DECLARATIO	N OF THES	S AND COPYRIGH	Т
Author's Full Na	ame : GER	ALDINE CHAN SUE	CHING
Date of Birth	: 19 O	CTOBER 1989	
Title	: DEV	ELOPMENT OF A G	RAPHENE BASED IMMUNO-
	BIOSE	ENSOR FOR HEPAT	ITIS B VIRUS SURFACE ANTIGEN
	DETE	CTION	
Academic Sessio	on :		
I declare that this	s thesis is class	sified as:	
CONF	FIDENTIAL	(Contains confidenti Act 1997)*	al information under the Official Secret
REST	RICTED	(Contains restricted i organization where r	nformation as specified by the esearch was done)*
OPEN	ACCESS	I agree that my thesis (Full Text)	s to be published as online open access
I acknowledge th	nat Universiti I	Malaysia Pahang reser	ve the right as follows:
1. The Thesis is	s the Property	of Universiti Malaysia	Pahanag
 The Library of Universiti Malaysia Pahang has the right to make copies for the purpose of research only. 			
3. The Library	has the right to	make copies of the th	nesis for academic exchange.
Certified By:	(Student's S	ignature)	(Supervisor's Signature)
	891019-13-	5610	
	New IC/ Pas	ssport Number	Name of Supervisor
	Date:		Date:

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter page 2 from the organization with the period and reasons for condentiality or restriction.

DEVELOPMENT OF A GRAPHENE BASED IMMUNO-BIOSENSOR FOR HEPATITIS B VIRUS SURFACE ANTIGEN DETECTION

GERALDINE CHAN SUE CHING

Thesis submitted in fulfilment of the requirements for the award of the degree Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

APRIL 2016

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Engineering in Chemical Engineering.

(Supervisor's Signature)

Full Name : CHONG FUI CHIN

Position :

Date :

(Co-supervisor's Signature)

Full Name : CHONG KWOK FENG

Position :

Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Full Name : GERALDINE CHAN SUE CHING

- ID Number : MKC13019
- Date : APRIL 2016

TABLE OF CONTENTS

Page

DECLARATION

TITL	E PAGE		i
ACK	NOWLEDG	GEMENTS	ii
ABST	RACT		iii
ABST	TRAK		iv
TABI	LE OF CON	ITENTS	V
LIST	OF TABLE	ES	viii
LIST	OF FIGUR	ES	ix
LIST	OF ABBRI	EVIATIONS	xii
CHAI	PTER 1	INTRODUCTION	1
1.1	Backgr	round of Study	1
1.2	Motiva	tion	3
1.3	Probler	m Statement	4
1.4	Objecti	ives of Study	6
1.5	Scope of	of Study	6
CHAI	PTER 2	LITERATURE REVIEW	8
2.1	Introdu	iction	8
2.2	Hepatit	tis B Virus (HBV)	8
2.3	2.2.1. 2.2.2. Reduce	Infection of HBV Clinical Diagnostics of HBV Infection ed Graphene Oxide (RGO)	10 10 14
2.4	2.3.1. 2.3.2. Biosens	Synthesis of RGO Properties of RGO sors	14 21 27
	2.4.1.	Immuno-Biosensors	30

