OPTIMIZATION OF PRETREATMENT AND SACCHARIFICATION PROCESSES OF EMPTY FRUIT BUNCHES (EFB) FOR BIOETHANOL PRODUCTION

UKAEGBU CHINONSO ISHMAEL

MASTER OF SCIENCE

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THE	SIS AND COPYRIGHT				
Author's full name : U	kaegbu Chinonso Ishmael				
Date of birth : <u>19</u>	th March, 1982				
Title : Or pro	ptimization of pretreatment and saccharification ocesses of Empty Fruit Bunches (EFB) for bioethanol oduction				
Academic Session : 20	15/2016				
I declare that this thesis is cla	assified as:				
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)				
RESTRICTED (Contains restricted information as specified by the Organization where research was done)					
OPEN ACCESS I agree that my thesis to be published as online open access (Full text)					
I acknowledge that Universit	i Malaysia Pahang reserve the right as follows:				
1. The Thesis is the Prope	rty of Universiti Malaysia Pahang.				
2. The Library of University the purpose of research	iti Malaysia Pahang has the right to make copies for only.				
3. The Library has the right	ht to make copies of the thesis for academic exchange.				
Certified By:					
(Student's Signature)	(Signature of Supervisor)				
A04584627	Dr. Shah Samiur Rashid				
Passport Number	Name of Supervisor				
	Date:				

OPTIMIZATION OF PRETREATMENT AND SACCHARIFICATION PROCESSES OF EMPTY FRUIT BUNCHES (EFB) FOR BIOETHANOL PRODUCTION

UKAEGBU CHINONSO ISHMAEL

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE

Faculty of Industrial Sciences and Technology UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science in Biotechnology.

(Supervisor's Signature	e)	
-------------------------	----	--

Full Name Position : Dr. Shah Samiur Rashid : Senior Lecturer

Date

(Co-supervisor's Signature)

Full Name : Dr. Jaya Vejayan Palliah A/L

Position : Senior Lecturer

:

:

Date

STUDENT DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Author's Signature)

Full Name: Ukaegbu Chinonso IshmaelNo ID: MKT14006Date:

TABLE OF CONTENTS

DECI	LARATION		Page
DECI	LARATION	OF THESIS AND COPYRIGHT	
TITL	E PAGE		i
SUPE	RVISOR'S	DECLARATION	ii
STUD	DENT'S DEC	CLARATION	iii
DEDI	CATION		iv
ACK	NOWLEDG	EMENT	v
ABST	RACT		vi
ABST	RAK		vii
TABI	LE OF CON	TENTS	viii
LIST	OF TABLE	S	xiii
LIST	OF FIGURI	ES	xiv
LIST	OF SYMBO	DLS	xvi
LIST	OF ABBRE	VIATIONS	xvii
CHAI	PTER 1 INT	RODUCTION	1
1.1	Backgrou	and of the Study	1
1.2	Problem	Statement	3
1.3	Significa	nce of the Study	3
1.4	Research	Objectives	4
1.5	Scope of	the Study	4
CHAI	PTER 2 LIT	ERATURE REVIEW	5
2.1	Composi	tion of Lignocellulosic Biomass cell wall	5
	2.1.1	Cellulose	5
	2.1.2	Hemicellulose	8
	2.1.3	Lignin	9
2.2	Oil Palm	Empty Fruit Bunches (EFB)-A Lignocellulosic Biomass	10

	2.2.1	Production of EFB	10
	2.2.2	Composition of EFB	11
	2.2.3	Utilization of EFB	11
2.3	Lignocellu	losic Biomass Pretreatment	13
	2.3.1	Purpose of Pretreatment	14
	2.3.2	Types of Biomass Pretreatment Process	15
	2.3.3	Extracellular Lignolytic enzymes as Pretreatment agents	22
	2.3.4	Factors Affecting Laccase Enzyme Activities	24
2.4	Saccharific	ation of Polysaccharides	25
	2.4.1	Methods of Saccharification of Polysaccharides	25
	2.4.2	Agents Used in Enzymatic Saccharification	26
	2.4.3	Factors Affecting Saccharification	28
2.5	Fermentatio	on Process	30
	2.5.1	Saccharification and Fermentation Process	31
	2.5.2	Agents of Fermentation	32
	2.5.3	Factors Affecting Fermentation	32
2.6	Ethanol		33
	2.6.1	Generations of Ethanol	34
	2.6.2	Grades of Ethanol	34
	2.6.3	Properties of Ethanol	35
	2.6.4	Uses of Ethanol	36
2.7	Optimizatio	on of a Bioprocess	37
	2.7.1	Methods of Optimization	38
CHAP	FER 3 MATI	ERIALS AND METHODS	40

