆ ˆ

k k k k kX F X G u−
+ + + += +   (3.13) 

 

with the corresponding state error covariance matrix 

 

 1 1 1 1
T

k k k k kP F P F Q−
+ + + += +   (3.14) 

 

These two equations are normally being described as a prediction or time update stage 

of Kalman filter on the system behavior before the measurement data are cooperated for 
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the correction, as shown in Figure 3.6. Throughout the thesis, parameter 1
ˆ

kX −
+  will be 

addressed as a predicted or priori state while 1kP−
+  will be denoted as predicted or priori 

state error covariance. These parameters are required in the analysis discussed in 

Chapter 5. 

 

Using the information from predicted state, the observation at time 1k +  is 

predicted. The predicted observation 1ˆkz +  has the following characteristic: 

 

 [ ]

1 1

1 1

1 1

ˆ

ˆ

k k k

k k k

k k

z z Z

H X Z

H X

+ +

+ +

−
+ +

=   

=

=



 z   (3.15) 

 

The difference between the actual observation at time 1k +  and the predicted 

observation is known as the innovation matrix 1kµ + , whereas 1kS +  is associated 

covariance matrix for the innovation. Both parameters are defined as follows: 

 

 

1 1 1

1 1 1

1 1 1 1 1

1 1 1

ˆ

ˆ

ˆ

k k k

k k k

k k k k k

k k k

z z

z H X

H X v H X

H X v

µ + + +

−
+ + +

− −
+ + + + +

−
+ + +

= −

= −

= + −

= +

  (3.16) 

 

 
( ) 1 1 1

1 1 1 1

T
k k k

T
k k k k

S

H P H R

µµ µ µ+ + +

−
+ + + +

 =  

= +


  (3.17) 
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 ( )

( ) 1 1 1

1 1 1 1

1 1

T
X k k k

T

k k k k

T
k k

S X

X H X v

P H

µ µ−
+ + +

− −
+ + + +

−
+ +

 =  

 = +  

=



 



   (3.18) 

 

where 1 1 1
ˆ

k k kX X X− − −
+ + += −  is the error of the state estimation in the prediction stage. The 

Kalman filter will attempt to minimize the expected mean squared error of the 

distribution. Therefore, a weighting matrix is chosen for this purpose, which defines the 

correction factor that needs to be implied based on the value of covariance of the 

prediction error and the innovation ( ) 1X kS µ + , and the covariance of the innovation 

( ) 1kS µµ + . This weighting matrix is known as the Kalman gain 1kK +  and is defined as 

 

 
( )

( )

1

1 ( ) 1 ( ) 1

1

1 1 1 1 1 1

k X k k

T T
k k k k k k

K S S

P H H P H R

µ µµ

−

+ + +

−− −
+ + + + + +

=

= +

  (3.19) 

 

Therefore the Kalman update step or measurement update stage for the state 

estimate and the covariance of the estimate is given by 

 

 1 1 1 1
ˆ ˆ

k k k kX X K µ+ −
+ + + += +   (3.20) 

 

 ( )1 1 1 1k n k k kP I K H P+ −
+ + + += −   (3.21) 

 

Both parameters are denoted as the updated state or posteriori state 1
ˆ

kX +
+  and updated 

state error covariance or posteriori state error covariance 1kP+
+  throughout the thesis. 

These parameters are vital in accomplishing the first, second and third objectives. 

Besides, the updated state error covariance can also be expressed in terms of innovation 

matrix as follows: 

 

 1 1 1 ( ) 1 1
T

k k k k kP P K S Kµµ
+ −
+ + + + += −   (3.22) 
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In Kalman filter, the estimation error, process and observation noise are all 

uncorrelated. The results of the Kalman filter in the linear case are summarized in 

Table 3.1 on page 42. 

 

3.4.1.2 Nonlinear Extended Kalman Filter 
 

In the nonlinear form, the process and observation model of nonlinear SLAM 

are described as 

 

 ( )1 1 1, , ,k k k kX f X u w k+ + +=   (3.23) 

 

 ( )1 1, ,i r
k k k

i

r
z h X v k

φ

υ
φ υ

−
+ +

+ 
= = + 

  (3.24) 

 

The detail explanations of the parameters are presented in Section 3.2. The estimation of 

a nonlinear system using Kalman filter is performed through a modified form of the 

Kalman filter, known as the extended Kalman filter (EKF). In EKF, the process and 

observation models are assumed to be locally linear and the respective noises kw  and 

kv  are small. The process model of the Eq. (3.23) is linearized as a Taylor series 

expansion about ˆ
kX , under the conditions as defined in Assumption 3.1 on  page 33. 

 

 ( )1 1 1
ˆ , ,0, higher order termsk k k X k w kX f X u k F X F w+ + += +∇ +∇ +   (3.25) 

 

XF∇  is the Jacobian of f  with respect to kX  evaluated at ˆ
kX  and wF∇  is the Jacobian 

with respect to kw . These Jacobians are calculated from the mobile robot model, 

Eq. (3.5) and possess following equations, 

 

  

1 0 0 0
ˆsin 1 0 0

ˆcos 0 1 0
0 0 0

k
X

k

m

T
F

T
I

ω θ

ω θ

 
 
− ∇ =  
 
  

  (3.26) 
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0w

m

f
F γw ∇ 

∇ =  
 

  (3.27) 

 

However, assuming that: (i) the higher order terms in the Taylor series 

expansion are negligible since their values are too small and very close to zero (Ogata, 

2010), and (ii) kX  and kw  are small and they are zero mean random variables, this 

leads to the following prediction equation of the EKF 

 

 

[ ]

( )

( )

1 1

1 1

1

ˆ

ˆ , ,0,

ˆ , ,0,

k k k

k k X k w k

k k

X X Z

f X u k F X F w

f X u k

−
+ +

+ +

+

=

 ≈ +∇ +∇ 

=







|

  (3.28) 

 

 
1 1 1

1

ˆ
k k k

X k w k

X X X

F X F w

− −
+ + +

+

= −

≈ ∇ +∇





  (3.29) 

 

 
( )1 1 1

1

T

k k k

T T
X k X w k w

P X X

F P F F Q F

− − −
+ + +

+

 =   

= ∇ ∇ +∇ ∇

 
  (3.30) 

 

where 1
ˆ

kX −
+  is the predicted state of EKF while 1kP−

+  is the respective predicted error 

covariance of the estimation. 

 

In the update step, the update equations are formed by linearizing the 

observation model of Eq. (3.24) through Taylor series expansion about 1
ˆ

kX −
+ , 

 

 ( )1 1 1 1
ˆ ,0, higher order termsk k i k kz h X k H X v− −

+ + + += +∇ + +   (3.31) 

 

30 



 
 

where iH∇  is the Jacobian of h  with respect to 1kX +  evaluated at 1
ˆ

kX −
+ . Based on the 

assumption of [ ]1 1
ˆ

k k kX X Z−
+ +≈  |  and assuming that 1kX −

+
  and 1kv +  are small and zero 

mean random variables, in addition to the higher order terms in the Taylor series that 

are negligible, the updated equations of EKF lead to the following expressions, 

 

 
( )

( )

1 1 1 1

1

ˆˆ ,0,

ˆ ,0,

k k i k k

k

z h X k H X v

h X k

− −
+ + + +

−
+

 ≈ +∇ + 

=


  (3.32) 

 

where the innovation matrix and its respective covariances have the following terms, 

 

 
1 1 1

1 1

ˆk k k

i k k

z z

H X v

µ + + +

−
+ +

= −

≈ ∇ +

  (3.33) 

 

 
( ) 1 1 1

1 1

T
k k k

T
i k i k

S

H P H R

µµ µ µ+ + +

−
+ +

 =  

≈ ∇ ∇ +


  (3.34) 

  

 ( )

( ) 1 1 1

1 1 1

1

T
X k k k

T

k i k k

T
k i

S X

X H X v

P H

µ µ−
+ + +

− −
+ + +

−
+

 =  

 ≈ ∇ +  

= ∇



 



   (3.35) 

 

Therefore, by assuming 1kX −
+

  and 1kv +  are not correlated, the updated state 1
ˆ

kX +
+  and 

updated state error covariance 1kP+
+  are given by the following characteristics, 

 

 1 1 1 1
ˆ ˆ

k k k kX X K µ+ −
+ + + += +   (3.36) 

 

with the error of the estimation defined by 

 

31 



 
 

 1 1 1
ˆ

k k kX X X+ +
+ + += −   (3.37) 

 

and therefore induce the respective state error covariance matrix 

 

 
( )

( )

1 1 1

1 1

T

k k k

n k i k

P X X

I K H P

+ + +
+ + +

−
+ +

 =   

= − ∇

 
  (3.38) 

 

with 1kK +  is the Kalman gain and has the following definition: 

 

 
( )

( )

1

1 ( ) 1 ( ) 1

1

1 1 1

k X k k

T T
k i i k i k

K S S

P H H P H R

µ µµ

−

+ + +

−− −
+ + +

=

= ∇ ∇ ∇ +

  (3.39) 

 

Linearization of the measurement model Eq. (3.24) yields a Jacobian matrix 

iH∇  with respect to 1kX + . This Jacobian matrix is important in EKF-based SLAM and 

will be one of the essential variables in the thesis. iH∇  is defined as 
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2 2 2 2
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  (3.40) 
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where iH∇  indicates the changes of the range and bearing measurement as the robot 

position ( )r r
k k kx yθ  changes relative to the position of the detected landmark 

( )i ix y  at the particular time. By using the Jacobians, the linear Kalman filter form 

could be used in the nonlinear condition. Besides, Calleja et al. (Vidal-Calleja et al., 

2004a) showed that by using this linearized model, the resulting Jacobians are still 

capable of producing a partially observable solution of localization and mapping. 

Furthermore, the higher order terms in the Taylor series expansion for the linearization 

are negligible. 

 

Assumption 3.1: The predicted and updated state vectors, error covariance matrixes 

and Jacobians in Eq. (3.13) – Eq. (3.40) are evaluated with the assumption that the 

process and observation models are locally linear, in which kw  and kv  are small and 

uncorrelated. Both noise hold the following characteristics with 0kQ ≥  and 0kR > . 

 

 
0 0 0

0 0 0
k

k

w
v

   
=   
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   (3.41) 
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T
k k k
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w w Q
v v R

      
=      

       
   (3.42) 

 

The equations of extended Kalman filter are summarized in the Table 3.1 on page 42. 

 

3.4.1.3 Covariance Matrix 
 

The covariance matrix of a state estimation in SLAM is a combination of the 

matrix of mobile robot and landmark position covariance matrixes and correlation 

between mobile robot and landmarks. Correlations between mobile robot position and 

landmarks estimation arise when the measurements are incorporated; thus, the 

covariance matrix becomes dense. The covariance matrix kP  is defined generally as 
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 rr rm
k T

rm mm

P P
P

P P
 

=  
 

  (3.43) 

 

     Prr :   Covariance matrix of the robot position. 

     Pmm :   Covariance matrix of the landmark position. 

     Prm :   Cross-covariance matrix of the robot and landmark position or cross- 

                correlation between them. 

 

The dimension of state error covariance in SLAM is (3 2 ) (3 2 )m m+ × + , a 

quadratic, symmetric and positive semidefinite matrix, with m  is the total detected 

landmarks. The size of the covariance matrix will grow as the robot continuously 

observed new landmarks in the environment. State error covariance in SLAM is fully 

represented in Eq. (3.45). From Eq. (3.14), the complete predicted state covariance may 

be written in the following form: 

 

 
( )

( 1) ( 1) ( ) ( ) ( ) 1 ( ) ( )

( ) ( ) ( )( 1) ( 1)

T
rr k rm k r k rr k r k k r k rm k
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rm k r k mm krm k mm k

P P F P F Q F P
P F PP P

− −
+ + +

− −
+ +

   +
  =  
     

  (3.44) 

 

The covariance indicates the error associated with the robot and landmark state 

estimations.  From  the  covariance,  the  increment  or  decrement  of  uncertainties  and 
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errors of the estimation could be observed, which represents the accuracy and 

consistency of the estimation. Therefore, the study on the behavior of covariance matrix 

is one of the important issues in designing the technique of mobile robot SLAM. 

 

3.4.2 H∞ Filter 
 

The initial development of the Kalman filter was meant for the aerospace 

application back in the 1960s. As the Kalman filter has been employed in various 

applications and systems such as in common industrial application, the limitation of 

Kalman filter was discovered. The understanding of the statistical properties of the 

noise behavior in the system is the major limitation of the Kalman filter. Besides, 

Kalman filter may not be robust against modeling errors and noise uncertainty of certain 

estimation problems. Some of the limitations are (Simon, 2006): 

 

• The mean and correlation of the process kw  and measurement noise kv  need 

to be known at each time instant. 

• The covariances kQ  and kR  of the noises must be determined beforehand, 

since the Kalman filter uses these covariances as design parameters. 

• The Kalman filter is the minimum variance estimator if the noise is 

Gaussian. However, if a different cost function (such as the worst-case 

estimation error) should be applied to the system, then the Kalman filter may 

not be suitable to accomplish the objectives. 

 

Therefore, to compensate those limitations of Kalman filter, the H∞ filter could be one 

of the alternatives, in which H∞ filter does not make any assumptions about the noise 

statistical properties, and it minimizes the worst-case estimation error. 

 

Generally, the H∞ filter is operated as follows. A standard linear discrete-time 

system model is defined as  

 

 
1k k k k k

k k k k

X F X u w

z H X v

+ = + +

= +
  (3.46) 
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where kw  and kv  are the noises that may be random with possibly unknown statistics or 

may be deterministic with non-zero mean. The goal is to estimate the linear 

combination of the state ky  based on the measurements up to the time 1N −   which is 

given by 

 

 k k ky D X=   (3.47) 

 

where kD  is a user-defined matrix that is assumed to be full rank. The estimation of ky  

is denoted by ˆky . If kD I= , then the estimation is similar to the Kalman filter. In H∞ 

filter, the noises are assumed to be bounded by certain noise energy and has been 

explained in (Lewis et al., 2008). The H∞ filter is operated by minimizing the estimation 

error ˆk k ky y y= −  for any input noises kw  and kv , which is the energy of the estimation 

error normalized by the energy of the input noises. The performance is measured by the 

following cost function: 

 

 
( )1 11

0

1 2

0
2 1 2 2

0 0 0

ˆ

ˆ
k

k k

N
k k Yk

N
k kQ RkP

y y
J

X X w v− −−

−

=

−

=

−
=

− + +

∑
∑

  (3.48) 

 

where ( )0 0
ˆ( ), , 0k kX X w v− ≠ , 0X̂  is a priori estimate of the initial state, 0, ,k ky P Q  and 

kR  are symmetric positive definite matrices chosen by the user based on the specific 

problem, and generally 2

k

T
k k k kB

c c B c= . It should be noted that 0 , kP Q  and kR  in 

Eq. (3.48) are not the covariances that was defined in Kalman filter. However there are 

analogous as in Kalman filter if those quantities are known with zero-mean and 

covariances. In that case, those parameters should be used in the estimation problem by 

using H∞ filter.   

 

The direct minimization of J  is not tractable, therefore the above fraction of 

Eq. (3.48) should be bounded by 2 ,γγ  ∈  for the worst-case scenario, that is, the least 

favorable noises kw  and kv . This means that, H∞ filter will try to find an estimate ˆky  

for some minimum 2γ  that results in  
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∑

  (3.49) 

 

which represents the ratio of the energy by the estimation error (numerator) and the 

energy of the input noises (denominator) is smaller than a certain value 2γ  defined by 

the user. Therefore, the minimum value for 2γ  needs to be defined, however if 2γ  is too 

small, the solution for H∞ filter will not exist, in which the divergence might occur and 

this could lead to the finite escape time problem of H∞ filter. On the other hand, if 2γ  is 

too large, the behavior of the H∞ filter will be similar to the Kalman filter. Thus, the 

parameter γ  may be thought as a tuning parameter to control the tradeoff between H∞ 

performance and minimum variance performance. 

 

The equations for the calculation of estimated state and the covariance for the 

H∞ filter are listed below. H∞ filter equations are initially derived from the one step 

equation of Kalman filter, in which either the prediction or update step is ignored. For 

example, the predicted state of 1k +  can be computed by integrating the predicted state 

of time k , without estimating the estimated state at time k , as follows: 
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( )( )

( )

1 1 1

1

ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

k k k k
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X F X u

X X K z z

X F X u

F X K z z u

F X F K z z u

− +
− − −

+ −

− +
+

−

−

= +

= + −

= +

= + − +

= + − +

  (3.50) 

 

Then by using the same approach and applying the matrix inversion lemma for the 

inverse term of the Kalman gain ( ) 1

1 1 1 1
T

k k k kH P H R
−−

+ + + ++  (see Eq. (3.19)), a modified 

covariance matrix and Kalman gain can be written as follows: 
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 ( ) 11 1T T
k k k k k k k kK P I H R H P H R

−− − − −= +   (3.51) 

 

 ( ) 11
1

T T
k k k k k k k k kP F P I H R H P F Q

−− − − −
+ = + +   (3.52) 

 

Detailed derivation of above equations and more explanation on the matrix inversion 

lemma can be obtained from (Simon, 2006). 