2.5Graphene Based Immuno Biosensor32

2.6	Application of RGO as Electrochemical Biosensor	35
2.7	Summary	38

CHAPTER 3 METHODOLOGY

39

3.1	Introdu	uction	39
3.2	Materi	als and Reagents	39
3.3	Sampl	e Preparation	41
3.4	3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. Charao	Synthesis of Graphite Oxide Chemical Reduction of Graphite Oxide RGO Functionalization of RGO Direct Deposition of RGO on GCE Immobilization of HBsAg onto Functionalized RGO cterizations of Hydrazine Reduced Graphene Oxide	41 42 42 43 44 46
3.5	3.4.1. 3.4.2. Detect	Reduction Rate Measurements by UV-Vis Qualitative Measurements of RGO ion of HBsAg	46 47 48
	3.5.1.	Incubation of Secondary Antibody, HBsAb-HRP)	48
3.6	Electro	ochemical Measurement	48
	3.6.1. 3.6.2.	Electrode Preparation for Cyclic Voltammetry Testing Electrochemical Characteristics on Electrode Surface via Cyclic Voltammetry	48 49
3.7	Adsorj Functi	ption of Hepatitis B Surface Antigen (HBsAg) Onto onalized RGO	49
	3.7.1. 3.7.2. 3.7.3.	Preparation of Standard Calibration Curve Preparation of Samples for Adsorption Studies Experimental Data Analysis	49 50 52
СНАРТЕ	CR 4	RESULTS AND DISCUSSION	53
4.1	Introd	uction	53
4.2	Qualit	ative Characterization of RGO	53
	4.2.1. 4.2.2.	Dispersion observation of RGO Ultraviolet-visible Absorption Spectrophotometry (UV- Vis)	53 55
	4.2.3. 4.2.4. 4.2.5.	Fourier Transform Infrared Spectroscopy (FTIR) Scanning Electron Microscopy (SEM) Field Emission Scanning Electron Microscopy (FESEM)	56 59 61

4.3 Functionalized RGC

64

	4.3.1.	Detection of HBsAg by Functionalized RGO	64
4.4	Electro	ochemical Characterization	66
	4.4.1.	Cyclic Voltammetry (CV)	67
4.5	Adsor	ption Studies	71
	4.5.1. 4.5.2. 4.5.3. 4.5.4. 4.5.5.	Adsorption of HBsAg onto Functionalized RGO Estimation of Amount of HBsAg Using ELISA Method Determination of Equilibrium Adsorption Isotherm Effect of pH Effect of Incubation Time	72 72 73 78 79
СНАРТН	ER 5	CONCLUSION AND RECOMMENDATIONS	81
5.1	Introd	uction	81
5.2	Conclu	usion	81
5.3	Recon	nmendations	82
	5.3.1.	Evaluate Electrochemical Properties via Electrochemical Impedance Spectroscopy (EIS)	82
	5.3.2.	Incorporate Biorecognition Elements into Graphene-based Electrodes	82
REFERE	INCES		83
APPENDICES		96	
А	Adsor	ption Data (Effect of Concentration)	96
В	Adsor	ption Data (Effect of pH)	97
С	Adsor	ption Data (Effect of Incubation Time)	98
PUBLIC	ATION	AND AWARDS	99

LIST OF TABLES

Table	Title	Page
2.1	Summary of different methods of detection of HBV.	13
2.2	Linearized Langmuir and Freundlich isotherms. (Chen, 2015)	26
2.3 2.4	Summary of GO based immunosensor Summary of RGO based electrochemical biosensor.	34 37
4.1	Adsorption isotherm data used for the modelling of Langmuir isotherm and Freundlich isotherm.	75
4.2	Summary of Langmuir and Freundlich isotherm parameters obtained from linear fitting.	77