3.1	Introduction		40

3.2

Experimental Materials			
3.2.1	EFB Collection and Preparation	42	
3.2.2	Ethanol fermentation bacteria	42	
3.2.3	Chemicals and Reagents	42	

	3.2.4	Equipment and Instruments	43
	3.2.5	Consumable items	43
3.3	Experimer	ntal Methods	43
	3.3.1	Determination of Lignin, Cellulose, Hemicellulose and	43
		Ash Content of EFB	
	3.3.2	Determination of Total Sugar content	44
	3.3.3	Determination of Reducing Sugar content	44
	3.3.4	Determination of cellulase enzyme activity and enzyme	45
		reconstitution	
	3.3.5	Determination of laccase enzyme activity by ABTS	45
		method	
3.4	Optimizati	ion Of Enzymatic Pretreatment Process of EFB using OFAT	46
	3.4.1	Effect of EFB size on the Enzymatic Pretreatment	47
		process	
	3.4.2	Effect of Temperature on the Enzymatic Pretreatment	48
		process	
	3.4.3	Effect of reaction duration on the Enzymatic	48
		Pretreatment process	
	3.4.4	Effect of EFB concentration on the Enzymatic	49
		Pretreatment process	
	3.4.5	Effect of Enzyme concentration on the Enzymatic	49
		Pretreatment process	
	3.4.6	Effects of pH on the Enzymatic Pretreatment process	50
3.5	Optimizati	ion of Enzymatic Pretreatment Process of EFB using RSM	50
3.6	Optimizati	ion of Enzymatic Saccharification of Pretreated EFB using	51
	OFAT		
	3.6.1	Effect of Cellulase Enzyme concentration on the rate of	52
		Saccharification	
	3.6.2	Effect of EFB concentration on the rate of	52
		Saccharification	
	3.6.3	Effect of reaction pH on the rate of Saccharification	53
	3.6.4	Effect of reaction duration on the rate of	53
		Saccharification	

	3.6.5	Effect of Temperature on the rate of Saccharification	54
3.7	Optimization	of the Enzymatic Saccharification of Enzyme Pretreated	54
	EFB using RS	SM	
3.8	Evaluation of	bioethanol production from pretreated and saccharified	55
	EFB using Sa	ccharomyces cerevisiae	
3.9	Estimation of	Bioethanol Concentration in Fermentation Broth	56
	3.9.1	Sample Preparation and bioethanol Titration procedure	57
	3.9.2	Bioethanol Concentration Estimation	58

CHAPTER 4 RESULTS AND DISCUSSION

60

4.1	Introduction	n	60		
4.2	EFB charac	eterization	60		
4.3	Optimizatio	on of Enzymatic Pretreatment Process of EFB using OFAT	61		
	4.3.1	Effect of Laccase Enzyme concentration on the	61		
		Pretreatment of EFB			
	4.3.2	Effect of EFB concentration on the Pretreatment of EFB	63		
	4.3.3	Effect of EFB Size on the Pretreatment of EFB Enzyme	65		
	4.3.4	Effects of reaction duration on the Pretreatment of EFB	66		
	4.3.5	Effect of Temperature on the Pretreatment of EFB	67		
	4.3.6	Effect of pH on the Pretreatment of EFB	69		
4.4	Optimization of Enzymatic Pretreatment Process of EFB using RSM				
	4.4.1	Effect of Experimental factors (pH and Temperature) on	70		
		the Responses			
	4.4.2	Validation of the Enzymatic Pretreatment models	76		
	4.4.3	Highlighted outcome of Enzymatic Pretreatment of	77		
		EFB			
4.5	Optimizatio	on of Enzymatic saccharification Process of pretreated EFB	78		
	using OFA'	Г			
	4.5.1	Effect of Cellulase Enzyme concentration on the rate of	78		
		Saccharification			
	4.5.2	Effect of EFB concentration on the rate of	79		
		Saccharification			