 

Therefore by integrating the new cost function and the new parameter 2γ  to 

ensure the best performance of H∞ filter as discussed earlier, the estimation equations 

for H∞ filter are summarized as follows: 

 

 

( )

( )

( )

1

12 1 1

12 1
1

ˆ ˆ ˆ
k k k k k k k k k

T T
k k k k k k k k k

T T
k k k k k k k k k k

X F X F K z H X u

K P I P H R H P H R

P F P I P H R H P F Q

γ

γ

+

−− − −

−− −
+

= + − +

= − +

= − + +

  (3.53) 

 

Moreover, the following condition must hold at each time step k  in order for the H∞ 

filter to consistently hold a positive semidefinite (PSD) solution and provide a better 

estimation than Kalman filter (Ahmad and Namerikawa, 2010b, 2011c): 

 

 1 2 1 0T
k k k kP H R Hγ− − −− + >   (3.54) 

 

In comparison to the Kalman filter, H∞ filter is a worst-case estimator in the 

sense that it assumes that noises kw  and kv , and 0X  will be chosen by the nature to 

maximize the cost function. On the other hand, these parameters need to be defined by 

the user beforehand to be implemented in Kalman filter. Therefore, H∞ filter is 

considered more robust with regards to the design and it can normally be addressed as a 

robust version of the Kalman filter. The main concept and estimation equations 

explained in this section are extracted from the following literatures (Shen and Deng, 

1997; Einicke and White, 1999; Simon, 2006; Lewis et al., 2008, and; Ahmad and 
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Namerikawa, 2011c). A summary of the non-linear H∞ filter equations is tabulated in 

Table 3.1 on page 42. 

 

3.4.2.1 Finite Escape Time Phenomenon  
 

One of the major issues in implementing H∞ filter is to solve the estimation 

problem that lies in the selection of γ  value defined by the user. This issue has been 

addressed as a proper tuning in the H∞ filter. The main goal is to choose the minimum 

value of γ  to minimize the cost function of Eq. (3.49), however the smaller the γ  

value, the more sensitive the H∞ filter to the effect of the measurement noise; this might 

cause an instability (Ahmad and Othman, 2014). Nonetheless, if the chosen γ  value is 

too large, the H∞ filter behaves more likely as the Kalman filter. Therefore there exists a 

certain boundary for the selection of γ  based on the specific system conditions to 

achieve the optimal performance of H∞ filter. 

 

Furthermore, one of the effects on the improper tuning of γ  is a finite escape 

time problem. This effect can be seen from the covariance value, in which the filter 

become suddenly diverged for a short time, and continue to converge after that 

particular time. Finite escape time problem may increase the estimation error. This 

phenomenon is illustrated in Figure 3.7. 

 

        

Figure 3.7. Example of finite escape time phenomenon in H∞ filter. 
(Ahmad and Namerikawa, 2009a) 

Source: Ahmad and Namerikawa (2009a) 
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3.5 Research Process 
 

The whole process of the research is explained through a flow chart as depicted 

in Figure 3.8 on page 41. The flow chart describes the general research flow of all 

objectives. The in-depth methodology of each research objective is elaborated in section 

“Scope of Analysis” in each dedicated chapter: Chapter 4.3, 5.3, 6.3 and 7.3. 

 

The initial phase of the work involves a background study on the control theory, 

estimation theory, and simultaneous localization of mapping of mobile robot in addition 

to the review of related works. The analysis begins with the definition of the 

environmental conditions for the mobile robot and the whole SLAM process, and 

assumptions based on each research problem and the objectives. The defined conditions 

and assumptions represent the actual conditions of the mobile robot. Then, several case 

studies were defined to organize the analyses according to the independent variables 

involved or the situations of mobile robot. This was done to facilitate the observation of 

the significant effect of each independent variables and specific conditions on the 

dependent variables in each case study. 

 

The analyses were conducted based on the control theory by means of the 

mathematical approach to provide the solution for the problems. This approach is 

chosen since the field areas of the thesis are system analysis, control theory, and 

estimation theory, which are based on mathematical formulation. The results of the 

analyses were presented in terms of propositions, lemmas or theorems. Finally, the 

findings were validated through simulation analysis using MATLAB and Simulink. 

 

3.6 Summary 
 

In this chapter, the model of the mobile robot, landmarks and estimators used in 

the thesis are presented. The equations governing the parameters are derived and 

explained. The estimators of interest, the Kalman and H∞ filters are discussed. The 

Kalman filter initially was developed to be used in a linear system. Through a 

linearization process using Taylor series expansion, the Kalman filter is able to be 

applied in a nonlinear system. The H∞ filter, on the other hand can be applied in both 

conditions, linear and nonlinear system.          
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Table 3.1 
The equations of Kalman filter, extended Kalman filter, and H∞ filter. 
 

 The Kalman Filter The Extended Kalman Filter The H∞ Filter 

The System 1k k k k k kX F X G u w+ = + +  ( )1 , , ,k k k kX f X u w k+ =  ( )1 , , ,k k k kX f X u w k+ =  

 k k k kz H X v= +  ( ), ,k k kz h X v k=  ( ), ,k k kz h X v k=  

   k k ky D X=   

    

The Prediction Step 1
ˆ ˆ

k k k k kX F X G u−
+ = +  ( )1

ˆ ˆ , ,0,k k kX f X u k−
+ =   

 1
T

k k k k kP F P F Q−
+ = +  1

T T
k X k X w k wP F P F F Q F−
+ = ∇ ∇ +∇ ∇  ( )1

ˆ ˆ ˆ
k k k k k k k k kX F X F K z H X u+ = ∇ +∇ −∇ +   

    

The Update Step 1 1 1 1
ˆ ˆ

k k k kX X K µ+ −
+ + + += +  1 1 1 1

ˆ ˆ
k k k kX X K µ+ −
+ + + += +  

 

( ) 12 1
1

T T
k k k k k k k k k kP F P I P H R H P F Qγ

−− −
+ = ∇ − +∇ ∇ ∇ +   

 ( )1 1 1 1k n k k kP I K H P+ −
+ + + += −  ( )1 1 1k n k i kP I K H P+ −

+ + += − ∇   

    

where 1 1 1 1
ˆ

k k k kz H Xµ −
+ + + += −  ( )1 1 1

ˆ ,0,k k kz h X kµ −
+ + += −  ( ) 12 1 1T T

k k k k k k k k kK P I P H R H P H Rγ
−− − −= − +∇ ∇ ∇   

 ( ) 1 1 1 1 1
T

k k k k kS H P H Rµµ
−

+ + + + += +  ( ) 1 1 1
T

k i k i kS H P H Rµµ
−

+ + += ∇ ∇ +   

 ( ) 1

1 1 1 ( ) 1
T

k k k kK P H S µµ

−−
+ + + +=  ( ) 1

1 1 ( ) 1
T

k k i kK P H S µµ

−−
+ + += ∇   
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  CHAPTER 4
 
 
 
 

CROSS-CORRELATION OF STATE COVARIANCE 
 

 

This chapter details the theoretical investigation of the importance of cross-correlation 

in mobile robot simultaneous localization and mapping. Two different case studies were 

conducted to examine the effects of cross-correlation terms on the estimation. The first 

case is a situation where a mobile robot moves and calculates its position relative to a 

landmark, whereas in the second case, the mobile robot is independent of the landmark 

position. The preliminary results obtained indicate that the updated state covariance of 

the latter case could decrease or increase compared to that of the former case. Similar 

conditions were then simulated to validate the results. A good agreement was reached 

between the theoretical and simulation results. Parts of this chapter were published in 

(Ahmad et al., 2013) and (Ahmad and Othman, 2015). This chapter concludes the first 

objective of this thesis. 

 

4.1 Introduction 
 

One of the main issues of the extended Kalman filter in mobile robot SLAM is 

the high computational cost due to the updating process of the state covariance matrix. 

To reduce the cost, researchers attempt to find the suitable technique to simplify the 

structure of the state covariance matrix by means of diagonalization process, i.e. to 

simplify the multiplication of the covariance matrix with other parameters. However, 

the cross-correlation elements in the covariance structure cannot be simply eliminated 

because they represent the correlations between each parameter in the state vector. 

Therefore, this study attempts to theoretically prove the importance of cross-correlation 

elements, thus they should not be neglected in the calculations. The structure of the state 

 
 



 
 

covariance matrix was generally explained earlier in Subsection 3.4.1.3 and will be 

elaborated in the following chapter, Section 5.4.1. 

 

4.2 Related Work 
 

One of the proposed technique to diagonalize the state covariance was by means 

of the decorrelation approach; this is known as the covariance inflation method 

(Guivant and Nebot, 2003). The algorithm will decorrelate a subset of the states that is 

weakly correlated and eliminate the weak cross-correlation terms in the state 

covariance. However, the approach might lead to filter instability (Julier, 2003; and 

Andrade-Cetto et al., 2005). The cross-correlation in the state covariance defines the 

relationship between the mobile robot and the observed objects or landmarks. The 

cross-correlation is essential in assuring better performance (Smith et al., 1990; Hébert 

et al., 1996; Castellanos et al., 1997; and Thrun et al., 2005) as the mobile robot relies 

and depends on these landmarks to determine its location. Thus, it should not be 

neglected in the calculation. 

 

The importance of the correlation has been proven through simulation and 

experimental results (Smith et al., 1990; Hébert et al., 1996; Castellanos et al., 1997; 

and Thrun et al., 2005), but none of these studies have theoretically proven the findings. 

The researchers have claimed that if the mobile robot was configured to be independent 

from landmarks, the uncertainties become smaller, so does the state covariance and the 

estimation is considered to be optimistic. The findings have been presented through 

representation of the covariance ellipse. To date, no theoretical proof has been 

proposed. Therefore, this study is conducted to prove that the state covariance is smaller 

if the correlation between a mobile robot and the landmarks is ignored by means of 

theoretical analysis of state covariance behavior. 

 

Moreover, Hébert et al. conducted the study with the assumption that the system 

behaves linearly to eliminate the non-linearity effect (Hébert et al., 1996). Since the 

mobile robot SLAM is a nonlinear problem, this study includes the nonlinear behavior 

into consideration to investigate the real effect of the importance of cross-correlation on 

the estimation. Further, it has been found that the direction of the robot’s movement 

may influence the behavior of state covariance through the simulation analysis.  
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In addition, previous studies were conducted based on the assumption that both 

the robot and the landmarks possess positive coordinates. In reality, this might not 

always be the case. Hence, the condition in which the mobile robot and the positions of 

the landmarks are located in the negative side of the global coordinate frame is 

investigated. 

 

4.3 Scope of Analysis 
 

The discussion was divided into two case studies: a mobile robot that moves 

while simultaneously measuring its relative x–y positions to a landmark, and a mobile 

robot that moves and refers only to its initial position. The latter was proposed to define 

the situation that eliminates the correlation between the mobile robot and the landmark. 

Moreover, the study was extended by simulating the movement of the mobile robot with 

a change in direction in both conditions to investigate the effect of moving direction on 

the results.  

 

The remainder of this chapter is organized as follows. Section 4.4 presents the 

analysis of cross-correlation in the state covariance matrix based on the proposed case 

studies. The discussion of the analysis is elaborated in Section 4.5, whereas Section 4.6 

presents the validation against simulation analysis. Finally, Section 4.7 concludes the 

chapter. The models, equations and general conditions used in this chapter are referred 

to the theoretical formulations presented in Chapter 3. 

 

4.4 Impact of Cross-correlation 
 

This section is divided into two subsections to examine the statistical behavior 

of the state error covariance matrix, especially on its cross-correlation elements. The 

first subsection identifies the behavior of the covariance matrix when the mobile robot 

locates itself by referring to a landmark. The first contribution of this study is 

highlighted in this section, in which the analysis is conducted with the assumption that 

mobile robot and landmark are located on the negative side of the global coordinate. 

The second subsection determines the condition where the mobile robot depends only 

on its initial position for estimation purposes, which indicates no dependencies on the 

landmark for localization and mapping process; thus the effect of the cross-correlation 
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between its position and landmarks can be neglected. The results of these two 

conditions are discussed and explained in the next section. This serves as the second 

contribution of the study. 

 

Proposition 4.1. Let the initial state covariance matrix be 0 nP I= , where nI  is an 

identity matrix with n-dimension. Under this condition, the estimation of the state is 

significantly dependent on the measurement matrix iH∇  and the measurement noise 

covariance 1kR + . 

 

Proof. By assuming the initial state covariance matrix 0 nP I=  when the mobile robot 

starts to observe its environment at 1k =  sampling time, from Eq. (3.38) and Eq. (3.39), 

the Kalman gain 1kK +  and the state covariance matrix 1kP+
+  can be defined as follows: 
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  (4.2) 

 

Equation (4.1) and Eq. (4.2) show that the estimation of the state is now strongly 

dependent on the measurement matrix iH∇  and the measurement noise covariance 1kR + . 

However, 1kR +  is normally known in extended Kalman filter, especially when the 

designer has prior knowledge of the sensors efficiency and environment conditions. 

Besides, 1kR +  does not correlate to other noises or states as mentioned in  

Assumption 3.1 on page 33. The only remaining element to be analyzed is the 
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measurement matrix iH∇ . Thus, it is expected that the measurement matrix plays an 

important role in describing the cross-correlation behavior in the state covariance 

matrix, and therefore will be treated as an independent variable throughout the study.   □ 

 

The following definition in describing the behavior of measurement matrix iH∇  

is continuously used in this chapter. This characteristic is a general assumption in the 

extended Kalman filter state estimation of mobile robot navigation (Huang and 

Dissanayake, 2007). It should be noted that simpler notation for mobile robot position is 

used. 

 

Definition 4.2. The Jacobian for the measurement matrix when the robot observes only 

one new landmark in its surroundings at point A and makes n observations is written as 
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  (4.4) 

 

evaluated at the true positions of the landmark ( ),i ix y  and the true position of the 

robot ( ),A Ax y , and its elements are defined by 

 

 

2 2

A i A

A i A

A A A

dx x x

dy y y

r dx dy

= −

= −

= +

  (4.5) 

47 



 
 

This definition will be used to investigate the effect of cross-correlation elements on the 

estimation accuracy based on the conditions specified in Proposition 4.1 on page 46. 

 

4.4.1 Dependency of Landmark Existence 
 

The following definition and assumption are proposed to describe the conditions 

used in this study. The assumption that the mobile robot does not know its prior position 

is the main motivation of the study. Therefore, to investigate the impact of the mobile 

robot position on the Jacobian and covariance matrix, Definition 4.3 is proposed: 

 

Definition 4.3. The initial position of the mobile robot is configured at ( ) ( ), 0 , 0o ox y =  

with respect to the global coordinate system, the region of the robot’s movement in the 

environment can be generally divided into four quadrants or areas: 

 

(i) x and y coordinates are both positive, 

(ii) x and y coordinates are both negative, 

(iii) x coordinate is positive, y coordinate is negative, 

(iv) x coordinate is negative, y coordinate is positive. 

 

Based on the stated areas, this study is conducted with the following assumption. 

 

Assumption 4.4. Consider the mobile robot moves consistently and linearly in only one 

direction along the x–axis, starting from its initial position towards the location of the 

landmark in the second area defined in Definition 4.3. The position of the landmark is 

( ),z zx y− −  and that of the robot is ( ),A Ax y− − . Furthermore, the landmark’s 

x–position is located behind the mobile robot, such that z Ax x> . 

 

If Assumption 4.4 is applied and as long as Eq. (3.7) and Definition 4.2 are 

referred, the Jacobian for the measurement matrix under these conditions is described as 
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where 
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  (4.8) 

 

This equation is in fact correlated with Definition 4.2, and Eq. (4.3) is obtained 

if the conditions are the opposite of the abovementioned case. The state covariance of 

this case has been investigated before (Huang and Dissanayake, 2007) but the study was 

based on the assumption that both the positions of the robot and the landmark are 

positive; most of the previous studies were based on the same assumption. However, 

since the mobile robot is unable to locate itself beforehand, other possibilities of robot 

and landmark positions as defined in Definition 4.3 should be considered. This study 

was conducted to investigate the influence of this condition on the state estimation, 

particularly on the measurement matrix, which probably will produce a different 

behavior of the estimation. Thus, the Jacobian of the measurement matrix under the 

conditions defined in Assumption 4.4 is proposed, which produces the following 

theorem. 
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Theorem 4.5. If the movement of the mobile robot and the conditions of the 

environment are similar as defined in Assumption 4.4 and by referring to 

Proposition 4.1, the state covariance matrix of the estimation is given by 
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where 
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Proof. The Kalman gain and state covariance matrix for the aforementioned conditions 

are calculated through Eq. (4.1) and Eq. (4.2) with the Jacobian defined in Eq. (4.6). As 

the initial state covariance is defined as an identity matrix, the Kalman gain for the state 

covariance update is 

 

 

( )

[ ]

1

1 1

1

1

12 2
1

12 2
1

12 2
1

12 2
1

2

2

2

2

T T
zk z z z k

z z z z k

z z

z z k

z

z k

z z k

z z k

K H H H R

e e
A e A A A R
A A

e
A e A R
A

e e A R

A e A R

A e A R

−

+ +

−

+

−

+

−

+

−

+

−

+

= ∇ ∇ ∇ +

−  −    
    = − − +    
    − −    

− 
   = + +  
 − 

  − + +  
  = + +  
 

 − + +   

  (4.11) 

 

Since the initial covariance matrix is defined as an identity matrix and the Kalman gain 

is defined as in Eq. (4.11), the state covariance matrix can be written as 
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                 □ 

 

4.4.2 Estimation Based on Initial Position of Mobile Robot 
 

To consistently evaluate the cross-correlation characteristics throughout the 

estimation, the previous assumptions are referred. Consider a mobile robot that operates 

in an environment that has non-identifiable landmarks to be observed. Under this 

condition, the mobile robot only has the information about its initial position and the 

following assumption is proposed. 