LIST OF FIGURES

Figure	Title	Page
2.1	Graphical illustration of HBV (Gitlin, 1997)	9
2.2	Structure and organization of HBV genome (Mahoney, 1999)	9
2.3	Illustration on the fundamentals of a typical sandwich ELISA. (World Health Organisation, 2004)	11
2.4	Schematic diagram of graphene production via CVD process and transfer via polymer support (Kim et al., 2009)	16
2.5	Schematic diagram of the roll-to-roll production of the 30-inch graphene on copper foil and transferred to target substrate (Bae et al., 2010)	17
2.6	Structural layout of (a) graphene and (b) graphite (Kumar and Lee, 2013)	18
2.7	Graphical illustration of (a) oxidation of graphite to GO and reduction to reduced graphene oxide and (b) proposed reaction pathway for epoxy reduction by hydrazine (Hakimi and Alimard, 2012)	20
2.8	SEM micrographs of (a) graphite flakes and (b) RGO (Loryuenyong et al., 2013)	22
2.9	SEM micrographs of RGO produced via Hummer's Method. (Cao and Zhang, 2014)	22
2.10	SEM micrographs of (a) GO and (b) RGO (Fu et al., 2013)	23
2.11	Cyclic voltammograms of stepwise modified GCE with G and NG derivatives in 0.1 M NaPBS pH 7.0; $v = 100 \text{ mV/s}$. (Prathish et al., 2013)	24
2.12	Adsorption behaviour of HBcAg which obeys Langmuir adsorption isotherm (Ng et al., 2007)	27
2.13	Schematic representation of a biosensor build up	28
2.14	Types of transducer used in biosensors	29
2.15	Antibody (Ab) molecular structure with the presence of antigen binding sites (triangles) and disulphide linkage (lines) (Conroy et al., 2009)	31
2.16	GO-based immunosensor proposed for rotavirus detection (Jung et al., 2010)	32
2.17	Treatment using APTES onto MLG prior to antibody attachment (Teixeira et al., 2014)	33

2.18	(A) Fabrication process of graphene based biosensor (B) Graphical illustrations of graphene based biosensor for the detection of rotavirus.(Liu et al., 2011)	36
2.19	Cyclic voltammogram of stepwise change occurring on the electrode for glucose electrochemical sensor (Unnikrishnan et al., 2013)	37
2.20	Schematic diagram of detection of BoNT/A using a RGO/Au electrodeChan et al. (2015)	38
3.1	Structural formula of nation 117 solution (Chen and Hong, 2010)	40
3.2	Structural formula of thionine acetate salt (Katz et al., 2003)	41
3.3	Illustration of proposed reaction mechanism involved during immobilization of HBsAb and HBsAg onto functionalized RGO	45
4.1	Dispersion of (A) graphene oxide, (B) reduced graphene oxide in water and (C) functionalized RGO with 1 % Nafion. (D) dried RGO powder	54
4.2	Graph of absorbance vs. wavelength obtained from UV-Vis spectroscopy shows the peak shift from 231nm to 265nm	55
4.3	FTIR spectra of (A) graphite and (B) GO	57
4.4	FTIR spectra of (A) RGO, (B) functionalized RGO and (C) functionalized RGO attached with antigen antibody	58
4.5	SEM micrographs of (A) graphite, (B) GO and (C) RGO at magnification of 5000 X respectively	60
4.6	FESEM micrograph of (A) GO and (B) RGO	62
4.7	FESEM micrograph of functionalized (A) RGO and (B) HBsAg immobilized on functionalized RGO	63
4.8	Graphical illustration of possible reaction mechanism of HBsAg detection by functionalized RGO based biosensor	65
4.9	The changes that occur before (A, C) and after (B,D) addition of TMB substrates to controlled sample (A, B) whereby the presence of functionalized RGO is absent and tested sample (C,D) whereby functionalized RGO is present	66
4.10	(A) A representative cyclic voltammograms of bare functionalized RGO- modified GCE with varying scan rates (10 mV/s, 20 mV/s, 50 mV/s) in the K3[Fe(CN)6]/K4[Fe(CN)6] redox system. (B) Relationship between the peak current and square root of scan rate	68