	4.5.3	Effect of r	eaction p	H on	the rate of	Sacc	harifi	cation.		81
	4.5.4	Effect of	f reacti	on	duration	on	the	rate	of	82
		Saccharifi	cation							
	4.5.5	Effect of to	emperatu	re on	the rate of	f sacc	harific	cation		83
4.6	Statistical Opt	timization of	f Enzyma	atic S	accharific	ation	of En	zyme		84
	Pretreated EF	B using RS	М							
	4.6.1	Effect of p	H and Te	emper	ature on th	he Re	spons	es		85
	4.6.2	Validation	of Devel	loped	models					95
	4.6.3	Highlighte	d Outcor	ne of	Enzymati	ic Sac	charit	fication	ı of	95
		Enzyme P	retreated	Of EF	FB					
4.7	Effects of El	FB Sacchar	ification	Proc	ess Cond	itions	on I	Bioetha	nol	96
	Production									
CHAPT	ER 5 CONCL	USION AN	D RECO	OMM	IENDATI	IONS				99
5.1	Conclusion									99
	5.1.1	Pretreatme	nt of EFI	B witł	n Laccase	Enzy	me			99
	5.1.2	Saccharifi	cation o	f En	zyme Pr	retreat	ted E	EFB w	vith	100
		Cellulase I	Enzyme							
	5.1.3	Bioethano	Product	ion E	valuation					100
5.2	Recommenda	tions								100
REFER	ENCES									102
APPEN	DICES									110
А	Raw data of	the results	of pretre	eatme	nt and sa	cchar	ificati	on stuc	lies	110
	using OFAT a	and RSM								
В	Calibration cu	irves								133
С	Chemicals list	and buffer	preparati	ions						135
D	Equipment an	d consumal	oles							138
Е	Calculations a	and student	achievem	nent						141

LIST OF TABLES

Table	Title	Page
2.1	Sugar yield and bioethanol productivity of selected chemical pretreatment procedures	18
3.1	Laccase enzyme activity by ABTS protocol	46
3.2	FCCCD of the parameters for enzymatic pretreatment of EFB	51
3.3	FCCCD of the parameters for saccharification of enzyme pretreated EFB	55
4.1	Composition of EFB	61
4.2	FCCCD showing experimental and predicted responses of parameter combinations	73
4.3	Analysis of variance (ANOVA) for Total sugar response	74
4.4	Analysis of variance (ANOVA) for Weight loss response	74
4.5	ANOVA parameters of the models fitted for Total sugar and weight loss	75
4.6	Solutions for the validation of the enzymatic pretreatment model	77
4.7	Predicted and Experimental Total sugar concentrations after saccharification	88
4.8	Predicted and Experimental responses of reducing sugar after saccharification	89
4.9	Predicted and Experimental responses of weight loss after saccharification	90
4.10	Analysis of Variance Table for Total sugar after saccharification	91
4.11	Analysis of variance table for reducing sugar after saccharification	91
4.12	Analysis of variance table for weight loss after saccharification	92
4.13	ANOVA parameters of the models fitted for Total sugar, reducing sugar and Weight loss	93
4.14	Solution for the validation of saccharification model	95
4.15	Bioethanol production and percentage (%) yield	96

LIST OF FIGURES

Figur	re Title	Page
2.1	Components of biomass cell wall	6
2.2	Chemical structure of cellulose	6
2.3	A triple strand of cellulose showing the hydrogen bonds between glucose strands	7
2.4	Chemical structure of hemicellulose	8
2.5	Structure of Lignin	9
2.6	Fresh palm fruits bunch, Freshly Produced EFB, and Decomposing EFB Fibers	10
2.7	Dried and rolled EFB as fuel for energy in the homes and at the mills.	11
2.8	EFB as fertilizer	12
2.9	EFB mulch for soil moisture control	12
2.10	Composition of lignocellulosic biomass	13
2.11	Biomass a the effects of pretreatment	14
2.12	Oxidation of lignin phenolic groups by laccase	23
2.13	Oxidation of non-phenolic lignin model by laccase-mediator system	24
2.14	Combined action of cellulase enzymes	27
2.15	Fermentation process in Yeast	30
3.1	Research flow chart	41
3.2	Sieve shaker, Sieves with sizes 1, 2, and 3 mm, Sorted EFB	42
3.3	Sample and blank after incubation overnight in acid dichromate and after dilution for titration	58
4.1	Effect of laccase enzyme concentration on enzymatic pretreatment of EFB	63
4.2	Effect of EFB concentration on enzymatic pretreatment of EFB	64
4.3	Effect of EFB size on enzymatic pretreatment of EFB	65