 

Assumption 4.6. Assume that the mobile robot moves from its initial position to the 

second quadrant defined in Definition 4.3. The position of the robot becomes 

( ),A Ax y− − . With this assumption, and with respect to Definition 4.2, the Jacobian for 

the measurement matrix possesses the following parameters: 
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Hence, Assumption 4.6 leads to the following theorem. 

 

Theorem 4.7. If there is no observable landmark in the environment and the mobile 

robot refers only to its initial position for localization, the state covariance matrix 

becomes 
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with  

 

 
12 2

12v v kc e A R
−

+ = + +    (4.17) 

 

Proof. Similar to the previous subsection, the Kalman gain is computed using Eq. (4.1)

with the Jacobian defined in Eq. (4.13). Therefore the Kalman gain for this condition is 
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Hence, by using Eq. (4.18), the state covariance matrix is updated as follows: 
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                 □ 

 

Both results obtained from this and previous subsections are evaluated in the 

following section. 
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4.5 Discussions 
 

The state covariance matrices for the mobile robot localization and mapping 

process based on the existence and absence of the landmarks are derived in the previous 

section (Eq. (4.9) and Eq. (4.16), respectively). In this section, both conditions are 

compared and analyzed to examine the differences between the two cases, and to 

understand the impact of both conditions on the state estimation. 

 

In the structure of state covariance matrix, diagonal elements are important since 

it initiates the covariance of the pose of the robot and the position of the landmark as 

shown in Eq. (3.45). The accuracy analysis of the state estimation is normally focused 

on the diagonal elements. The smaller the values of the elements, the uncertainties of 

the estimation are lower, which indicate a better state estimation. The diagonal elements 

of Eq. (4.9) and Eq. (4.16) show similar form but the difference can be observed when 

the particular elements of matrix zA  and vA  are analyzed. 

 

Lemma 4.8. If the mobile robot continues to move in the negative direction of x–axis 

with respect to Assumption 4.6, the Jacobian for the measurement matrix vH∇  will 

increase since the relative distance of the mobile robot increases from its initial 

position, and the characteristics of each element in vA  also increases. 

 

Proof. If the mobile robot moves in the negative direction of x–axis, i.e. it moves further 

from its initial position in the second quadrant as defined in Definition 4.3, 

1 2k k k k nA A A Ax x x x
+ + +

< < < < , based on Eq. (4.15), the elements in matrix vA  increases as 

vdx  and vdy  increased.                      □ 

 

Moreover, even though the diagonal elements in Eq. (4.9) and Eq. (4.16) are 

almost similar, matrix vA  has a larger value than that of matrix zA  if Lemma 4.8 is 

referred. This is proven through the following theorem with the conditions as described 

in Assumption 4.4 and Assumption 4.6. 
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Theorem 4.9. The state covariance matrix of the mobile robot, when the position of the 

robot is calculated from its initial position 1vkP+
+ , is smaller than that of the position 

measured with respect to the landmark 1zkP+
+ . This proves that the estimation is too 

optimistic. 

 

Proof. For a Jacobian matrix of a mobile robot observing one landmark in the 

environment, matrices zA  and vA  have a dimension of 2 2× . Thus, with reference to 

Eq. (4.7), Eq. (4.8), Eq. (4.14), and Eq. (4.15), the magnitude of zA  and vA  are 

calculated as follows: 
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For the sake of brevity, let  2 2 2 2 2 2z A A z z z A z AB x y x y x x y y= + + + − −  ,  therefore 
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with 
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Similar as Eq. (4.22), let  2 2
v A AB x y= +  ,  therefore 

 

 ( ) 1det v
v

A
B

=   (4.25) 

 

56 



 
 
It is clearly shown that v zB B<  for any ,A ix x ∈  and ,A iy y ∈y ; therefore 

from Eq. (4.20)  and Eq. (4.23), v zA A> . Hence, referring to the diagonal elements of 

Eq. (4.9) and Eq. (4.16), the results induce the state covariance matrices 1 1vk zkP P+ +
+ +< . 

This is proven using trace matrix of both covariances that indicate ( ) ( )1 1vk zktr P tr P+ +
+ +<

since ( ) ( ).v v v z z zI A c A I A c A− < −                                                 □ 

 

Theorem 4.9 indicates that the state covariance matrix, when the position of the 

mobile robot is measured from its initial position, is smaller than that of the position 

relative to the landmark, which contradicts to the preliminary results. The existence of 

the landmarks and cross-correlation are important in ensuring a better estimation, 

therefore the state covariance for this case should be smaller. However, this scenario has 

indirectly indicated that the state estimation becomes too optimistic and could lead to 

erroneous results in estimating the position. Optimistic estimation, defined as the 

estimation with smaller estimated uncertainty than the true uncertainty, may cause 

inconsistency in the estimation. The results are true and have been proven through 

simulation in the next section. These findings are in agreement with that of other studies 

(Smith et al., 1990; Hébert et al., 1996; Castellanos et al., 1997; and Thrun et al., 2005), 

which have shown the importance of correlation, optimistic behavior of its ignorance, 

and the biased estimation. Moreover, this fact has been mathematically proven through 

the proposed theorems in this thesis. 

 

Based on the calculation derived from the observation model in Definition 4.2 

and how the mobile robot depends on the landmarks, the updated state covariance may 

have two distinctive results. The state covariance could become larger or smaller 

depending on the region where the mobile robot is moving, as explained in 

Definition 4.3. Some results of this scenario will be reviewed through simulation in the 

next section, which proves that the direction of the mobile robot does influence the 

behavior of state covariance matrix. 
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Table 4.1 
Control parameters for the simulation. 
 
Parameter Symbol Value 

Sampling time (s) T 0.1    

Process noise covariance kQ   61 10−×   

Measurement noise covariance kR   0.01   

Robot initial state covariance 0rrP   310 I×  

Landmark initial state covariance 0mmP   21000 I×   

Robot initial position ( ),A Ax y   ( )0,0  

Landmark position ( ),z zx y   ( )2,6−   
 

4.6 Simulation Results 
 

The results previously obtained were analyzed through simulation using control 

parameters as listed in Table 4.1. The parameters were adopted from the published 

experimental works (Ahmad and Namerikawa, 2011a, 2013). In the simulation, the 

mobile robot moved at a constant speed. Two cases were examined in order to 

investigate the consistency of the proposed analysis as discussed in the previous 

sections. In the first case, the mobile robot refers to only one landmark for localization 

and mapping purposes; in the second case, the mobile robot refers only to its initial 

position in estimating its movement within the environment. In both cases, the 

environment is assumed to be planar and there were no moving objects during mobile 

robot observations. Moreover, data association is assumed available at all time. 

 

Figure 4.1 depicts the results obtained for the mobile robot SLAM in both cases, 

in which the green curve indicates the first case, while the red curve represents the 

second case. When the mobile robot is not referring to any landmark, the estimation 

becomes inaccurate and consequently is totally deviated from the true path as shown by 

the blue curve. However, as shown in Figure 4.2, the updated state error has smaller 

uncertainties when the robot is only referring to its initial position compared to that of 

the  robot  is  referring  to a landmark. The results  obtained are  in  agreement  with  the  
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Figure 4.1. Comparison of the estimated robot path between the estimation with 
landmarks and the estimation without (w/o) landmarks. 
 

 

  
 

 
 

Figure 4.2. Comparison of the estimated covariance matrix between the estimation with 
landmarks and the estimation without (w/o) landmarks. 
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previous findings, which stated that the estimation becomes too optimistic even though 

the results do meet the expectations. Moreover, it is observed that for the normal case of 

mobile robot SLAM, the state covariance is larger than that of the case with no 

landmark. Despite of the large uncertainties generated during the estimation, the mobile 

robot estimation has smaller error as shown in Figure 4.1. By comparing these 

outcomes, the mobile robot that refers to a landmark produces a more reliable 

performance and has less error. This clarifies the importance of the cross-correlation, 

which defines the relationship between landmarks and the mobile robot in obtaining 

higher accuracy during the mobile robot SLAM. If the mobile robot is configured to be 

independent of landmarks, then the estimation may become unstable or, even worse, 

causes the mobile robot becoming lost. 

 

To ensure that the results are consistent, the mobile robot was assigned to move 

in different paths in the environment. The second simulation is performed to investigate 

the condition where the mobile robot moves and changes its direction halfway within 

the area of interest as depicted in Figure 4.3. Different scale of y coordinate is used 

compared to that of Figure 4.1 to clearly highlight the changes of robot path. Note that 

along the area of interest, the updated state error covariance is larger in the second case 

compared to that of the first case, as shown in Figure 4.4. Other than that area, the 

results describe similar characteristics as in Figure 4.1 and Figure 4.2. Therefore, 

depending on the direction of mobile robot’s movement, it is seen that the updated state 

error covariance could increase or decrease when compared to that of the first case. 

 

It is apparent that the position of the mobile robot during its observation with the 

reference to its initial position has a significant effect on the updated state covariance. 

Particularly, this occurs due to the calculation during the mobile robot measurement 

model, which may influence the Jacobian matrix. If the mobile robot does not depend 

on or being correlated to any landmarks, then the updated state covariance would 

become smaller, although the position estimation is incorrect. This also explains the 

results  reported  by  Castellanos et al. (Castellanos et al., 1997). However, if the mobile 

robot attempts to change its direction, then the updated state error covariance would 

increase as compared to the case of a mobile robot that locates its position based on a 

landmark. Further investigation is required to corroborate these findings.  
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Figure 4.3. Comparison of the estimated robot path between the estimation with and 
without (w/o) landmarks while the robot changed its path. 
 

 

  
 

 
 

Figure 4.4. Comparison of the estimated covariance matrix between robot estimation 
with and without (w/o) landmarks while the robot changed its path. 
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4.7 Summary 
 

This chapter discusses the effect of cross-correlation in the state covariance 

matrix of mobile robot SLAM. The analysis has been conducted in two cases: a mobile 

robot SLAM based on the existence of landmark and without the existence of landmark 

where the robot relies on its initial position. The analysis was conducted with the 

assumption that both the mobile robot and the landmark have negative coordinates. It 

has been theoretically proven that the state covariance matrix for the estimation in the 

absence of landmark is smaller than that of the case when the robot refers to a landmark. 

This indicates that the estimation has lower uncertainties and the estimation is 

optimistic, since the simulation conducted in this study has shown that the estimation 

under this condition is inaccurate. Thus, cross-correlation is important in the mobile 

robot SLAM as the robot requires a landmark to identify and determine its position in 

the environment. If the mobile robot cannot identify its location, the ‘kidnapped robot’ 

problem may occur. Besides, the computational cost may increase if the mobile robot 

needs to reconfirm its location by re-observing the environment. Furthermore, the 

direction of mobile robot’s movement may also influence the results as it could affect 

the Jacobian measurement matrix in the state covariance matrix calculation. The results 

obtained from the simulation are in a good agreement with the analytical results. 
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  CHAPTER 5
 
 
 
 

DIAGONALIZATION OF COVARIANCE MATRIX 
 

 

One of the biggest factors that contribute to the computational cost of extended Kalman 

filter-based SLAM is the calculation of the covariance update. This is due to the 

multiplications of the covariance matrix with other parameters along with the increment 

of its dimension, which is twice the number of landmarks. Therefore a study is 

conducted to decrease the computational complexity of the covariance matrix without 

compromising the accuracy of the state estimation using eigenvalue approach. This 

chapter presents a preliminary study on the matrix-diagonalization technique, which is 

applied to the covariance matrix in EKF-based SLAM to simplify the multiplication 

process. The behaviors of estimation and covariance are observed based on four case 

studies to analyze the performance of the proposed technique. Part of this chapter has 

been published in (Othman and Ahmad, 2014a) and has fulfilled the second objective of 

the thesis. 

 

5.1 Introduction 
 

Extended Kalman filter (EKF) has been widely used to solve the estimation 

problem in SLAM due to the simplicity of the algorithm, its robustness and ability to 

apply the algorithm online compared to other approaches such as particle filter. 

However, the whole covariance matrix in EKF-based SLAM needs to be updated every 

time a new landmark is detected. This process involves a lot of mathematical operation, 

thus will increase the computational cost. Moreover, the dimension of covariance matrix 

will increase to twice the number of landmark, as more landmarks are detected. The 

classical EKF-based SLAM algorithm is known to have a cost of 2( )m , in which m  

 
 



 
 

denotes the number of landmarks within the map. This limits the use of EKF in a large 

environment (only a few hundred landmarks). Besides, the full-covariance structure is 

also very sensitive to the effects of linearization errors, which will accumulate through 

time and cause the divergence to the filter  (Julier and Uhlmann, 2007). Therefore, 

researchers have been trying to find the solution to mitigate the shortcomings either by 

(i) dividing the map into sub-local, local, and global map, (ii) using non-full SLAM, or 

(iii) focusing on the simplification of the covariance structure. This thesis focuses on the 

third approach; the simplification of the covariance structure. 

 

5.2 Related Work 
 

Guivant and Nebot (2003) introduced a decorrelation algorithm to simplify the 

covariance matrix. The algorithm will decorrelate a subset of the states that is weakly 

correlated and cancel the weakly cross-correlation terms in the covariance matrix. A 

positive semi definite matrix is added to the covariance matrix to reduce the 

computational and storage costs in SLAM. However, this technique has some 

drawbacks that lead to filter instability. For that reason the cross-correlation of the 

structure needs to be preserved (Thrun et al., 2005). Besides, the technique used by 

Guivant and Nebot (2003) was applied on the map with the relative state representation. 

 

Moreover, a study was conducted to improve the technique through 

diagonalization of the only part of the state error covariance (Vidal-Calleja et al., 

2004a). The technique is known as covariance inflation method, in which a pseudo-

noise covariance is added to the covariance matrix to maintain the suboptimality of the 

filter, given that SLAM is considered as a partially observable system (Andrade-Cetto 

and Sanfeliu, 2004, and; Ahmad et al., 2014). However, the method only diagonalized 

the priori covariance matrix of the landmarks and Vidal-Calleja et al. (2004a) conducted 

the simulation analysis under the assumption of linear SLAM. 

 

Besides covariance inflation, Julier and Uhlmann (2007) introduced a 

covariance intersection method for SLAM, a fusion technique that combines two 

covariances when the correlations between them are unknown, and this method has 

been implemented not only in SLAM, but also in other applications (Jiang and Xiao, 

2014). In this technique, the updating process is carried out in two independent steps; 
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updating the robot, then updating the landmark. However a new parameter ω  exists in 

the algorithm that needs to be chosen through an optimization process. This might 

increase the computational complexity and computation time. Therefore, other 

approaches should be proposed. 

 

5.3 Scope of Analysis 
 

This preliminary study was conducted to find an alternative technique in 

diagonalizing the covariance matrix of EKF-based SLAM. As an initial approach, the 

matrix will be diagonalized by finding its eigenvalues and rebuilding a new diagonal-

covariance from these values. The objective is to simplify the multiplication steps in the 

covariance calculation to minimize the computational complexity as well as 

computational cost. Multiplication of a matrix with another diagonal matrix is much 

easier and faster since only diagonal elements are incorporated. The analysis was 

conducted base on four case studies: 

 

(i) Predicted covariance when both (robot and landmarks) is diagonalized.  

(ii) Estimated covariance when both (robot and landmarks) is diagonalized. 

(iii) Only estimated covariance of landmarks is diagonalized. 

(iv) Only estimated covariance of certain landmarks is diagonalized.  

 

These four cases were analyzed individually to determine the consistency and 

reliability of the proposed method. These cases are also known as partial observability 

as certain states of either mobile robot or landmarks, or both covariances are 

decorrelated to reduce the computational cost. 

 

The preliminary results of the effect on the estimation and covariance behavior 

were presented, which have been obtained through simulations. In this study, the new 

diagonalized covariance matrix is the independent variable, whereas the state estimation 

and the final covariance are the dependent variables. 
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The remainder of this chapter is structured as follows. Section 5.4 contains a 

brief explanation on the structure of covariance matrix and the technique of matrix 

diagonalization. Section 5.5 explains the diagonalization process based on four case 

studies. The simulated results are presented and discussed in Section 5.6. Finally, the 

conclusion is drawn in Section 5.7. 

 

5.4 Mathematical Formulation 
 

In this section, the whole structure of covariance matrix is represented, since it is 

the parameter of study in this chapter. Besides, a technique of matrix diagonalization by 

finding the eigenvalues is also introduced. 