4.11	The cyclic voltammetric curves (a) bare GCE (b) functionalized RGO-GCE (c) functionalized RGO-HBsAb-GCE (d) functionalized RGO-HBsAb-BSA-GCE and (e) functionalized RGO-HBsAb-HBsAg-GCE in 2.5 mM potassium hexacyanoferrate (III) (K3[Fe(CN)6]/K4[Fe(CN)6]) in 1:1 mixture with 0.1 M PBS containing 0.1 M KCl and with a scan rate of 20 mV s-1	70
4.12	The cyclic voltammetric curves of RGO-modified GCE incubated with HBsAg at (a) 0 ng/mL (b) 1 ng/mL (c) 0.9 ng/mL (d) 0.5 ng/mL (e) 0.4 ng/mL (f) 0.3 ng/mL for 30 minutes at room temperature	71
4.13	Graph of Standard ELISA calibration curve	73
4.14	Equilibrium adsorption isotherm of HBsAg adsorbed onto functionalized RGO for the prediction of adsorption behaviour	75
4.15	Linear fitting graph plots of Langmuir	76
4.16	Linear fitting graph plots of Freundlich isotherms	76
4.17	Effect of varying pH on the amount of HBsAg adsorbed at equilibrium (q _e , ng HBsAg/g) onto functionalized RGO	79
4.18	Effect of incubation time against the amount of HBsAg adsorbed at equilibrium (Q_e , ng HBsAg/g) onto functionalized RGO	80

LIST OF ABBREVATIONS

Ab	Antibody
ACH	Adrenal cortical hormones
AFP	α-1-fetoprotein
АН	Aluminium hydroxide
APTES	3-Aminopropyl-triethoxysilane
Au@MGN	Multifunctional graphene nanocomposites
AuNP	Gold nanoparticles
BSA	Bovine serum albumin
BoNT/A	Botulinum neurotoxin serotype A
CEA	Carcinoembryonic antigen
CMG	Chemically modified graphene
CNT	Carbon nanotube
CuS	Copper monosulfide
CV	Cyclic voltammetry
CVD	Chemical vapour deposition
DI	Deionized
DNA	Deoxyribonucleic acid
DPV	Differential pulse voltammetry
EBA	Expanded bed adsorption chromatography
EIA	Enzyme immunoassay
EIS	Electrochemical impedance spectroscopy
ELISA	Enzyme-linked immunosorbent assay
FESEM	Field emission scanning electron microscopy
FET	Field effect transistor

FRET	Fluorescence resonance energy transfer
FTIR	Fourier transform infrared spectroscopy
GBP	Gold-binding polypeptide
GCE	Glassy carbon electrode
GO	Graphite Oxide
GOx	Glucose oxidase
GNWs/GO	Gold nanowire functionalized graphene sheets
HBcAg	Hepatitis B core antigen
HBsAb	Hepatitis B surface antigen antibody
HBsAb-HRP	Hepatitis B surface antigen antibody conjugated with HRP
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
hCG HRP	Human chorionic gonadotropin Horseradish peroxidase
Ig	Immunoglobulin
IL	Ionic liquid
IR	Infrared
ITO	Indium tin oxide
MGN	Magnetic graphene nanocomposites
MLG	Multilayer graphene
MWCNT	Multiwalled carbon nanotube
NADH	H_2O_2/β -nicotinamide adenine dinucleotide
NaPBS	Sodium phosphate buffered saline
NASBA	Nucleic acid sequence-based amplification
NG	Nitrogen doped graphene

NMR	Nuclear magnetic resonance
OPV	Organic photovoltaic cells
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PDDA	Polydiallyldimethylammonium
PDMS	Poly(dimethysiloxane)
PSE	1-pyrenebutyric acid N-hydroxysuccinimide ester
PTFE	Polytetrafluoroethylene
RGO	Reduced graphene oxide
RIA	Radio immunoassay
RNA	Ribonucleic acid
RT	Room temperature
SEM	Scanning electron microscopy
SPR	Surface plasmon resonance
TEM	Transmission electron microscopy
TMB	3,3',5,5'-Tetramethylbenzidine
TPA	Tissue polypeptide antigen
USA	United States of America
UV	Ultraviolet
UV-Vis	Ultraviolet-visible spectroscopy
WHO	World Health Organisation

