OPTIMIZING ISOTACTIC POLYPROPYLENE MEMBRANE PREPARATION CONDITION VIA TIPS FOR CARBON DIOXIDE AND NITROGEN SEPARATION

WAN ZULAISA AMIRA BT WAN JUSOH

MASTER OF CHEMICAL ENGINEERING

UNIVERSITI MALAYSIA PAHANG

OPTIMIZING ISOTACTIC POLYPROPYLENE MEMBRANE PREPARATION CONDITION VIA TIPS FOR CARBON DIOXIDE AND NITROGEN SEPARATION

WAN ZULAISA AMIRA BINTI WAN JUSOH

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering in Chemical

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2016

UNIVERSITI MALAYSIA PAHANG

ECLARATION OF THESIS AND CO	DPY RIGHT
Author's full name : <u>WAN Z</u>	ULAISA AMIRA BINTI WAN JUSOH
Date of birth : <u>29/03/</u>	<u>1988</u>
Title : <u>OPTIMI</u> <u>CONDI</u> <u>SEPARA</u>	IZING ISOTACTIC POLYPROPYLENE MEMBRANE PREPARARATION TION VIA TIPS FOR CARBON DIOXIDE AND NITROGEN ATION
Academic Session : 2015/20	016
I declared that this thesis is cla	issified as:
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restriction information as specified by the
OPEN ACCESS I agree that my thesis to be published as online open access (Full text)	
I acknowledge that University	Malaysia Pahang reserve the right as follows:
 The Thesis is the Property of The Library of University N research only. The Library has the right to 	of University Malaysia Pahang Ialaysia Pahang has right to make copies for the purpose of make copies of the thesis for academic exchange.
Certified By:	
(Student's Signature)	(Supervisor's Signature)
880329035072	DR.SUNARTI ABDUL RAHMAN
New IC/Password Numbe Date: 25/02/2016	r Name of supervisor Date: 25/02/2016

NOTES: *if the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Chemical Engineering.

Supervisor's SignatureFull Name: DR. SUNARTI ABDUL RAHMANPosition: SENIOR LECTURERDate: 25 FEBRUARY 2016

Co-supervisor's SignatureFull Name: DR. ROSMAWATI NAIMPosition: SENIOR LECTURERDate: 25 FEBRUARY 2016

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any institutions.

(Author's Signature)

Full Name: WAN ZULASIA AMIRA BINTI WAN JUSOHID Number: MKC12021Date: FEBRUARY 2016

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	i
STUDENT'S DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii

CHAPTER 1

INTRODUCTIONS

1.1	Research Background	1
1.2	Problem Statement	4
1.3	Objectives of Research	6
1.4	Research Scopes	6
1.5	Significant of the Research	7

CHAPTER 2 LITERATURE REVIEWS

2.1	Membrane Separation Technology	8
2.2	Membrane Materials	9
	2.2.1 Inorganic Membranes	10
	2.2.2 Polymeric Membranes	11
2.3	The Formation of Porous Structure via TIPS and NIPS	14
2.4	Polymer-Diluent System and Relationship with The Phase	17
	Diagram	

2.5	Paramet	ers effect the iPP Membrane Preparation using TIPS	18
	Method		
	2.5.1	Effect of Molecular Weight and Molecular Structure	18
		Contribution	
	2.5.2	Effect of Polymer Concentration	19
	2.5.3	Effect of Temperature for Homogeneous Solution	20
	2.5.4	Effect of Evaporation Time	20
	2.5.5	Effect of Cooling Rate During Quenching Process	21
	2.5.6	Effect of Quenching Condition	21
	2.5.7	Effect of Types of Diluents	22
	2.5.8	Effect of Drying Temperature and Drying Rate	23
	2.5.9	Effect of Additives	24
2.6	Water a	and Carbon Dioxide Recovery Technology from Boiler	25
	Flue gas	3	
	2.6.1	Heat Exchangers to Condense the Water	26
	2.6.2	Desiccant to Absorb the Water	26
	2.6.3	Nano Technology	27
2.7	Gas Sep	paration	28
	2.7.1	Mechanism of Gas Separation	28
2.8	The Hyd	drophobic Membranes Properties	33