 

5.4.1 Structure of Covariance Matrix 
 

The covariance matrix of a state estimation in SLAM is a combination matrix of 

mobile robot and landmark position covariance matrixes and correlation between 

mobile robot and landmarks. Correlation between mobile robot position and landmarks 

estimation arise when the measurements are incorporated and thus, the state error 

covariance becomes dense. The state error covariance kP  is generally defined as 

 

 rr rm
k T

rm mm

P P
P

P P
 

=  
 

  (5.1) 

 

 rrP    :  Covariance matrix of the robot position 

 mmP   :  Covariance matrix of the landmarks position 

 rmP   :  Cross-covariance matrix of the robot and landmarks position or   

   cross-correlation between them 

 

Proposition 5.1. The determinant of the state error covariance matrix is a measure of 

the volume of the uncertainty ellipsoid associated with the state estimate, which 

indicates the total uncertainty of that particular state estimation (Dissanayake et al., 

2001). 
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  (5.2) 

 * Diagonal elements of the state error covariance matrix 

 

The dimension of state error covariance in SLAM is (3 2 ) (3 2 )m m+ × + , where 

m  is the number of detected landmarks. The size of the covariance matrix grows as the 

robot continuously observes new landmarks in the environment. The structure of the 

state error covariance for SLAM is fully represented in Eq. (5.2). The state error 

covariance indicates the error associated with the robot and landmarks state estimations, 

as defined in Proposition 5.1. From the state error covariance, the increment or 

decrement of the uncertainties and errors of the estimation could be observed, which 

represent the precision and consistency of the estimation. The better the estimation, the 

smaller the covariance value. However, if the predicted covariance value is too small 

compared to the actual value, that is, if the estimation contains an error, but the 

covariance indicates a lower value, then the estimation in this situation is known as an 

optimistic estimation. This is one of the open issues in SLAM and must be considered 

in EKF-based SLAM (Huang and Dissanayake, 2007). 

 

5.4.2 Diagonalization of a Matrix 
 

A diagonal matrix is a matrix in which the upper and lower sides of its elements 

are zero. The diagonal elements on the other hand may or may not be zero. The 

diagonal matrix of a n n×  square matrix can be defined as follows: 
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  (5.3) 

 

The operation of matrix multiplication is simpler in a diagonal matrix. Only the 

diagonal elements are involved and this speeds up the operation and requires less 

computation cost if it is going to be applied in SLAM since the calculation of 

covariance matrix involves a lot of matrix multiplication, Eq. (3.30) and Eq. (3.38). 

 

Let A  be a n n×  square matrix. Square matrix A  is similarly equivalent to a 

diagonal matrix D , if and only if there exist an invertible matrix C  such that 
1A C DC−= . Suppose there exists a number λ  and a correspondent column matrix B  

with dimension of 1n×  such that 

 

 [ ]1 2 nC B B B=    (5.4) 

 

in which λ  is said to be an eigenvalue of A  with the corresponding eigenvector B . 

Then A  is diagonalizable to a matrix D . In general, for each n n×  matrix, there will be 

normally n  number of eigenvalues; the eigenvalues might be real, complex or 

combination of both numbers. 

 

Definition 5.2.  Let A  be a n n×  square matrix and D  is a diagonal matrix in which 

its diagonal elements are the eigenvalues of A , such as follows: 

 

 

1

2

0 0 0
0 0 0
0 0 0
0 0 0 n

D

λ
λ

λ

 
 
 =
 
 
  



  (5.5) 

 

Therefore, there exists the following relationship between matrix A  and matrix D : 

 

 
det ( ) det ( )

norm ( ) norm ( )
A = D
A = D

  (5.6) 
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Referring to Proposition 5.1 and the behavior of diagonal matrix presented in 

Eq. (5.6), there is a possibility that the diagonalization by means of the eigenvalues can 

be one of the alternative techniques to minimize the computational cost in EKF-based 

SLAM. The technique is also inspired by the previous works of Guivant and Nebot 

(2003), and Vidal-Calleja et al. (2004a), but with some differences. This method will be 

implemented on the map with absolute state representation, and tested on both predicted 

and updated covariances. 

 

5.5 Diagonalization of Covariance Matrix in EKF-Based SLAM 
 

The study attempts to investigate the effect of diagonalization of covariance 

matrix on the estimation performance and the covariance behavior through simulation 

analysis. The analysis is conducted base on four case studies, as defined in Section 5.3. 

The first and second case studies are proposed by diagonalizing the whole structure of 

covariance matrix and the process is discussed in Subsection 5.5.1. On the other hand, 

only the part of landmarks covariance is diagonalized in the third and fourth case 

studies to evaluate the possibilities of the proposed approach. These cases are also 

known as partial observability as certain states of either mobile robot or landmarks or 

both covariances are decorrelated to reduce the computational cost. The cases are 

analyzed individually to determine the consistency and reliability of the proposed 

method.  

 

5.5.1 Full Diagonalization of Covariance Matrix 
 

Equation (5.2) is fully diagonalized by finding the eigenvalues for the whole 

covariance values. Then the eigenvalues are collected and a new diagonal covariance 

matrix is built by referring to these values. Algorithm 5.1 and Algorithm 5.2 describe 

the diagonalization steps of the first and second case studies. Therefore the new 

diagonal covariance matrix has the following structure, Eq. (5.7): 
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Algorithm 5.1: Diagonalization of predicted covariance matrix (case 1) 

Diagonalize_predicted_all ( ˆ , , ,k k k kX P u z )    

   compute predicted state 1
ˆ

kX −
+   

   compute predicted covariance 1kP −
+   

   find eigenvalues 1( )n keig Pλ −
+=   

   build diagonal matrix ( ), 1 ( )D k nP diag λ−
+ =   

   compute predicted measurement 1
ˆ( , )kh X k−

+   

   compute estimated state 1
ˆ

kX +
+   

   compute Kalman gain 1kK +   

   compute estimated covariance 1kP +
+   

   return 1
ˆ

kX +
+  , 1kP +

+    

 

 

 

 

 

Algorithm 5.2: Diagonalization of estimated covariance matrix (case 2) 

Diagonalize_estimated_all ( ˆ , , ,k k k kX P u z )    

   compute predicted state 1
ˆ

kX −
+   

   compute predicted covariance 1kP −
+   

   compute predicted measurement 1
ˆ( , )kh X k−

+   

   compute estimated state 1
ˆ

kX +
+   

   compute Kalman gain 1kK +   

   compute estimated covariance 1kP +
+   

   find eigenvalues 1( )n keig Pλ +
+=   

   build diagonal matrix ( ), 1 ( )D k nP diag λ+
+ =   

   return 1
ˆ

kX +
+  , ( ), 1D kP +

+    
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  (5.7) 

 

By using this new covariance matrix, the multiplication process in Eq. (3.30) 

and Eq. (3.38) is simplified and therefore the computational cost reduced. This is shown 

later by the duration of the simulation listed in Table 5.2 on page 78. 

 

5.5.2 Partial Diagonalization of Covariance Matrix 
 

In SLAM, it is important for the mobile robot to have the knowledge of its 

current position. Initially the mobile robot needs to locate itself before sensing the 

landmark in the environment. Thus, it is important to retain the covariance of mobile 

robot r rP  as accurate as possible. In third case study, only the covariance of landmark 

mmP  is diagonalized using Algorithm 5.3. Hence the estimated covariance matrix for the 

third case study has the structure as indicates in following equation: 
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 
 
 =  
 
 
 
 
  



  (5.8) 

 

This method was implemented by Vidal-Calleja et al. (2004a) on the priori state error 

covariance of the landmarks with the assumption of the system is partially observable, 

and in the linear case SLAM. Therefore, this study attempts to extend the 

aforementioned work by diagonalizing the posteriori state error covariance of the 

landmarks of a nonlinear case SLAM. 
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Algorithm 5.3: Diagonalization of estimated covariance matrix of the 
                          landmark position (case 3) 

Diagonalize_estimated_landmark ( ˆ , , ,k k k kX P u z )    

   compute predicted state 1
ˆ

kX −
+   

   compute predicted covariance 1kP −
+   

   compute predicted measurement 1
ˆ( , )kh X k−

+   

   compute estimated state 1
ˆ

kX +
+   

   compute Kalman gain 1kK +   

   compute estimated covariance 1kP +
+   

   find eigenvalues of ( ), 1mm kP +
+   

      ( )1(4 : end,4 : end)n keig Pλ +
+=   

   build diagonal matrix ( , ), 1 ( )mm D k nP diag λ+
+ =   

   build new diagonal matrix 

      1 1
( ), 1

1 ( , ), 1

(1:3,1:3) (1:3,4 : end)
(4 : end,1:3)

k k
D k

k mm D k

P P
P

P P

+ +
+ ++

+ + +
+ +

 
=  
  

  

   Return 1
ˆ

kX +
+  , ( ), 1D kP +

+  

 

 

Generally in SLAM, a mobile robot normally travels in a cycle, whereby the 

loop of the algorithm is closed as the mobile robot detects the first landmark for the 

second time. By successfully closing the loop, the error and the uncertainties of the 

estimation is reduced. Therefore, in such case, the first landmark position and 

correlation are important to be identified and preserved. Hence, in the fourth case study, 

the effect of diagonalization are only conducted on the second and forth landmarks 

covariance. The covariance structure of the new diagonalized covariance matrix for the 

fourth case is depicted in Eq. (5.9) and the diagonalization process is conducted base on 

Algorithm 5.4. 
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  (5.9) 

 

 

Algorithm 5.4: Diagonalization of estimated covariance matrix of certain 
                          landmark position (case 4) 

Diagonalize_estimated_landmark ( ˆ , , ,k k k kX P u z )    

   compute predicted state 1
ˆ

kX −
+   

   compute predicted covariance 1kP −
+   

   compute predicted measurement 1
ˆ( , )kh X k−

+   

   compute estimated state 1
ˆ

kX +
+   

   compute Kalman gain 1kK +   

   compute estimated covariance 1kP +
+   

   find eigenvalues of ( , 2), 1mm n kP +
≥ +   

      ( )1(6 : end,6 : end)n keig Pλ +
+=   

   build diagonal matrix ( , ), 1 ( )mm D k nP diag λ+
+ =   

   build new diagonal matrix 

      1 1
( ), 1

1 ( , ), 1

(1:5,1:5) (1:5,6 : end)
(6 : end,1:5)

k k
D k

k mm D k

P P
P

P P

+ +
+ ++

+ + +
+ +

 
=  
  

  

   Return 1
ˆ

kX +
+  , ( ), 1D kP +

+   
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Table 5.1 
Parameters for the simulation analysis. 
 
Parameter Symbol Value 

Sampling time (s) T 0.1   

Process noise covariance kQ  61 10−×  

Measurement noise covariance kR   31 10−×  

Initial covariance matrix 0P   
0.01 0 0

0 0.01 0
0 0 0.01

 
 
 
  

  

Robot initial position ( )0 0,r rx y   ( )0,0  

Landmarks position ( )1 1,x y   ( )25, 20− −   

 ( )2 2,x y   ( )25,20−   

 ( )3 3,x y   ( )25,20   

 ( )4 4,x y   ( )25, 20−   
 

5.6 Simulation Results and Discussions 
 

The simulation analyses of the proposed case studies were conducted based on a 

SLAM model developed by (HSO, 2013), incorporating the proposed diogonalization 

technique. The behavior of the estimation and covariance matrix were analyzed. The 

parameters used in the simulation are listed in Table 5.1 which were selected from the 

published experimental work (Ahmad and Namerikawa, 2011a). The mobile robot 

moved circularly in an anticlockwise-direction with a constant velocity and turning rate. 

 

Figure 5.1 shows the estimation of the mobile robot’s position and landmarks’ 

position in the normal condition, (i.e. using normal covariance matrix). The mobile 

robot moved for k = 1000 s and continuously observed the landmarks in every cycle of 

movement. The figure illustrates the final position and orientation of the mobile robot at 

the end of the simulation, which designates the final state of the mobile robot. Besides, 

the covariance-ellipses indicate the uncertainties of the estimation, which represent the 

state error covariance value. The smaller the ellipse, the better the estimation. 
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Figure 5.1. Position estimation and covariance under normal condition. 
 

Using the same parameters, the simulations of the four case studies as defined in 

Section 5.3 were conducted. Figure 5.2 depicts the estimation and covariance behavior 

of the first case study, while the result from the second case study is illustrated in 

Figure 5.3. It is apparent from both figures that the estimation of mobile robot and 

landmark position is possible when the whole covariance is diagonalized through the 

technique defined in previous section. However the estimation has some degree of 

errors, but it is considered acceptable. The final position of the mobile robot is similar to 

that of a normal EKF-based SLAM (Figure 5.1), which indicates that the mobile robot 

is able to localize its position. Besides, the estimation and covariance behavior were 

found to be insensitive to the number of landmarks and their position as depicted in 

Figure 5.4. Nonetheless, the covariance behaves abnormally in these cases, in which the 

covariance decreases drastically and it is too small compared to the true covariance as 

depicted in Figure 5.1. This scenario describes an optimistic estimation (Huang and 

Dissanayake, 2007) as explained in Subsection 5.4.1 of this chapter. 
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Figure 5.2. State estimation and covariance for case one. 
 

 

 

Figure 5.3. Estimation of the state and covariance behavior of case two. 
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Figure 5.4. State estimation and covariance behavior of case one with different 
landmarks positions in addition to more landmarks. 
 

Moreover, Table 5.2 shows the comparison of the computation time of all 

conditions recorded using the tic and toc function in MATLAB. The computation time 

of the four cases are compared to that of the normal EKF-based SLAM. This 

comparison is important to investigate the possibility of eigenvalue approach in 

diagonalizing the covariance matrix. It is clearly shown that the times taken to complete 

the SLAM process for the first and second case study are comparable to that of the 

normal condition. Even though there are additional steps taken in diagonalizing the 

covariance matrix, the time taken to complete the whole process is faster. This is 

demonstrated by the duration of the second case study, which is shorter than that of the 

normal condition. The results suggest that the technique may be applied in the EKF-

based SLAM, but it requires some modification regarding to its approach, for example, 

the robot covariance and the covariance of the landmark should be managed separately. 
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Table 5.2 
Computation time for all cases. 
 

Covariance type Simulation time (s) Computation time (s) 

Normal 1000 103.570 

Case study 1 1000 104.382 

Case study 2 1000 102.844 

Case study 3 300 34.779 

Case study 4 300 34.084 

 

On the other hand, Figure 5.5 shows the result of the third case study, in which 

only the covariance of landmark is being diagonalized. It is evident that the mobile 

robot is unable to detect the landmarks and also unable to localize itself. As a result, the 

mobile robot has lost its way within the environment. Note that the scale of the 

environment has been enlarged and the landmarks are similar to other case studies. 

Besides, the simulation is conducted for only 300 s since the estimation is unsuccessful. 

Identical results were also obtained in the fourth case as depicted in Figure 5.6.  

 

Based on a thorough analysis on the covariance values, it is observed that the 

diagonal elements of the covariance in both conditions (third and fourth) are not able to 

fulfill the requirement of positive semidefinite (PSD) behavior. This misleading result is 

believed to occur due to the structure of the new covariance, Eq. (5.8) and Eq. (5.9) in 

which only the covariance of the landmarks is being diagonalized, whereas the cross-

correlation terms are neglected. The cross-correlation terms should be included in the 

diagonalization process since these terms are important in ensuring the optimal 

estimation performance, as demonstrated in Chapter 4 as well as in literature  

(Castellanos et al., 1997; Ahmad et al., 2013, and; Ahmad and Othman, 2015). Thus, 

the new suggested structure of the diagonalized matrices for both cases should be as 

shown in Eq. (5.10) and Eq. (5.11), in which nψ  is a new diagonal element that 

integrates the cross-correlation values. 
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Figure 5.5. Erroneous state and covariance estimation of case three. 
 

 

 

Figure 5.6. Robot unable to estimate the landmarks and its position for the fourth 
case study. 
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Therefore, a new strategy needs to be proposed to fully diagonalize the covariance 

matrix by incorporating the cross-correlation terms into the diagonal elements to find 

the correct value of nψ . 
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  (5.10) 
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  (5.11) 

 

5.7 Summary 
 

This chapter presents the analysis of EKF-based SLAM performance under the 

conditions of a diagonalized covariance. The covariance matrix needs to be simplified 

to reduce the computational complexity and thus reduce the computational cost. 

Diagonalization method through eigenvalues could be one of the approaches that can 

achieve this goal. The simulation results have proven that this technique could be 

implemented; however more modifications on the algorithm are required to ensure 

accurate estimation and covariance behavior as discussed in Section 5.6. Besides, the 

cross-correlation terms should be taken into account since it determines estimation 

accuracy as discussed in Chapter 4. In the future study, the behavior of each elements of 
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covariance matrix will be analyzed individually in order to define the specific pattern 

for the development of new algorithm for a successful diagonalization of the covariance 

matrix. Hence, the performance of the method may be compared to others for 

benchmarking purposes. 
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  CHAPTER 6
 
 
 
 

INTERMITTENT MEASUREMENT ANALYSIS 
 

 

This chapter covers the investigation of the effect of intermittent measurement condition 

on the EKF-based SLAM performance. Two case studies, a stationary and moving 

robot, were considered. The nonlinear EKF-based SLAM was analyzed theoretically. 

The findings demonstrated that the estimation of robot position was still possible even 

when the measurement data are unavailable. However, the estimation possesses high 

uncertainties and produce abnormal covariance behavior. In addition, it has been proven 

that EKF is able to correct the state estimation upon the availability of measurement 

data, but not the state covariance. Simulation results proved the consistency of the 

proposed analysis. Parts of this chapter have been published in (Othman and Ahmad, 

2013a, b; Othman et al., 2013, and; Othman and Ahmad, 2014b). This chapter 

highlights the work done in accomplishing the third objective of the thesis. 

 

6.1 Introduction 
 

Simultaneous localization and mapping (SLAM) of mobile robot by means of 

extended Kalman filter requires the availability of continuous data measurement along 

the process to ensure a successful estimation of the state vector. Extended Kalman filter 

is a recursive algorithm that uses previous data in completing the iteration. Therefore, 

the availability of the measurement data is essential in ensuring a successful estimation. 