DEVELOPMENT OF A GRAPHENE BASED IMMUNO-BIOSENSOR FOR HEPATITIS B VIRUS SURFACE ANTIGEN DETECTION

GERALDINE CHAN SUE CHING

Thesis submitted in fulfilment of the requirements for the award of the degree Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

APRIL 2016

ABSTRACT

Hepatitis B virus (HBV) is a blood-borne and transfusion-transmitted human pathogen that has a large impact on blood safety and public health worldwide whereas reduced graphene oxide (RGO) is a derivatives of graphene which has gain much attention in electrochemical immunosensors. HBV infects the liver and causes chronic and acute Hepatitis. The best treatment for this disease is for the early detection before the occurrence of severe liver damages. The presence of Hepatitis B surface antigen (HBsAg) is evidence of presence of HBV infections. Presently, the conventional methods shows weakness in terms of time and efficiency. In this research, it aims to immobilize the HBsAg antibody (HBsAb) onto functionalized RGO as well as to study the interaction between HBsAb and HBsAg by electrochemical probe of the functionalized RGO. RGO was synthesized via modified Hummer's methods and reduced using hydrazine hydrate. RGO is functionalized with nation and thionine prior to immobilization of HBsAb. Qualitative analysis of functionalized RGO was conducted via ultraviolet-visible spectrophotometry (UV-Vis), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and field emission scanning electron microscopy (FESEM). Electrochemical analysis of functionalized RGO probe electrode on the detection of HBsAg was done via cyclic voltammetry (CV). As a conclusion, successful immobilization of HBsAg on functionalized RGO was proven to obey Freundlich adsorption isotherm with maximum adsorption capacity of 31 ng HBsAg/g and further confirmed with the change in surface structure observed as well as the presents of functional groups detected. Interaction between HBsAg and HBsAb causes the colour change when tetramethylbenzidine (TMB) was added and step changes to occur during CV with a limit of detection at 0.5 ng/mL.

ABSTRAK

HBV berjangkit melalui pemindahan dan transfusi darah yang mempunyai kesan yang besar terhadap keselamatan darah dan kesihatan awam di seluruh dunia manakala RGO adalah variasi graphene yang telah menarik perhatian ramai para penyelidik dalam pelbagai bidang. HBV menjangkiti hati dan menyebabkan Hepatitis kronik dan akut. Rawatan yang terbaik untuk penyakit ini adalah pengesanan awal sebelum berlakunya kerosakan hati yang teruk. Jangkitan HBV dikesan melalui pengesanan HBsAg. Pada masa kini, kaedah pengesanan HBV konvensional menunjukkan kelemahan dari segi masa dan kecekapan. Kajian ini bertujuan untuk mempekenalkan HBsAb ke atas RGO yang telah difungsikan serta untuk mengkaji interaksi antara HBsAb dan HBsAg dengan menggunakan kaedah electrokimia. RGO telah dihasilkan melalui kaedah Hummer yang telah diubahsuaikan dan melalui penurunan dengan menggunakan agen penurunan hydrazine hidrat. RGO difungsikan dengan nafion dan thionine sebelum diperkenalkan dengan HBsAb. Analisis kualitatif ke atas RGO yang telah difungsikan adalah melalui ultraviolet-visible spektrofotometri (UV-Vis), spektrokopi Fourier transform infrared (FTIR), mikroskop imbasan elektron (SEM), dan 'field' emisi mikroskop imbasan elektron (FESEM). Analisis elektrokimia dijalankan dengan menggunakan elektrod yang mengandungi RGO yang telah difungsikan untuk mengesan HBsAg melalui voltammetry kitaran (CV). Had pengesanan diperolehi ialah kira-kira 0.5 ng / mL. Tambahan pula, ekuilibrium penjerapan isoterma RGO yang telah difungsikan dan HBsAg didapati mematuhi Freundlich penjerapan isoterma dengan kapasiti maksimum, 31 ng HBsAg / g.