4.4	Effect of time on enzymatic pretreatment of EFB	67
4.5	Effect of Temperature on enzymatic pretreatment of EFB	68
4.6	Effect of pH on enzymatic pretreatment of EFB	70
4.7	Three dimensional (3D) and contour plots of the effect of Temperature and pH on the total sugar produced after saccharification of delignified EFB	71
4.8	Three dimensional (3D) and contour plots of the effects of Temperature and pH on the weight loss after pretreatment after pretreatment	72
4.9	Parity plots of experimental and predicted responses for the effects of Temperature and pH on total sugar and weight loss	76
4.10	Effects of cellulase enzyme concentration on the saccharification of laccase pretreated EFB	79
4.11	Effects of substrate concentration on the saccharification of laccase pretreated EFB	80
4.12	Effects of medium pH on the saccharification of laccase pretreated EFB	81
4.13	Effects of Time on the saccharification of laccase pretreated EFB	83
4.14	Effects of Temperature on the saccharification of laccase pretreated EFB	84
4.15	Three dimensional (3D) response of the effects of Temperature and pH on total sugar, reducing sugar and weight loss after saccharification of laccase pretreated EFB with cellulase enzyme	86
4.16	Contour plots of the effects of Temperature and pH on total sugar, reducing sugar and weight loss after saccharification of enzyme pretreated EFB with cellulase enzyme	87
4.17	Parity plots of experimental and predicted values for the effects of Temperature and pH on: a) Total sugar b) Reducing sugar and Weight loss after saccharification of enzyme pretreated EFB with cellulase enzyme	94

LIST OF SYMBOLS

g/g	Gram per gram
g/l/h	Gram per liter per hour
IU/g	International Unit per gram
j/mol	Joule per mole
OZ	Ounce
Pi	Isoelectric constant
V _{max}	Maximum rate of enzyme activity
°C	Degree Celsius
h	Hour
IU	International Unit
mL	Milliliter
mM	Millimolar

LIST OF ABBREVIATIONS

ABTS	2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)
AFEX	Ammonia fiber expansion
CCD	Central composite design
DNS	Dinitrosalicylic acid
DoE	Design of experiment
EC	Enzyme commission
EDTA	Ethylene diamine tetra acetic acid
EFB	Empty fruit bunches
FCCCD	Face centered central composite design
HMF	Hydroxyl methyl furfural
MW	Mega watt
OFAT	One factor at a time
PAP	Papanicolaou
POME	Palm oil mill effluent
ppm	Parts per million
ROS	Reactive oxygen species
rpm	Revolution per minute
RSM	Response surface methodology
RT	Room temperature
SHF	Separate hydrolysis and fermentation
SSF	Simultaneous saccharification and fermentation
V	Volts
Ro	Severity factor
%Cc	percentage cellulose content

- %Hc percentage hemicellulose content
- %Lc percentage lignin content

OPTIMIZATION OF PRETREATMENT AND SACCHARIFICATION PROCESSES OF EMPTY FRUIT BUNCHES (EFB) FOR BIOETHANOL PRODUCTION

UKAEGBU CHINONSO ISHMAEL

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE

Faculty of Industrial Sciences and Technology UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