CHAPTER 3	METHODOLOGY

3.1	Introduc	ction	35
3.2	Materia	ls	36
	3.2.1	Isotactic Polypropylene (iPP)	37
	3.2.2	Additive	37
	3.2.3	Diluents	38
	3.2.4	Solvent	38

3.3	Experin	nent Procedure on the iPP Membrane Preparation	38
	3.3.1	Effect of Additive Concentration on Contact Angle	40
	3.3.2	Effect of Immersion Time in Methanol and Drying in	40
		Oven	
3.4	Charact	erization / Analysis Method	41
	3.4.1	Scanning Electron Microscopy (SEM)	41
	3.4.2	Fourier Transform Infrared (FTIR)	42
3.5	Membra	ane Performance Study	42
	3.5.1	Hydrophobicity/ Contact Angle	42
	3.5.2	Permeability and Selectivity	43
3.6	Respon	se Surface Methodology (RSM)	44
	3.6.1	Factorial Analysis by 2 ³ Factorial Design (FFD)	47
	3.6.2	Optimization by Central Composite Design (CCD)	48

CHAPTER 4 RESULT AND DISCUSSIONS

4.1	Effect o	f Adipic Acid Concentration to The Contact Angle	50
	Measure	ment	
4.2	Effect of	Immersion and Drying Time	52
4.3	Characte	rization	55
	4.3.1	Effect of Diluent Type on the Membrane Pore	55
		Morphology	
	4.3.2	Effect of Adipic Acid Concentration on the Membrane	60
		Pore Morphology	
	4.3.3	Effect of Adipic Acid on Chemical Composition of PP-	67
		DPE and MS Membrane	
4.4	Permeab	ility and Selectivity of the Fabricated Membrane	72
	4.4.1	Effect of Adipic Acid Concentration on the	72
		Permeability of the PP-DPE /MS Membrane	
	4.4.2	Effect of Additive Concentration on Selectivity of the	76

Membrane

4.5	Factorial A	Analysis by 2-Level Factorial Design	80
	4.5.1	Main Factor and Interaction Factors Contribution	84
		Effect	
		4.5.1.1 Interaction Effect by Drying Temperature-	84
		Drying Time on the Contact Angle and	
		Selectivity	
		4.5.1.2 Interaction Effect by Concentration-Dry	86
		Temperature/Dry time on the Contact Angle	
	4.5.2	The Best Condition obtained by FFD and Data	88
		Prediction for CCD	
4.6	Optimizat	ion by Central Composite Design (CCD)	89
	4.6.1	Confirmation Runs	95
	4.6.2	Characterization of Optimum Membrane	96
		4.6.2.1 Morphology and Pores Structure	96
		4.6.2.2 Chemical Compositions on Membrane with	100
		Optimum Condition	

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	101
5.2	Future Works	103
REFERE	NCES	104
LIST OF	PUBLICATIONS	113
APPEND	IX A	114
APPEND	IX B	118
APPEND	DIX C	120

LIST OF TABLES

Tables No	Title	Page
1.1	The world regions identified for most CO ₂ emission	2
2.1	The strengths and limitations of the ceramic membranes	10
2.2	The surfaces tension and contact angle of the polymer based material	12
2.3	Cost of commercial membranes	12
2.4	The type of polymer-diluents system studied prepared by TIPS technique	22
2.5	Various additives in iPP homogeneous solution	25
2.6	The transport mechanisms used to describe gas separation using membrane	29
2.7	CO ₂ /N ₂ transport properties of glassy polymer	32
2.8	Molecular weight (Da) and kinetic diamater (Å) of gases encountered in membrane gas separation	32
2.9	Contact angle of commercial membranes	34
3.1	The physical properties of the isotactic polypropylene	37
3.2	Properties of iPP and solvents used in membrane preparation	38
3.3	The weight loss distributed by immersing in methanol bath and drying in the oven	41
3.4	Design arrangement using polymer concentration (15 - 25 wt %), immersion time (5 -10 h), drying temperature (55 - 65 °C) and drying time (20 - 60 min)	47
3.5	Experimental table for optimization of drying temperature (51-59 °C) and drying time (10 -30 min) using CCD	48
4.1	Experimental data obtained from using 2-level factorial design	81
4.2	Analysis of variance for the regression model for contact angle	82