 

 However, the situation of which a loss of measurement occurs should be taken 

into account since it may happen due to several reasons such as intermittent sensor 

failure, faulty in the measurement, obstacles that may appear in a dynamic environment, 

network congestion or accidental loss due to noisy environment or jammed network 

 
 



 
 

(Dong et al., 2012). Such situations are known as intermittent measurement condition. 

Most of the estimation process in extended Kalman filter-based SLAM is based on an 

assumption that the measurement data are continuously available for the updating 

process. However, due to the abovementioned conditions, measurement data may not be 

available at a certain period of time throughout the estimation process. The influence of 

this phenomenon on the state estimation values or the state covariance should be 

investigated since the operator normally relies on these values to evaluate the accuracy 

of the robot estimation. 

 

Furthermore, the study is also important to predict an actual situation of when an 

intermittent occurs in a mobile robot SLAM condition. This serves as a basis of the 

correction and prevention steps such as in controller development, improvement in 

algorithms and so on. In this chapter, a theoretical study of the extended Kalman filter-

based SLAM with intermittent measurement is conducted to examine the estimation 

behavior of this nonlinear process during that particular condition. 

 

6.2 Related Work 
 

Many studies have been conducted with regards to this issue, which mainly 

focus on the application of network control plant. Various approaches have been 

presented in literature to model this phenomenon, for example through binary switching 

sequence based on Bernoulli process (Sinopoli et al., 2004; and Kluge et al., 2010) or 

Markovian jumping parameters (Zhan et al., 2009). However, the studies on the 

intermittent measurement event in robotics system, especially in SLAM are very 

limited. Hitherto, there are only a few studies performed with regards to this issue 

specifically on EKF-based SLAM, such as the work of Muraca et al. (Muraca et al., 

2008), and Ahmad and Namerikawa (Ahmad and Namerikawa, 2011b, 2013). The 

former studies were conducted to investigate the effect of missing measurement 

between on-board sensors and sensors placed in the environment, and they have 

developed a scanning strategy between those sensors during intermittent measurement. 

Unfortunately the behavior of state and covariance matrix of the estimation was not 

discussed or investigated. The latter studies, on the other hand, provide an analysis of 

EKF-based SLAM during intermittent condition using Fisher Information Matrix (FIM) 
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and measurement innovation characteristics. Both methods have proven that the state 

estimation of EKF-based SLAM is still possible with some degree of error. 

 

Moreover, Ahmad and Namerikawa (2012b) investigated the behavior of 

covariance matrix under intermittent measurement by providing statistical bounds of the 

covariance matrix through analysis of FIM. This chapter attempts to continue the 

analyses conducted in (Ahmad and Namerikawa, 2012b) by focusing on the behavior of 

Jacobian matrix, as it was found to influence the estimation under intermittent condition 

significantly. Jacobian matrix exists due to the linearization process since SLAM is 

treated as a nonlinear system. Moreover, the study is also a sequel of a preliminary 

study (Othman and Ahmad, 2013b), in which SLAM was evaluated as a linear system. 

 

6.3 Scope of Analysis 
 

The study begins with the application of the linear behavior on mobile robot 

SLAM to investigate the intermittent effect under linear condition on two case studies: a 

stationary and moving robot conditions. The purpose of the study is to investigate the 

influence of parameters: control input, process noise and measurement matrix on the 

state and covariance estimation in order to assist the analysis of nonlinear EKF. Then 

the theoretical analysis on the nonlinear EKF-based SLAM was conducted and the 

situation was simulated. The mobile robot and the environment model used in the 

analysis were previously described in Chapter 3. The analysis was performed to 

represent the possible condition of the system that utilizes the range and bearing 

sensors. Following sections detail the work performed. 

 

6.4 Assumption of Linear Behavior 
  

In this section, the estimation behavior of SLAM under intermittent condition is 

evaluated as a linear system. The objective is to investigate its effect on the state 

estimation and the state covariance and identify the parameter that is significantly 

influenced by this phenomenon. The analysis and results of linear assumption form the 

base of the following analysis of EKF-based SLAM under nonlinear characteristic. The 

study also attempts to demonstrate that if there are some missing measurement data 

during the robot observation, the estimations of mobile robot pose and landmarks 
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locations become incorrect and resulting in an increase of the state covariance that is 

determined by the determinant of covariance matrix. Its impact on state covariance 

matrix is observed and analyzed. 

 

Intermittent measurement has been modelled either as Markov chain or 

Bernoulli process. To compensate the missing measurements in a model with the 

Bernoulli process, the update algorithm for Kalman filter, Eq. (3.20) and Eq. (3.21) are 

modified into 

 

 1 1 1 1 1
ˆ ˆ

k k k k kX X Kγ µ+ −
+ + + + += +   (6.1) 

 

 1 1 1 1 1( )k k k k kP I K H Pγ+ −
+ + + + += −   (6.2) 

 

where 1kγ +  is a Bernoulli random variable and has a value of either one or zero 

(Sinopoli et al., 2004). 

 

Definition 6.1. Measurement data lost are defined as a condition where measurement 

data are not successfully retrieved after one sampling time and occurred randomly in 

mobile robot observations. 

 

Hence, the abovementioned definition proposes the following proposition: 

 

Proposition 6.2. If a measurement is not available at time k, then the measurement 

matrix [ ]0kH ≅  for a linear KF-based SLAM, where [ ]0  denotes a zero matrix. 

 

Proof. The observation process of a mobile robot is represented by the following 

equation: 

 

  i i

i
k k k r

i

rz H X v φφ
 = = +  

  (6.3) 
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In a linear system, measurement matrix kH  represents a relative distance between robot 

position and landmark location (Dissanayake et al., 2001). In KF-based SLAM of 

mobile robot, the matrix element normally possesses a value of either one, minus one or 

zero (Vidal-Calleja et al., 2004a, b). If the measurement is not available, this matrix will 

indicate a zero matrix since there is no successful observation at the 

particular moment.                □ 

 

Note that even if the measurement matrix is zero during the intermittent event, 

the updated state covariance might not have the same value as the previous state 

covariance. This is due to the existence of the measurement noise shown in the 

measurement process, denoted by the Eq. (6.3). Besides, in a nonlinear system, the 

nonlinear Jacobian transformation during the measurement process also affects the 

results. This is the theoretical reason why the updated state covariance might not be the 

same as its previous value. However, if the measurement noise is very small that it can 

be neglected, then the updated state covariance might have almost the same value as the 

previous state.  

 

In the next section, the covariance matrix of state estimation behavior is 

demonstrated and analyzed given this condition partially occurs during mobile robot 

observation. The analyses are conducted base on two conditions. The first condition 

indicates that the mobile robot is stationary, with consideration of the existence and 

non-existence of the process noise. Whereas the second condition designates that the 

mobile robot is moving. These two conditions are defined to investigate the effect of 

control input matrix ku  and process noise kQ  (independent variables) on the state 

estimation 1
ˆ

kX +
+  and state covariance matrix 1kP+

+  (dependent variables). 

 

6.4.1 Stationary Robot 
 

For the first case of the study, the robot is stationary and observes one landmark 

in its environment for n times. Since the robot is not moving, there is no control input 

for the mobile robot’s motion, therefore 0ku = . In this scenario, two conditions are 

observed; with and without the existence of process noise. 
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6.4.1.1 Absence of Process Noise Condition 
 

Since the mobile robot is stationary, several studies assume that there is no 

process noise for that particular moment as there is no movement involved (Julier and 

Uhlmann, 2001). Covariance of process noise kQ  is the summation of the covariance of 

control noise δγ  and δω . Since the mobile robot is assumed to remain stationary, no 

control noise is injected into the system, therefore kQ  is assumed zero. 

 

Lemma 6.3. If the observation is not available at 1 k< < ∞  time, the covariance matrix 

during an intermittent measurement is larger than the covariance matrix in a normal 

condition, in which the measurement data are consistently available. 

 

Proof. The state error covariance matrix is predicted through Eq. (3.14). Since the robot 

is stationary, the state transition matrix 1kF +  usually possesses an identity matrix. Thus, 

priori covariance matrix at time 1k +  is equal to the posterior covariance matrix at time 

k since no process noise is added to the system as shown by following equation: 

 

 

1 1 1 1

      0

      

T
k k k k k

T
k

k

P F P F Q

IP I

P

−
+ + + += +

= +

=

  (6.4) 

 

Moreover, the matrices in the algorithm are positive semidefinite (PSD) matrix 

(Dissanayake et al., 2001). If the measurement data are consistently available at 

1 k< < ∞  time, the updated covariance at time 1k +  has smaller value than priori 

covariance due to the correction done by Kalman filter. The updated state covariance in 

Eq. (3.21) combined with the information from Eq. (6.4) becomes 

 

 

( 1) 1 1 1 1

( 1) 1

( 1)

n k k k k k

n k k

n k k

P P K H P

P P

P P

+ − −
+ + + + +

+ −
+ +

+
+

= −

≤

≤

  (6.5) 
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If intermittent measurement occurs, there is no observation available, based on 

the explanation of Definition 6.1, the measurement matrix [ ]1 0kH + →  and 1 0kγ + =  in 

Eq. (6.2). Under this assumption, posteriori covariance matrix with intermittent 

measurement is equal to the priori covariance matrix, which is similar to the covariance 

matrix at time k . Therefore, by integrating the information gained from Eq. (6.5), the 

covariance matrix with intermittent measurement is larger than that in the normal 

condition as given by Eq. (6.6). 

 

 

( 1) 1 1 1 1 1

( 1) 1

( 1)

( 1) ( 1)

i k k k k k k

i k k

i k k

i k n k

P P K H P

P P

P P

P P

γ+ − −
+ + + + + +

+ −
+ +

+
+

+ +
+ +

= −

=

=

≥

  (6.6) 

 

Suppose in the measurement update the covariance is corrected through Kalman 

gain, but this cannot be done in the present case due to the unavailability of 

measurement data. During prediction step, the covariance matrix of the robot position 

rrP  and cross covariance between robot and landmark rmP  are changed, while 

covariance for the landmark mmP  remains. After the update, all elements in the 

covariance should be different. However, due to intermittent, the covariance of 

landmark mmP  retains the previous value. Therefore, posteriori covariance matrix is 

equal to the priori covariance matrix under intermittent condition. Note that subscript i 

and n  in Eq. (6.5) and Eq. (6.6) denote a parameter during intermittent measurement 

and under normal condition respectively.             □ 

 

Definition 6.4. The determinant of the state error covariance matrix is a measure of the 

volume of the uncertainty ellipsoid associated with the state estimate (Dissanayake et 

al., 2001). 

 

From Eq. (6.5) and Eq. (6.6), the determinant of the state error covariance 

during intermittent measurement is larger than that in the normal condition: 
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( ) ( ){ } ( ) ( ){ }

( ) ( )

( 1) ( 1)

( 1) ( 1)

det det det det  

det det

n k k i k k

n k i k

P P P P

P P

+ +
+ +

+ +
+ +

≤ =

⇒ ≤



 (6.7) 

 

This suggests that the total uncertainty increases when the measurement data suddenly 

become unavailable, which indicates an imprecise estimation of current state. Thus, in 

an intermittent measurement, the mobile robot may incorrectly estimate its current 

position. 

 

6.4.1.2 Existence of Process Noise Condition 
 

In an actual situation, it is hard to obtain a noise-free system. Although the 

mobile robot is not moving, the process noise may also exist in the SLAM system, e.g. 

noises from the environment or encoder attached to the robot. In this section, the 

analysis is continued with 0kQ ≠  to investigate the impact of process noise on the state 

covariance. 

 

From Eq. (3.14) the priori covariance matrix at time 1k +  is no longer equal to 

the posteriori covariance matrix at time k  since the process noise is added to the 

system. The priori covariance at 1k +  is larger than the covariance at k . 

 

 

1 1 1

1

      

 

T
k k k k k

T
k k

k k

P F P F Q

IP I Q

P P

−
+ + +

−
+

= +

= +

>

 (6.8) 

 

This is true in both cases; normal and intermittent measurement. In the normal 

condition, the priori covariance matrix is updated using Eq. (3.21) and possesses a 

smaller value of posteriori covariance matrix. This is true as k →∞  covariance matrix 

is decreasing and converging. However, the effect is different when the measurements 

are not available. Using Eq. (6.2) with [ ]1 0kH + →  and 1 0kγ + = , the covariance matrix 

is not able to be updated and remains with the value of priori covariance. The 
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covariance matrix accumulates if the measurement is still not available since process 

noise is injected to the system for each time update (see Eq. (6.8)), as shown below. 

 

 
( 1) 1 1 1 1 1

( 1) 1

i k k k k k k

T
i k k k k

P P K H P

P P IP I Q

γ+ − −
+ + + + + +

+ −
+ +

= −

= = +
  (6.9) 

 

The covariance matrix under normal condition normally decreases and 

converges as k →∞  while the covariance matrix in an intermittent measurement 

condition increases as long as measurement is unavailable, and Eq. (6.7) is referred, 

therefore the determinant of both covariances have a similar trend, thus: 

 

 ( ) ( )( 1) ( 1)det detn k i kP P+ +
+ +≤   (6.10) 

 

This shows that the uncertainty of the state estimation when the data unavailability 

occurs is higher than that in the normal condition. This indicates erroneous prediction of 

the robot pose. Therefore, a control strategy is needed to compensate this error. 

 

6.4.2 Moving Robot 
 

The mobile robot moves from a stationary position and observes one landmark 

in its environment for n times. Since the robot is moving, there is a control input applied 

to the system for the mobile robot’s motion, therefore 0ku ≠  and 0kQ ≠ . These two 

parameters are considered during prediction step to predict the priori estimation of the 

state and its covariance matrix using Eq. (3.13) and Eq. (3.14). 

 

Since the control input is considered only in the prediction of the priori state 

estimate 1kX −
+ , its effect on the priori covariance matrix 1kP−

+  is not significant. 

However, the process noise under this condition is possibly larger than that in the 

stationary condition due to the existence of δω  and δγ . Therefore, the covariance 

matrix of a moving mobile robot is greater than that in stationary situation as shown in 

the following equation: 

 

90 



 
 

 

1 1 1

( ) ( ) 1( ) 1( )

1( ) 1( )

If    thus  

Hence from Eq. (3.21)  

T
k k k k k

k u k s k u k s

k u k s

P F P F Q

Q Q P P

P P

−
+ + +

− −
+ +

+ +
+ +

= +

> >

>

  (6.11) 

 

In Eq. (6.11), the subscript s and u denote a parameter in the case of stationary and 

moving robot, respectively. 

 

The behavior of covariance matrix in the normal and intermittent measurement 

of a moving robot is similar to that of a stationary robot. The covariance matrix during 

the unavailability of the measurement data is higher than that in the normal condition. 

This can be analogously proven through Eq. (6.8) – Eq. (6.10). Similar case is seen for 

the determinant of the covariance matrix. The analysis can be proven in a similar way to 

the first case i.e. in the stationary condition with the existence of process noise, 

Subsection 6.4.1.2. 

 

From the analyses in the Subsection 6.4.1 and Section 6.4.2, it can be concluded 

that although the measurements data are not available intermittently during the mobile 

robot observation, the estimation is still possible, but erroneous. This is proven by the 

increment of the state error covariance matrix and its determinant in comparison to the 

normal condition. The analyses also suggest that the measurement matrix kH  

significantly influence the performance of KF-based SLAM during an intermittent 

measurement since the behavior of the covariance matrix may differ if this matrix holds 

a non-zero matrix. The results and analyses from Section 6.4 are used to compare the 

effect of intermittent measurement condition under nonlinear EKF-based SLAM. 

 

6.5 Nonlinear Analysis 
 

In this section, the estimation process of nonlinear EKF-based SLAM in an 

intermittent condition is thoroughly analyzed. The characteristics of the state vector 

estimation and state covariance matrix (the dependent variables in the study) are 

investigated. The hypothesis of the study states that the update step is not accomplished 

since the measurement matrix or Jacobian iH∇  is assumed to be a zero matrix, similar 
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to that in the linear case analysis, by Proposition 6.2. This assumption is made based on 

the following statement, under Assumption 6.5. In addition to the analyses under linear 

condition, it is suggested that the measurement matrix could highly influences the state 

estimation and covariance matrix if it is a non-zero matrix. Therefore, in the study of 

nonlinear condition, the Jacobian matrix iH∇  is defined as an independent variable. 

 

Assumption 6.5. If the measurement data are intermittently unavailable, EKF might be 

unable to calculate the difference of the relative measurement between the mobile robot 

and landmark position, dx  and dy . Therefore, the Jacobian of the observation model 

iH∇  is assumed to be a zero matrix.  

 

From Eq. (3.36), let 1kµ +  represents an innovation in EKF update steps, in 

which: 

 

 1 1 1
ˆ

k k i kz H Xµ −
+ + += −∇   (6.12) 

 

If [0]iH∇ ≈  and 1kz +  is unavailable, 1kµ +  will become a zero matrix. Thus, the 

correction term in Eq. (3.36) will be zero and the estimated state vector will be similar 

to the predicted state vector 1 1
ˆ ˆ

k kX X+ −
+ += . This also applies to the estimated error 

covariance matrix since iH∇  affects the value of Kalman gain Eq. (3.39). Hence it is 

assumed that 1 1k kP P+ −
+ += . 