Environmental degradation and episodes of global warming have facilitated studies into alternative sources of energy carriers for economic use. Green energy carriers such as bioethanol and biodiesel have waged the gap but not without a snag. Pretreatment of biomass for the production of biofuel has conventionally been done using energy and chemical agents which are not sustainable to the environment as well. Hence, in this study, a novel pretreatment method for the pretreatment of Empty fruit bunches (EFB) was studied and statistically optimized. The optimization of the process parameters for the pretreatment and saccharification of EFB using laccase and cellulase enzymes (enzyme and substrate concentrations, size of EFB, time, pH and temperature) were studied using one-factor-at-a-time (OFAT) and response surface methodology (RSM). The results of the study showed that the activity of laccase enzyme was more affected by the temperature of the reaction than any other factor. The optimized condition for the pretreatment of EFB with laccase enzyme was achieved as: temperature 35 °C, duration 4 h, enzyme concentration 20 IU/g of EFB, EFB concentration 5 % (w/v), and a reaction buffer of pH 5. The optimized saccharification condition of the enzyme pretreated EFB was studied and achieved as: temperature 50 °C, duration 24 h, enzyme concentration 30 IU/g of EFB, EFB concentration 5 % (w/v), and pH 5. Furthermore, the analysis of variance (ANOVA) of the statistically optimized parameters showed that temperature of pretreatment has higher significant effect (P < .05) compared to pH, while the pH during saccharification has higher significant effect (P < .05) compared to temperature. Ethanol production was evaluated at the optimized pretreatment and saccharification conditions and a yield of 29.13 % by total sugar content was achieved, as well as 31.12 % by biomass content. The pretreatment of EFB with laccase enzyme at the above modelled pretreatment conditions could contribute to the sustainability efforts aimed towards reduction of greenhouse gas emission from chemical agents and keep the environment safe from the harmful effect of global warming.

ÀBSTRAK

Pencemaran alam sekitar dan episod pemanasan global telah memudahkan kajian ke dalam sumber alternatif pembawa tenaga untuk kegunaan ekonomi. Pembawa tenaga hijau seperti bioetanol dan biodiesel telah melancarkan jurang tetapi tidak tanpa tergendala. Prarawatan biojisim untuk pengeluaran biofuel yang konvensional telah dilakukan dengan menggunakan ejen tenaga dan kimia yang tidak mampan kepada alam sekitar yang baik. Oleh itu, dalam kajian ini, satu kaedah rawatan awal baru untuk rawatan awal tandan buah kosong (EFB) telah dikaji dan statistik yang dioptimumkan. Pengoptimuman parameter proses untuk rawatan awal dan sakarifikasi EFB menggunakan enzim laccase dan enzim selulase (kepekatan enzim dan substrat, saiz EFB, masa, pH dan suhu) telah dikaji menggunakan satu faktor-pada-satu-masa (OFAT) dan kaedah gerak balas permukaan (RSM). Keputusan kajian menunjukkan bahawa aktiviti enzim daripada enzim laccase adalah lebih terjejas oleh suhu tindak balas berbanding mana-mana faktor lain. Keadaan optimum untuk prarawatan EFB dengan enzim laccase yang telah dicapai: suhu 35 °C, tempoh 4 j, kepekatan enzim 20 IU g EFB, kepekatan EFB 5 % (w/v), dan reaksi pemampan pH 5. Keadaan sakarifikasi optimum enzim EFB yang telah menjalani prarawatan telah dicapai: suhu 50 °C, tempoh 24 j, kepekatan enzim 30 IU/g EFB, kepekatan EFB 5 % (w/v), dan pH 5. Tambahan pula, analisis varians (ANOVA) daripada statistik parameter optimum menunjukkan bahawa suhu rawatan awal mempunyai kesan yang ketara lebih tinggi (P < .05) berbanding pH, manakala pH semasa sarafikasi mempunyai kesan yang ketara lebih tinggi (P < .05) berbanding dengan suhu. pengeluaran etanol telah dinilai pada keadaan rawatan awal dan sarafikasi yang telah dioptimumkan dan hasil sebanyak 29.13 % manakala jumlah kandungan gula adalah 31.12 % oleh kandungan biojisim. prarawatan EFB dengan enzime laccase dimodelkan pada keadaan rawatan awal boleh menyumbang kepada usaha kelestarian bertujuan ke arah pengurangan pelepasan gas rumah hijau daripada bahan kimia dan mengekalkan persekitaran yang selamat daripada kesan bahaya pemanasan global.