 

6.5.1 Analysis of Estimation Behavior 
 

As stated in Assumption 6.5, if observation data are unavailable at a specific 

time lostk , then the estimation at time 1lostk +  will retain the previous value, 1 1
ˆ ˆ

k kX X+ −
+ += . 

However, this assumption is found to be false and will be proven in this subsection. 

 

Theorem 6.6. Assume that the mobile robot is observing a known landmark B at point 

A. If the measurement data are not available at lostk , the estimated state vector will be 

larger or smaller than the predicted state vector depending on the value of 1 1k kK µ+ + . 
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However, the estimated state covariance matrix at this moment will be smaller than the 

predicted error covariance matrix. Thus, during the time lostk , the estimation is said to 

be too optimistic. 

 

Proof. As the mobile robot is assumed to have successfully observed the landmark B at 

1lostk − , the prediction cycle at lostk  may be completed since only the robot position is 

updated during time update. Hence, the predicted state vector ˆ
lostkX −  and the predicted 

state covariance matrix 
lostkP −  are obtained from Eq. (3.28) and Eq. (3.30): 
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 
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 ∗ ∗ ∗ ∗ 

  (6.13) 

 

where ∗  indicates the cross-correlation terms of error covariance matrix. Since the 

Jacobian of measurement model in SLAM iH∇  is evaluated at 1
ˆ

kX −
+ , using the values 

of ˆ
lostkX − , Jacobian 

lostAH∇  at lostk  is possible to be attained and may produce a partially 

observable SLAM (Vidal-Calleja et al., 2004b). 

 

 

2 2 2 2

2 2
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ˆ ˆ
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 − − 
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 
− − − 
 
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  (6.14) 
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This eliminates the initial hypothesis that declares iH∇  is zero when the measurement 

data are unavailable. 

 

Since ˆ
lostkX − , 

lostkP −  and 
lostAH∇  are available from the prediction step, and with the 

fact that the covariance of sensors kR  is normally determined from the beginning and is 

assumed constant throughout the SLAM process, the Kalman gain 
lostkK  can be obtained 

from Eq. (3.39). Since no observation data are obtained i.e. [0]
lostkz = , from Eq. (6.12) 

the innovation at this moment is 1 1
ˆ

k i kH Xµ −
+ += −∇  which is too large compared to the 

normal innovation when measurement data are available. This condition significantly 

affects the estimation. Hence, from the update step of EKF-based SLAM, the state 

vector and state covariance matrix are estimated through Eq. (3.36) and Eq. (3.38). 

 

 
( )( ){ }

{ }

ˆ ˆ ˆ
lost lost lost lost lost

lost lost lost lost lost

k k k A k

k k k A k

X X K H X

P P K H P

+ − −

+ − −

= + −∇

= − ∇

  (6.15) 

 

Equation (6.15) proves that the Assumption 6.5 is incorrect. The estimated position of 

the mobile robot and landmark at lostk  may increase or decrease from the predicted 

positions, depending on the values of ( )( ){ }ˆ
lost lost lostk A kK H X −−∇  and the estimated state 

covariance matrix is smaller than the predicted state covariance. This indicates that the 

estimation at lostk  is too optimistic.                                                                                   □ 

 

Moreover, if the measurement data are still not available at time lostk l+ , the 

estimated state vector will become more erroneous. Since ˆ
lostkX +  contains some errors in 

the estimation, this errors will propagate in the calculation of 1
ˆ

lostkX −
+  and in other 

parameters throughout the estimation process. The Jacobian at this stage is evaluated at 

1
ˆ

lostkX −
+  and therefore will produce incorrect values. Using this false value, the error 

covariance matrix will be updated and therefore subsequently producing more errors. 

The  statistical  behavior  of  a  state  covariance  matrix during this condition has been  
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Table 6.1 
The parameters defined in the simulation. 
 
Parameter Symbol Value 

Sampling time (s) T 0.1   

Process noise covariance kQ  61 10−×  

Measurement noise covariance kR   31 10−×  

Initial state covariance 0P   
0.01 0 0

0 0.01 0
0 0 0.01

 
 
 
  

  

Robot initial position ( )0 0,r rx y  ( )0,0   

Landmarks position ( )1 1,x y  ( )25, 25− −   

 ( )2 2,x y  ( )25,25−   

 ( )3 3,x y  ( )25,25   

 ( )4 4,x y  ( )25, 25−   
 

studied and the covariance bounds have been proposed (Ahmad and Namerikawa, 

2012a). As measurement data are still unavailable at lostk l+ , the error of the estimation 

will increase. 

 

However, the estimation will be corrected if the measurement data become 

available again. The prediction and estimation of the mobile robot position is updated 

based on the range and bearing values obtained. Hence, the EKF will recover the state 

vector through its normal process as in Eq. (3.28) – Eq. (3.39). This behavior is 

demonstrated in the simulation analysis. 

 

6.5.2 Simulation Results 
 

The analysis of an extended Kalman filter behavior in the application of mobile 

robot SLAM in the condition of missing measurement data has been discussed. The 

aforementioned analysis was then validated against simulation using parameters as 

listed in Table 6.1. The parameters were selected based on the experimental works 

conducted  by  Ahmad and Namerikawa (2011a, 2013). The  simulation analyses  were  
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Figure 6.1. The estimation of mobile robot and landmarks position under normal 
condition with k = 800 s. 
 

conducted based on a SLAM model (HSO, 2013) by incorporating the intermittent 

occurrence in the model. In the simulation, the mobile robot started moving from its 

initial position (0,0)  and observed four landmarks within its environment. Throughout 

the observation process, there was a period of time in which the mobile robot did not 

receive any measurements data, i.e. 0
lostkz =  for 10 seconds. However, the measurement 

data were available again afterwards. 

 

Figure 6.1 shows the estimation of the mobile robot’s position and landmarks’ 

position under normal condition. The mobile robot moves for 800 seconds and 

continuously observes the landmarks for every cycle of movement. The position and 

orientation of the mobile robot in the figure indicates the final state of the mobile robot 

at k = 800 s. The covariance-ellipses indicate the uncertainties of the estimation, in 

which smaller ellipse designates better estimation. 

 

The estimation during intermittent condition is shown in Figure 6.2 on page 98. 

The estimation without intermittent is shown in Figure 6.2 (a), which is within the 
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period of 0 400k< < . It is evident that a good estimation was achieved when there is 

no intermittent occurs. Moreover, a normal covariance behavior is also observed, 

similar to that seen in Figure 6.1. Figure 6.2 (b) depicts the estimation after the 

intermittent occurs at 411k = s for a period of 10 seconds. This figure indicates that the 

estimations of both the mobile robot and landmarks position are still possible even when 

the measurement data are lost for a few seconds, but with a certain degree of error in 

comparison to that of Figure 6.2 (a). 

 

However, it is observed in Figure 6.2 (c) that the extended Kalman filter is 

capable in correcting the estimation upon regaining the measurement data. The accuracy 

of the estimation increased with respect to time. As shown in Figure 6.2 (d), after a 

period of 300 s, the mobile robot produces an estimation that is close to the actual 

landmark position. Besides, the final position of mobile robot in Figure 6.2 (d) is similar 

to that of normal EKF-based SLAM (Figure 6.1). This indicates that the mobile robot 

was able to localize its position and map the area. 

 

Nonetheless, it can be observed in Figure 6.2 (c) and (d) that the covariance 

gradually decreases and quickly converges after the occurrence of intermittent with a 

lower value compared to that in the normal condition, as shown in Figure 6.3 on page 

99. This indicates the behavior of an optimistic estimation. This shows that the analysis 

of the covariance behavior alone is insufficient to observe the actual performance of 

estimation in this case. This is demonstrated by an absolute error evaluation as shown in 

Figure 6.4 which clearly shows that the highest estimation error is produced during the 

period of intermittent, even though the covariance values are small. The figure shows 

the absolute error between the estimation of x and y coordinates and the true 

position of the mobile robot under the normal and intermittent condition. The results 

agree with Ahmad and Namerikawa (2011b) and prove that the position estimations are 

still possible, but with low accuracy. 
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Figure 6.2. The estimation of mobile robot and landmark position with intermittent 
measurement occurred for 10 s at 401 < k < 411; 
 (a) before intermittent occurred at k = 400 s  
 (b) after measurement data unavailable at k = 411 s  
 (c) measurement data available again at k = 500 s 
 (d) estimations at k = 800 s 
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Figure 6.3. Error covariance of the estimation for both conditions. 
 

 

 

Figure 6.4. Absolute error of robot position, x and y coordinate under normal and 
intermittent condition. 
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6.6 Summary 
 

From the analysis and simulation, it can be seen that the mobile robot is still 

capable of estimating its location and landmarks’ position even when the measurement 

data are not available for a certain period of time. However, the estimation during this 

particular period is incorrect and the error covariance has decreased and converged 

quickly. The simulation results show that the EKF is capable of rectifying the 

estimation upon regaining the measurement data. However, it is impossible for the state 

error covariance to be corrected, and this will be the focus of the future study. This 

study is important to predict an actual situation of when an intermittent occurs in a 

mobile robot SLAM condition, as a basis for the correction and prevention steps such as 

in the controller development and improvement in algorithms. 
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  CHAPTER 7
 
 
 
 

SUFFICIENT CONDITION H∞ FILTER-BASED SLAM 
 

 

This chapter discusses the lower boundary of the parameter gamma selection in the H∞ 

filter-based SLAM. Two distinctive cases of the initial state covariance are analyzed 

considering an indoor environment to ensure the best solution for SLAM problem exists 

along with considerations of the process and measurement noises statistical behavior. If 

the prescribed conditions are not satisfied, then the estimation would exhibit unbounded 

uncertainties and consequently resulting in erroneous robot and landmarks estimation. 

The simulation results have shown the reliability and consistency as shown by the 

theoretical analysis and previous findings. A part of this chapter has been published in 

(Othman et al., 2015). This chapter discusses the work performed in achieving the 

fourth objective of the thesis. 

 

7.1 Introduction 
 

The extended Kalman filter (EKF) is often employed in determining the position 

of mobile robot and landmarks in simultaneous localization and mapping (SLAM). 

Nonetheless, there are some disadvantages of using EKF, namely, the requirement of 

Gaussian distribution for the state and noises, as well as the fact that it requires the 

smallest possible initial state covariance. This has urged researchers to find the 

alternative ways to counter the aforementioned shortcomings. Therefore, this study is 

conducted to propose an alternative technique by implementing H∞ filter in SLAM 

instead of EKF since the distribution of noises might be unknown in certain condition. 

To implement the H∞ filter in SLAM, the parameters of the filter especially γ  needs to 

be properly defined to prevent the finite escape time problem, which has been discussed 

 
 



 
 

in Subsection 3.4.2.1. This study proposes a sufficient condition for the estimation 

purposes. 

 

7.2 Related Work 
 

In this chapter, H∞ filter-based SLAM performance is further analyzed in 

extending the previous works (West and Syrmos, 2006, and; Ahmad and Namerikawa, 

2009b, 2010a, b). One of the earliest applications of this technique on SLAM was 

reported by West and Syrmos (2006). It has been proven that the H∞ filter is an 

alternative solution for SLAM problem in an underwater application. The filter 

performance has been compared to that of the particle filter and extended Kalman filter. 

Although the particle filter has produced better estimation, H∞ filter is deemed the best 

solution especially when the computational cost and non-Gaussian noise environments 

are taken into consideration. Further investigations were made on the filter convergence 

properties as reported by Ahmad and Namerikawa (2009b, 2010a, 2011c) and on the 

multi robot application (Wencen and Fumin, 2012). 

 

Despite what H∞ filter could offer in SLAM, the solution can unboundedly 

increase and exhibit finite escape time problem as reported by Bolzern et al. (1997), and 

Ahmad and Namerikawa (2009b), which is not the case of the extended Kalman filter. 

Therefore, to efficiently apply H∞ filter in SLAM, the filter parameters must be properly 

designed to achieve the expected performance. Hence, several studies with regards to 

the filter characteristics have been conducted. Bolzern and Maroni (1999) discovered 

that H∞ filter must also satisfy 1
0P R−=  to achieve better estimation. A study of both 

filtering and prediction stages has been proposed and it was found that under the 

feasibility and sufficient conditions, the filter is able to achieve a stable result. 

Furthermore, Ahmad and Namerikawa (2010a) proposed the covariance inflation 

(Vidal-Calleja et al., 2004a, and; Andrade-Cetto and Sanfeliu, 2006) and γ − switching 

strategy as an additional technique to prevent the occurrence of the finite escape time 

problem. Experimental results supported their analysis and demonstrated that the 

methods may alternatively prevent the problem. Motivated by the aforementioned 

works, further analyses of the H∞ filter-based SLAM are proposed to gain more insights 

of the optimal conditions for estimation purposes. 
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7.3 Scope of Analysis 
 

Based on the preliminary results obtained from the theoretical analysis and 

simulations (Ahmad and Othman, 2014), it is shown that if some conditions are 

satisfied, the H∞ filter provides a better estimation while at the same time refraining the 

existence of finite escape time in the estimation. The results obtained are also in good 

agreement with the previous study conducted by Ahmad and Namerikawa (2010b). 

Nevertheless, it is worth to mention that there is also some trade-off between γ  and the 

design parameters especially between the initial state covariance, process, and 

measurement noises distributions. Besides, as there are many types of environment 

available, two conditions of different initial state covariance are examined to understand 

its effect on SLAM with the consideration of the process and measurement noises 

distributions. The analyses are conducted to study the filter characteristics in different 

situations of environmental conditions. The analysis begins with proposing two 

feasibility conditions for H∞ filter-based SLAM. Note that the initial state covariance is 

the dependent variable, whereas process and measurement noises are the independent 

variables. 

 

7.4 Mathematical Formulation 
 

The H∞ filter algorithm shows approximately the same structure to the well-

known extended Kalman filter (EKF). The presence of γ  in the state error covariance 

owns the essence of H∞ filter and acts as the main difference to EKF algorithm. The 

fundamental background of H∞ filter has been discussed in Subsection 3.4.2. In this 

section, some of the important characteristics of H∞ filter in SLAM are further 

explained.  

 

H∞ filter theoretically denotes that, for a given 0γ > , the filter attempts to find a 

solution for an estimated state ˆ
kX  that satisfies the following criteria: 

 

 
( )1 11

0

21

02
2 1 2 2

0 0 0

ˆ
sup

ˆ
k

k k

N
k kk x

N
k kQ RkP

X X

X X w v
γ

− −−

−

=

−

=

−
>

− + +

∑
∑

  (7.1) 
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where 3 2
0 , m

kX X +∈  is the robot 3( )∈  and landmarks 2( , 1, 2,....., )m m N∈ =  states. 

kw  and kv  are the input noises, and kQ  and kR  are positive semidefinite matrices that 

define the process and measurement noise based on the specific conditions. The 

Eq. (7.1) alternatively means that the estimation error to the noise ratio is lower than a 

certain level of γ . This method also assumes that the noise distributions are statistically 

bounded. Note that the Eq. (7.1) is equivalent to Eq. (3.49), in which the matrix ky  is 

substituted with the desired state estimation of mobile robot SLAM, kX . 

 

From the Eq. (3.53) and under assumption of nonlinear SLAM, the state 

estimation vector is calculated using 

 

 ( )1
ˆ ˆ ˆ

k k k k k k k k kX F X F K z H X u+ = ∇ +∇ −∇ +   (7.2) 

 

with associated state covariance of the estimation error is given by 

 

 
12 1

1
T T

k k k n k k k k k k kP F P I P H R H P F Qγ
−− −

+  = ∇ − +∇ ∇ ∇ +    (7.3) 

 

where kP  is the state covariance of the previous state estimation and kF∇  is the 

Jacobian transformation of the robot position. The Jacobian transformation is evaluated 

from the mobile robot model in Eq. (3.5) and landmarks model of Eq. (3.6) at the 

current state estimate ˆ
kX . For 1T =  in a case of stationary landmarks, the following is 

obtained: 

 

 

1 0 0 0
sin 1 0 0

cos 0 1 0
0 0 0

k k
k

k k

m

F

I

ω θ
ω θ

 
 − ∇ =
 
 
 

  (7.4) 

 

where mI  is an identity matrix with appropriate dimension with respect to the number of 

landmarks. Besides, the parameter kK  is defined as follows: 
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 ( ) 12 1 1T T
k k k k k k k k kK P I P H R H P H Rγ

−− − −= − +∇ ∇ ∇   (7.5) 

 

SLAM is a nonlinear system, thus, the Jacobian transformation of measurement 

between mobile robot position and any i-th landmark generally results in following 

function kH∇ : 

 

 

2 2 2 2

0

1
k

dx dy dx dy
r r r r

H
dy dx dy dx
r r r r

 − − 
 ∇ =
 
− − − 
 

  (7.6) 

 

where 

 

2 2

i k

i k

dx x x

dy y y

r dx dy

= −

= −

= +

  (7.7) 

 

7.5 Convergence Analysis 
 

The parameters in H∞ filter algorithm have a significant effect on the 

performance of the filter. Unlike the EKF, γ  appears in the calculation of the state 

covariance matrix and parameter kK ; therefore, it should be taken into a serious 

consideration to ensure an accurate estimation. The presence of γ  acts as an attenuator 

to reduce the system uncertainties during the mobile robot observation and can be 

adjusted by applying γ − switching technique (Bolzern et al., 1997). However, in this 

study, γ  is fixed to find the sufficient conditions for a constant γ  . If γ  continuously 

changes, the result would be similar to that of Kalman filter behavior instead. 

 

Based on H∞ filter algorithm, the state covariance matrix of Eq. (7.3) can be 

generally simplified as 

 

 1k k kP P Q+ = +   (7.8) 
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Equation (7.8) shows that, in every update, the existence of the process noise kQ  has a 

significant effect on the state error covariance. The equation is also one of the factors 

that provide sufficient information in H∞ filter. Thus, the H∞ filter is sensitive to the 

initial state covariance, process, and measurement noises distributions as reported in the 

literature (Simon, 2001). Taking into account these variables, the analysis contributes 

adequately to explain the filter performance and consistency. As the H∞ filter-based 

SLAM is still considered as new in mobile robot SLAM, the analytical results of the 

filter convergence are limited. Therefore, a theoretical study on the H∞ filter 

convergence is essential. 

 

Motivated by the aforementioned research gap, this study attempts to clarify the 

effect of initial condition of state covariance with the influence of the process and 

measurement noise distributions on the H∞ filter behavior in SLAM. Two case studies 

were defined: 

 

(i) Robot initial state error covariance is smaller than the landmarks initial state 

error covariance such that 0 0rr mmP P0  

(ii) Robot initial state error covariance is greater than or equal to the landmarks 

initial state error covariance such that 0 0rr mmP P=  

 

The first case shows that the robot has more confidence about its location than 

the landmark. This case relies on the assumption that robot has adequate proprioceptive 

sensors for the sensing purposes. The second case defines that both robot and landmarks 

initial state covariances are unknown. Generally, this is the case in the real SLAM 

application as usually no prior information is available for reference. Based on these 

two conditions, a theoretical study and analysis are performed to investigate their 

influence on SLAM problem. Parallel to the proposed cases, this study also investigates 

the effect of the process and measurement noises to the estimation. 

 

The performance of H∞ filter is sensitive and depends on the design parameters 

such as the process and measurement noises and the initial state covariance. The study 

continues to describe explicitly that the selection of design parameters should satisfy 
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some conditions to ensure a better performance of the H∞ filter in comparison to the 

EKF [see (Ahmad and Namerikawa, 2010a)]. Furthermore, there are certain trade-offs 

which are necessary between the design parameters to achieve the best solution in H∞ 

filter-based SLAM. 

 

7.5.1 Feasibility Conditions 
 

Before presenting the main results, the feasibility conditions for H∞ filter-based 

SLAM are proposed. Feasibility conditions are derived to aid the analysis of the two 

aforementioned case studies. Following definitions are redefined, since the Jacobian 

matrix is one of the essential parameter, to develop the proposed conditions. Note that 

Definition 7.1 is similar to Definition 4.2 on page 47. 

 

Definition 7.1. The Jacobian matrix of a mobile robot observing only one new 

landmark in its surrounding at point A and makes 𝑛𝑛 observations is given by (Huang 

and Dissanayake, 2007) 

 

 [ ]
2 2 2 2

0

1

A A A A

A A A A
A

A A A A

A A A A

dx dy dx dy
r r r r

H e A A
dy dx dy dx
r r r r

 − − 
 ∇ = = − −
 
− − − 
  

  (7.9) 

 

where 

 

 

2 2

0
1

A A

A A

A A

A A

dx dy
r r

e A
dy dx
r r

 
    = =     − 
 

  (7.10) 

 

evaluated at the true landmark ( , )m mx y  and the true robot position ( , )A Ax y  and its 

elements are defined by 
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2 2

A m A

A m A

A A A

dx x x

dy y y

r dx dy

= −

= −

= +

  (7.11) 

 

The abovementioned definition is frequently used in this study. 

 

Definition 7.2. The state vector of mobile robot and landmarks location as described in 

Eq. (3.2) follows a Gaussian distribution in which it is represented by a mean and 

covariance of its elements: 

 

 ~ ( , )kX x P   (7.12) 

 

The covariance indicates the level of certainty of the mean estimation; the larger the 

covariance, the larger the uncertainty of the state estimation. Fisher information matrix 

(FIM) kΩ  specifies the weight of the information contained in a Gaussian distribution. 

In the case of a mobile robot SLAM, FIM indicates the information obtained by the 

mobile robot from each observation. FIM is the inverse of the state error covariance. 

Thus, the information obtained is inversely proportional to the uncertainty: 

 

 1
k kP−Ω =   (7.13) 

 

Fisher information matrix at time k + 1 is the summation of the information matrix at 

time k and the new information obtained from the observation, described as follows 

(Huang and Dissanayake, 2007): 

 

 1
T

k k k k kH R H+Ω = Ω +∇ ∇   (7.14) 

 

The Fisher information matrix is used to determine the updated state error 

covariance of each update in this study. If the mobile robot starts moving from its initial 

position to point A and makes an observation at that point, then with respect to 

Definitions 7.1 and 7.2, the FIM yields the following equation: 
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[ ]
1

0 1 2
1

0

1 1 2 1
0

1 1 1 2
0

0

0

rr

mm

T
rr A

k A A nT
mm

T T
A A A n A A

T T
A A A n

P H
R H A I

P A

P H R H I H R A

A R H P A R A I

γ

γ

γ

−

− −
+

− − − −

− − − −

   −
 Ω = + − − 
     

 + − −
 =
 − + − 

  (7.15) 

 

with [ ]AH e A=  and thus from Eq. (7.9) [ ]A AH H A∇ = − . 0rrP  and 0mmP  are the 

initial state error covariance for robot and landmarks, respectively. The landmarks are 

assumed to be stationary, hence there are no noises affecting the prediction process of 

the landmarks state. Equation (7.15) is regarded as the feasible condition (Bolzern and 

Maroni, 1999). This condition is very important as it defines the amount of information 

available at that specific time. Before presenting the main results, the feasibility 

conditions for H∞ filter-based SLAM are proposed. 

 

Theorem 7.3. With the consideration of Eq. (3.5), Eq. (3.6) and Eq. (7.3), the solution 

of the filter exists if it satisfies the feasibility conditions of γ  for each case as stated 

below: 

 

(i) if 0P R , then 2 Rγ > ; 

(ii) if 0P R< , then 2
0Pγ > . 

 

Proof. The feasibility conditions are analyzed separately in each case. To investigate 

these criteria, a one dimensional SLAM (1D SLAM) problem is considered, that is, a 

robot with a single coordinate system observing landmarks. It has been demonstrated 

that the behavior of 2D SLAM can be represented by 1D SLAM (Gibbens et al., 2000; 

Andrade-Cetto and Sanfeliu, 2005; Wijesoma et al., 2005; Perera et al., 2006; Perera et 

al., 2010). In the following sections, these conditions were implemented: 0 0P >  and 

0γ > . 
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7.5.1.1 Feasibility Condition 1 
 

As stated in the Theorem 7.3, the first feasibility condition is defined as: 

if 0P R , then 2 Rγ > . 

 

To ensure convergence, the covariance matrix should possess positive semidefinite 

(PSD) matrix properties of its elements (Ahmad and Namerikawa, 2010b). Since 
1

k kP −Ω =  and 0 AP R , the first element of Eq. (7.15) has the following criteria: 

 

        

1 1 2 1 1 2
0 0

1 2 1
0 0

0,   therefore   0    and    0

since  ,  hence   

T T
A A A A A A

T
A A A A

P H R H P H R H

P R H R H P

γγ

γ

− − − − − −

− − −

+ − > > − >

− >2

   (7.16) 

 

Note that the left and right hand sides of Eq. (7.16) still exhibit a positive semidefinite 

matrix. Examining the case for 1D SLAM (a mobile robot with a single coordinate, or 

Monobot) with A nH I= , from Eq. (7.16), the following equation is achieved: 

 

 1 2 1
0AR Pγ− − −− >   (7.17) 

 

Using this new proposed condition and considering that the updated information must 

be at least a PSD matrix, 

 

 

1 2

1 2

2

0A

A

A

R

R

R

γ

γ

γ

− −

− −

− >

>

>

  (7.18) 
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7.5.1.2 Feasibility Condition 2 
 

The second feasibility conditions defined in the Theorem 7.3 is as follows: 

if 0 AP R<  then 2
0Pγ > . 

 

Similar to the analysis in the previous subsection, the first element of FIM is examined 

to find the consequences of 0 AP R< . Under the same assumption of PSD characteristics 

as described in Subsection 7.5.1.1 and similar assumption as in Eq. (7.16), the following 

results are obtained: 

 

 1 1 2 1 2
0 0 0T

A A AP H R H Pγγ − − − − −+ − > − >   (7.19) 

 

Hence, for 1D SLAM, 

 

 

2 1
0

2
0

P

P

γ

γ

− −<

>
  (7.20) 

 

Based on the proposed Theorem 7.3, additional conditions are required prior to 

the implementation stage to ensure that H∞ filter estimation converges. Besides, the 

results have aided the previous findings significantly which are identified by Bolzern 

and Maroni (1999). Note that the initial state covariances for mobile robot and 

landmarks are considered similar in Theorem 7.3. With the appropriate conditions, the 

sufficient conditions for H∞ filter-based SLAM convergence of each case defined 

previously are investigated.               □ 

 

7.5.2 Effect of Initial State Covariance 
 

The previous section explains that FIM is used to interpret the H∞ filter behavior 

in each update. Since the main difference between H∞ filter and Kalman filter is due to 

the existence of γ , in which the characteristics can be explicitly recognized by 

Eq. (7.15), the equation may be used in analyzing its significance and influence of 

design parameters on H∞ filter performance. 
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7.5.2.1 Case Study 1 
 

For the first case study, the following condition is proposed: 

Case 1: 0 0rr mmP P0 . 

 

If 0 0rr mmP P0 , the landmarks will contain high uncertainties. Thus, it is 

appropriate to assume that 1
0 0

mm
P− → . Thus, FIM can be expressed as follows: 

 

 
1 1 2 1

0
1 1 1 2

T T
rr A A A n A A

k T T
A A A n

P H R H I H R A
A R H A R A I

γ
γ

− − − −

+ − − −

 + − −
Ω =  − − 

  (7.21) 

 

Note that the diagonal elements are the essential elements for the designer to obtain 

some sufficient conditions in H∞ filter, since each variable occupies the mobile robot 

and landmarks uncertainties. Hence, the smaller the values of these variables, the better 

the state estimation; this is the preferred case. Moreover, Ω  must always preserve at 

least a positive semidefinite matrix in every observation. These are the necessary 

conditions to ensure a reliable estimation in H∞ filter-based SLAM. To clearly illustrate 

this matter, the following proposition is presented. Let 0 ( )rr xP , 0 ( )rr yP  and 0 ( )rrP θ  define 

𝑥𝑥, 𝑦𝑦, 𝜃𝜃 robot initial state covariances. 

 

Proposition 7.4. For 0γ > , in a case of a robot that has more confidence about its 

initial state than the landmarks state, γ  selection is affected by the initial state 

covariance, process, and measurement noises and its selection must satisfy the 

following properties: 
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+ + + +

  (7.22) 
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Proof. Initially, the diagonal elements are analyzed. This consequently followed by 

determining the robot and landmarks information during the robot observations, which 

are represented by 1 1 2
0

T
rr A A A nP H R H Iγ− − −+ −  and 1 2T

A nA R A Iγ− −− . The former equation 

can substantially explain the latter equation. This is shown by the following 

calculations: 

 

    

[ ]
1

0 ( )1 1 2 1 2
0 1

0 ( )

1 1 2 1
0 ( )

1 1 1 2
0 ( )

0
0

T
rrT

rr A A A n A nT
rr xy

T T
rr A n A

T T
A rr xy A n

P e
P H R H I R e A I

P A

P e R e I e R A
A R e P A R A I

θ

θ

γγ

γ
γ

−
− − − − −

−

− − − −

− − − −

   
+ − = + −   

    

 + −
=  + −  

  (7.23) 

 

where 0 ( )rrP θ  and 0 ( )rr xyP  are the initial robot state error covariance about its angle and 

,x y  position, respectively. Note that both diagonal elements must preserve PSD in each 

observation. In SLAM, the mobile robot heading angle acts as the primary factor that 

determine the consistency (Huang and Dissanayake, 2007). Hence, it should be 

analyzed differently with other elements of the state error covariance. As each diagonal 

matrix element must at least possess a PSD, then, for the robot heading angle 

covariance 0 ( )rrP θ , the following characteristics are compulsory: 

 

 

1 1 2
0 ( )

2
1 1

0 ( )

0

1

rr A

rr A

P R

P R

θ

θ

γ

γ

− − −

− −

+ − >

>
+

  (7.24) 

 

The analysis is conducted for the state of robot and landmarks about its ,x y

estimations, that is, the second diagonal element. By utilizing Definition 7.1 and 

Eq. (7.15) being referred, 
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




  (7.25) 

 

Based on this case, it is configurable that the robot has some degree of 

confidence about its initial location compared to the landmarks condition, which 

consists of very large initial state covariance. Hence, the inverse of the landmarks initial 

state covariance is approximately zero. Substituting Eq. (7.25) into the second diagonal 

term of Eq. (7.23) leads to the following expression: 

 

 
2 2

1 1 2
0 ( ) 2 4 0A A

rr x A
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dx dyP R
r r

γ− − − 
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  (7.26) 
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0 ( ) 2 4 0A A
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dy dxP R
r r
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+ + − > 
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  (7.27) 

 

With a simple algebraic rearrangement to determine γ  sufficient conditions, the 

following is proposed to obtain a better estimation result: 

 

 
2 2 2
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γ −

+
>

+ + + +
  (7.29) 

 

This result describes that it is difficult to obtain an appropriate γ  due to the 

nonlinear characteristics of the robot movement and noises. Nevertheless, the estimation 

also contains the process noise (refer to Eq. (7.8)); it is found that a larger process noise 
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requires a large value of γ . Furthermore, the PSD characteristic is examined in each 

FIM update. It was found that FIM, which behaves as the information during 

observations, has provided a proper selection of γ  to avoid the finite escape time 

phenomenon.                        □ 

 

Theorem 7.5. Note that 0γ >  and Theorem 7.3 is satisfied. If the mobile robot initial 

state covariance is very small compared to the initial state covariance of landmarks, 

then γ  is chosen to satisfy the following equations: 

 

(i) Rγ >   

(ii) 0rrPγ >   

 

Else, the updated state error covariance exhibits the finite escape time. 

 

Proof. From the properties of PSD, the determinant of the matrix must be positive. This 

behavior is necessary in the probabilistic SLAM. As a matter of fact, this criterion is 

used to obtain some typical features for γ  selection. The determinant of Eq. (7.21) 

gives 

 

 ( )( ) ( )1 1 2 1 2 1 1
0 0T T T T

rr A A A n A n A A A AP H R H I A R A I H R AA R Hγγ − − − − − − −+ − − − >   (7.30) 

 

However, the above nonlinear equation is difficult to be used in explaining the effect of 

γ  for every respective update. An analysis is proposed in linear 1D SLAM to visualize 

how γ  influences the estimation. In 1D SLAM, the determinant (Eq. (7.30)) eventually 

becomes as follows: 

 

 

( )( )

( )

1 1 2 1 2 2
0

1 1 2 1 2 1 4
0 0

4 1 1 2 1 1
0 0

0

2 0

2 0

rr A A A

rr A rr A

rr A rr A

P R R R

P R P R

P R P R

γγ

γγγ 

γγ

− − − − − −

− − − − − − −

− − − − − −

+ − − − >

− − + >

− + + >

  (7.31) 
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where [ ]1 1AH = −  and 1A = . Furthermore, it is easily recognized that as 0 , 0rr AP R > , 

then the following are achieved: 

 

 ( ) ( )4 1 1 2 1 1 4 1 1 2 1 1
0 0 0 02rr A rr A rr A rr AP R P R P R P Rγγγγ   − − − − − − − − − − − −− + + < − + +   (7.32) 

 

 
( ) ( )( )

( )( )

4 1 1 2 1 1 2 1 2 1
0 0 0

2 1 2 1
0 0

rr A rr A rr A

rr A

P R P R P R

P R

γγγγ  

γγ

− − − − − − − − − −

− − − −

− + + = − −

− − >
  (7.33) 

 

Hence, there exist two different cases with two respective conditions to satisfy 

Eq. (7.33): 

 

(i) ARγ >  and 0rrPγ >   

(ii) ARγ <  and 0rrPγ <  

 

However, the above condition (ii) is unlikely to happen. This is related to 

Eq. (7.15) where this condition can yield a negative definite matrix. Therefore, 

condition (i) is apparently the only solution in this case. Moreover, the abovementioned 

analysis explicitly identifies the relationship between γ , initial state covariance, and 

measurement noise. In addition, the process noise covariance also influences the γ  

selection as it is included in the calculation of the state covariance matrix. 

 

The results consistently show the same behavior as shown in Theorem 7.3 in 

which γ  must be properly selected considering the environment and system situations; 

whenever the initial state error covariance for mobile robot is much smaller than 

landmarks covariance, then γ  must be designed according to these two conditions. Note 

that Theorem 7.5 describes a case where the initial state covariance between the mobile 

robot and landmarks is different, whereas Theorem 7.3 considers that both initial state 

covariances have the same values. Furthermore, both feasible conditions proposed by 

Theorem 7.3 must be satisfied in this case. 
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In the navigation of mobile robot, the heading angle of mobile robot acts as an 

important factor to be considered in SLAM (Huang and Dissanayake, 2007). As 

proposed in Theorem 7.3 and Proposition 7.4, the designer must ensure that those 

feasibility conditions and Eq. (7.24) are fulfilled to successfully implement the filter. γ  

is selected by incrementally increasing its value with regards to the value defined in 

Theorem 7.3 and Proposition 7.4 to obtain the best solution.          □ 

 

7.5.2.2 Case Study 2 
 

Following condition has been defined for the second case study: 

Case 2: 0 0rr mmP P= . 

 

This condition is the appropriate situation of an actual SLAM problem. It is 

obvious that if a mobile robot is arbitrarily placed in an unknown environment, then it 

should not have the information of its initial location even though it is equipped with 

high accuracy sensors. Such situation presumes a uniform distribution of both robot and 

landmarks belief where both initial state covariances yield very high uncertainties. The 

following theorem is proposed to indicate H∞ filter-based SLAM behavior in this 

particular case. 

 

Theorem 7.6. Consider that 0γ >  and Theorem 7.3 is satisfied. There is a γ  that 

provides the best solution in SLAM which satisfies the following, if and only if both 

robot and landmarks initial state covariances are very large such that robot does not 

have any prior information about its initial position: 

 

 
2
Rγ >   (7.34) 

 

Proof. Assume that both robot and landmarks initial state covariances are very large. By 

referring to the previous case, the determinant of the updated Fisher information matrix 

of Eq. (7.15) for a robot observing landmarks at point A yields the following: 

 

       ( )( ) ( )1 1 2 1 1 2 1 1
0 0 0T T T T

rr A A A n mm A n A A A AP H R H I P A R A I H R AA R Hγγ − − − − − − − −+ − + − − >   (7.35) 
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To simplify this analysis, the 1D SLAM problem is considered. It is initially 

known that in this case 0 0 0rr mmP P P= =  and both initial state covariances are very large. 

From this assumption and similar steps as in Eq. (7.31) – Eq. (7.33), Eq. (7.35) leads to 

the following equation: 

 

 
( )

( )

21 1 2 2
0

4 2 1 1 2 1 1
0 0 0

0

2 2 0

A A

A A

P R R

P R P P R

γ

γγ

− − − −

− − − − − − −

+ − − >

− + + + >

  (7.36) 

 

Consider the aforementioned equation and the fact that 0 0P   and thus 1
0( 0)P− → . 

Hence, by means of factorization, the following equation is obtained: 

 

 

4 1 2

2 2 1

2 0

( 2 ) 0

A

A

R

R

γγ

γγ

− − −

− − −

− >

− >
  (7.37) 

 

Since in the H∞ filter algorithm 0γ >  , from Eq. (7.37), it appears that the left hand side 

variables should yield positive values to ensure that the solution of the estimation is 

available. Therefore, the following relation of γ  and measurement noise is obtained: 

 

 

2 12 0

2

A

A

R

R

γ

γ

− −− >

>
  (7.38) 

 

It is worth mentioning that the process noise still slightly affects the estimation if 

it is too large. If such conditions occur, then γ  must be tuned carefully to achieve a 

desired estimation result. Referring back to the filter algorithm, the H∞ filter estimation 

should be the same as EKF if a very large γ  is defined. Related to this fact, a condition 

of γ  where H∞ filter produces a better performance than EKF is proposed. If finite 

escape time is seen, then γ  must be tuned by incrementally increasing its value to obtain 

a better result. This is the common step in H∞ filtering, providing similar estimation 

behavior to EKF. The next section discusses the validation of the theoretical results.    □ 
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7.6 Simulation Results 
 

The proposed theoretical results obtained in the previous section were validated 

against a series of simulations. A small environment which has the parameters as 

described in Table 7.1 was considered. The parameters were selected based on 

experiments and analyses conducted in previous works (Ahmad and Namerikawa, 

2009b, c, 2010a, 2011c; Ahmad and Othman, 2014). It is assumed that the robot 

exteroceptive sensors can observe their surrounding in a specific range and the process 

noises are small such that they can be neglected. The robot was assigned to move in 

some directions while performing the observations for 1000 s. The landmarks are 

assumed as point landmarks, stationary, and situated randomly as defined in 

Subsection 3.2.1. H∞ filter-based SLAM was compared with the extended Kalman 

filter-based SLAM with regards to the map construction analysis, state error covariance 

update, and root-mean-square error (RMSE) evaluation in each case that has been 

analyzed in the previous section. Note that the process noises are consistently kept small 

in both cases to eliminate its impact. Moreover, it is also assumed that data association 

is available at all time. 

 

Figures 7.1 and 7.2 illustrate the simulation results for the proposed feasibility 

condition stated by Theorem 7.3. To evaluate the reliability of the proposed feasibility 

conditions, the parameters in Table 7.1 are selected such that they satisfy the defined 

conditions. Figure 7.1 demonstrates the results of the estimation between H∞ filter (HF) 

and extended Kalman filter (EKF) in feasibility condition 1 where the condition of 

0P R  is considered. As illustrated in the figure, H∞ filter shows a better performance 

than the extended Kalman filter with regards to the mobile robot and landmarks 

positions. The path of the robot was recorded for 1000 s, in which the mobile robot 

performed several observations. 

 

The analysis of feasibility condition 2 is depicted in Figure 7.2. The figure 

indicates that, if the parameters selected correspond to the described condition, that is, 

0P R< , then the H∞ estimation outperforms the extended Kalman filter. According to 

these results, if both of the feasible conditions are not satisfied, then the estimation 

diverges  and  produces erroneous results. Besides, the estimation emphasizes that finite  
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Table 7.1 
Simulation parameters. 
 
Parameter Symbol Value 

Sampling time (s) T 0.1 

Process noise kQ  1 × 10-7 

Feasibility condition 

 Feasibility condition 1   
  Robot initial state covariance 0rrP  10 

  Landmark initial state covariance 0mmP  10 
  Measurement noise (angle) kR θ  0.002 
  Measurement noise (distance) (distance)kR  0.002 
  Selection of Gamma γ  0.85 
 Feasibility condition 2   
  Robot initial state covariance 0rrP  2 
  Landmark initial state covariance 0mmP  2 
  Measurement noise (angle) kR θ  5 
  Measurement noise (distance) (distance)kR  5 
  Selection of Gamma γ  2.35 

Case analysis   

 Case 1   

  Robot initial state covariance 0rrP  2 

  Landmark initial state covariance 0mmP  20 

  Measurement noise (angle) kR θ  2 

  Measurement noise (distance) (distance)kR  2 

  Selection of Gamma γ  2 

 Case 2   

  Robot initial state covariance 0rrP  5 

  Landmark initial state covariance 0mmP  5 

  Measurement noise (angle) kR θ  2 

  Measurement noise (distance) (distance)kR  2 

  Selection of Gamma γ  2 
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Figure 7.1. Feasibility condition 1: robot localization and map building performance 
between H∞ filter and EKF. 
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Figure 7.2. Feasibility condition 2: robot localization and map building performance 
between H∞ filter and EKF. 
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Figure 7.3. Case 1: map construction performance between H∞ filter and EKF. 
 

escape time might easily occur during mobile robot observation. These findings have 

been investigated in (Ahmad and Namerikawa, 2010b). 

 

Figures (7.3) – (7.5) illustrate the simulation results of case 1 where the mobile 

robot has more confidence on its initial position in comparison to the landmarks state 

covariance; that is, 0 0rr mmP P0 . It is apparent that the estimation of H∞ filter 

outperforms the extended Kalman filter. Figure 7.3 depicts the result of mapping of both 

filters, while the state error covariances for the estimations are presented in Figure 7.4. 

RMSE evaluations of the landmarks estimations are presented in Figure 7.5. The mobile 

robot  path  estimation  as  well as  the  estimation of  landmarks  position  in  Figure 7.3 

consistently shows that H∞ filter provides a better estimation than extended Kalman 

filter. Figure 7.3  clearly  depicts  the  erroneous  estimation  of  extended  Kalman filter  
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Figure 7.4. Case 1: state error covariance performance between H∞ filter and EKF. 
 

 

 

Figure 7.5. Case 1: RMSE performance between H∞ filter and EKF. 
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through the path of the mobile robot. The findings are demonstrated in Figure 7.4, in 

which the state error covariance of extended Kalman filter has a higher value than H∞ 

filter for both mobile robot and landmarks position. This denotes that the estimation 

using the extended Kalman filter possesses higher uncertainties in the conditions 

described by case 1. Based on the RMSE evaluation for the landmarks position in 

Figure 7.5, H∞ filter also exhibits smaller error than extended Kalman filter. However, 

these results can only be available if and only if the condition of Rγ >  is satisfied. 

 

Figures (7.6) – (7.8) illustrate the results of case 2 of the initial covariances of 

0 0 5rr mmP P= =  for both robot and landmarks states. Similar findings are observed as 

described in Figures (7.3) – (7.5). The robot could estimate its current path and location 

with some level of certainty. The uncertainties of estimation proved that H∞ filter still 

surpasses the extended Kalman filter performance as shown in Figure 7.7. Moreover, it 

is evident from Figure 7.8 that the RMSE evaluation of the landmarks position has 

similar characteristics to that of the case 1 (Figure 7.5). This shows that H∞ filter can 

provide a better solution in SLAM problem, if and only if Theorem 7.6 is satisfied in 

each observation. However, if the proposed conditions are not fulfilled, then the 

estimation becomes erroneous as explained in the literature (Ahmad and Namerikawa, 

2010b); in this case, the extended Kalman filter is superior. 

 

Even though it is imperative to ensure that the conditions specified under 

Theorems 7.5 and 7.6 are satisfied, note that initial state covariance and process noise 

might influence the estimation. A larger process noise contributes to a bigger selection 

of γ  as observed from Eq. (7.1). Similar pattern is also seen for the initial state 

covariance, in which a greater value of initial state covariance of heading angle may 

lead to an unexpected result (Huang and Dissanayake, 2007). Therefore, the designer 

should be aware of the importance of the parameter selection in addition to fulfilling the 

conditions of Theorems 7.3, 7.5, and 7.6. 
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Figure 7.6. Case 2: map construction performance between H∞ filter and EKF. 
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Figure 7.7. Case 2: state error covariance performance between H∞ filter and EKF. 
 

It is observed that the H∞ filter estimations are superior to the extended Kalman 

filter even when it comes to the Gaussian noise environment with an appropriate 

selection of γ  and other parameters design. Moreover, the results support the findings 

of (Ahmad and Namerikawa, 2009b) as the state error covariance update converges 

almost to zero in the estimation. In addition, it is also apparent that the extended 

Kalman filter estimation becomes more inconsistent as the initial state covariance 

becomes larger (Huang and Dissanayake, 2007). This is in contrast to the extended 

Kalman filter, where even if the initial state covariance has a much bigger value, the H∞ 

filter still preserves a better estimation. To conclude, H∞ filter based SLAM is one of 

the alternative solutions in SLAM especially for bigger initial state covariance and non-

Gaussian noise environment. 

 

7.7 Summary 
 

This study demonstrates that the H∞ filter may be considered as one of the best 

alternatives to overcome the navigation issues in SLAM especially in an environment 

with unknown noise characteristics. It is evident from the two case studies that the 

measurement  noise  must be less than 2γ  for a system  with small process noise. Extra  
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Figure 7.8. Case 2: RMSE performance between H∞ filter and EKF. 
 

attention should be given by the designers if both the initial state covariance and process 

noise are large, which consequently demands a bigger γ   selection for the whole system 

to operate efficiently. However, to sufficiently achieve an expected performance in H∞ 

filter, the designer must ensure that the aforementioned conditions are satisfied in their 

system design, taking into consideration the conditions of initial state covariance, 

process, and measurement noises distributions. 
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  CHAPTER 8
 
 
 
 

CONCLUSION 
 

 

This thesis attempts to investigate the behavior of estimator or observer in simultaneous 

localization and mapping of mobile robot under specific conditions. A thorough 

theoretical analysis on each issue is important as a guideline for the operators or users in 

developing a controller or other control strategies for the mobile robot SLAM. In this 

chapter, the contributions of this thesis for each research problems are summarized. 

Furthermore, a set of future directions for extending this work is also suggested. A 

detailed conclusion of each research problem is written at the end of each respective 

chapter. 

 

8.1 Summary of Contributions 
 

The contributions of this thesis can be summarized as follows: 

 

8.1.1 The Impact of Cross-correlation Elements 
 

In Chapter 4, the impact of cross-correlation elements of state covariance matrix 

on the estimation accuracy was investigated. To date, the mathematical analysis 

conducted is the first analysis that has been presented in such form. The results were in 

a good agreement with other studies that were conducted by means of experimental 

works or covariance ellipse analysis. 

 

Moreover, the analysis was conducted based on the conditions that the mobile 

robot and the positions of the landmarks are located on the negative side of the global 

coordinate frame. In reality, the position of mobile robot and landmarks are not always 

 
 



 
 

located on the positive side and initially the mobile robot has no knowledge of its 

position. Due to these reasons, the analysis was proposed under the said condition in 

order to examine the effect of the negative position on the estimation, covariance 

behavior, and the Jacobian of the measurement matrix. This study accomplished the 

first objective of the thesis. 

 

8.1.2 Diagonalization of State Covariance Matrix 
 

In Chapter 5, a method to diagonalize the state covariance matrix through 

eigenvalues approach was presented. The diagonalization process attempts to simplify 

the structure of the state covariance matrix in order to reduce the computational cost in 

EKF-based SLAM. The study suggested that diagonalization method through 

eigenvalues might be one of the approaches to achieve this goal. The simulation results 

prove that this technique could be implemented, however more modification on the 

algorithm should be done to ensure the estimation and covariance behavior are correct. 

Besides, the cross-correlation terms should be taken into account since it is important to 

ensure the estimation accuracy. This is a novel approach that focuses on the EKF-based 

nonlinear SLAM. The analyses conducted conclude the second objective of the thesis. 

 

8.1.3 Intermittent Measurement Condition in SLAM 
 

In Chapter 6, the analysis of mobile robot SLAM under an intermittent 

measurement condition was conducted. The analysis provides important information, in 

which the state estimation of mobile robot position and landmarks are still possible and 

can be corrected by extended Kalman filter in the situation of sudden unavailability of 

the measurement data. This finding proves that the extended Kalman filter is capable in 

handling uncertainties in EKF-based SLAM. However, the state covariance matrix was 

unable to be corrected and it was too optimistic. The state covariance matrix remains 

lower than the actual values. Such behavior of the covariance matrix and state 

estimation under occurrence of sudden unavailability of measurement data has never 

been reported before. This work completes the third objective of the thesis. 
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8.1.4 H∞ Filter-based SLAM 
 

The requirement of Gaussian distribution characteristics for the process and 

measurement noises, as well as the need for the smallest possible initial state covariance 

matrix limits the Kalman filter to be successfully operated in various types of 

environment. Therefore, H∞ filter could be one of the alternatives to be employed in the 

mobile robot SLAM within an environment with unknown distribution. However, H∞ 

filter requires a proper tuning of the parameters, especially γ  in order to obtain best 

performance. Therefore in Chapter 7, a guideline in choosing the right value of γ  based 

on predefined conditions was provided. The lower boundary of the γ  selection was 

defined depending on the value of initial state covariance matrix of the mobile robot and 

the landmarks. This concludes the final objective of the thesis. 

 

8.2 Future Research Directions 
 

8.2.1 The Impact of Cross-correlation Elements 
 

The simulation results in Chapter 4 showed that the position of the mobile robot 

during its observation with the reference to its initial position has significant effect on 

the updated state covariance. The changes of movement from positive to negative 

direction may influence the findings. Particularly, this occurs due to the calculation 

during the mobile robot measurement model, which may influence the Jacobian matrix. 

This has been discovered through simulation analysis, and therefore requires further 

investigation and mathematical proves to corroborate the finding. 

 

8.2.2 Diagonalization of State Covariance Matrix 
 

Diagonalization technique through eigenvalues approach could be implemented 

in diagonalizing state covariance matrix in EKF-based SLAM. However, the cross-

correlation terms should be integrated into the diagonal elements. As a future work, a 

technique to integrate the cross-correlation elements in diagonalization process should 

be introduced, or through a numerical analysis method. In the future, this work will be 

extended by numerically analyzing each element of the state covariance matrix to 
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identify a specific pattern that generates the elements. Hence, a new equation for a 

diagonal state covariance matrix could be introduced. 

 

8.2.3 Intermittent Measurement Condition in SLAM 
 

The study has proven that the state estimation can be corrected by the extended 

Kalman filter as the measurement data become available. However, the state covariance 

matrix remains uncorrected. This finding should be investigated further to find the 

reason behind the inability of covariance matrix to be fixed. More analysis should be 

conducted on the derivation of covariance matrix in EKF-based SLAM in the 

intermittent measurement. Hence, a possible solution towards the problem may be 

suggested. 

 

8.2.4 H∞ Filter-based SLAM 
 

In Chapter 7 the lower boundary of the γ  selection was defined based on the 

specified conditions. However, it is hypothesized that there exists an upper boundary of 

the γ  selection, in which should also be determined. Generally, if the selected γ  is too 

large, the H∞ filter will behave similarly as the Kalman filter. The value of γ  needs to 

be properly selected based on the environment conditions of the system. In mobile robot 

SLAM, the conditions are always changing, depending on the type of onboard sensors, 

the structure of the ground plane, and the behavior of the landmarks. As a future work, 

the upper boundary of the γ  for the conditions specified in Chapter 7 will be proposed. 
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