4.3	Analysis of variance for the regression model for selectivity	82
4.4	Low and high level of factors setting for CCD	89
4.5	Experimental table for optimization using CCD	89
4.6	ANOVA for the contact angle response surface quadratic model	90
4.7	ANOVA for the selectivity response surface quadratic model	91
4.8	Confirmation runs	96
4.9	The pore size distribution and average pores size of fabricated membrane	99

LIST OF FIGURES

Figures No	Title	Page
2.1	Type and structure of membranes (a) symmetrical membranes and (b) anisotropic membranes	9
2.2	The molecular structure changing of propylene to polypropylene by either Zieglar-Natta Polymerization or metallocene catalysis process	13
2.3	The molecular structures of isotactic, syndiotactic and atactic polypropylene	14
2.4	Preparation of the porous PP membrane using the thermally induced phase separation method	15
2.5	The polymer and diluents were mixed into a precipitation bath to promote liquid-liquid demixing	16
2.6	Particle formation in phase diagram through TIPS process	17
2.7	Schematic of the structure of (a) DPE and (b) MS diluents	23
2.8	Effect the solvent evaporation temperature and time on membrane porosity	24
2.9	Methods and technologies for CO ₂ recovery	27
3.0	Illustration of contact angle formed on the smooth solid surface	33
3.1	Overall flowchart of the experimental procedure	36
3.2	Flowchart of the membrane preparation using various adipic acid mass fraction	40
3.3	The illustration of the permeation gas	43
4.1	The effect of additive concentration on the contact angle measurement on membrane surfaces using two types of diluents (a) DPE and (b) MS	51

4.2	Weight loss contributed by evaporation (a) by immersion in methanol, (b) drying on oven for 1 hr	54
4.3	Final morphologies and structure of cross section membranes prepared without the additive with magnification of 5kx. Where (a) iPP-DPE and (b) iPP-MS membranes	56
4.4	Pore size distribution of iPP membranes fabricated from (a) DPE and (b) MS (without adding adipic acid)	57
4.5	Morphology of the iPP-DPE membrane at outer surface membranes without the additive at magnification of 2 kx. Where: (a) bottom and (b) top surface	59
4.6	Morphology of the iPP-MS membrane at outer surface membranes without the additive at magnification of 2 kx. Where: (a) bottom and (b) top surface	59
4.7	Effect of adipic acid concentration on the morphology and cross section structures at magnification of 2 kx. Where: (a) 0.5 wt% on iPP-DPE and (b) 1.5 wt% on iPP-DPE,(c) 0.5 wt% on IPP-MS and (d) 1.5 wt% on IPP-MS	61
4.8	Pore size distribution of iPP-DPE membranes fabricated from (a) 0.5 wt% and (b) 1.5 wt% of the adipic acid	62
4.9	Pore size distribution of iPP-MS membranes fabricated from (a) 0.5 wt% and (b) 1.5 wt% of the adipic acid	63
4.10	Effect of adipic acid concentration on the morphology and structures at the bottom surfaces at magnification of 2 kx. Where: (a) 0.5 wt% on iPP-DPE and (b) 1.5 wt% on iPP-DPE,(c) 0.5 wt% on IPP-MS and (d) 1.5 wt% on IPP-MS	65
4.11	Effect of adipic acid concentration on the morphology and structures at the top surfaces at magnification of 2 kx. Where: (a) 0.5 wt% on iPP-DPE and (b) 1.5 wt% on iPP-DPE,(c) 0.5 wt% on IPP-MS and (d) 1.5 wt% on IPP-MS	66
4.12	FTIR spectrum of raw iPP pellet	68
4.13	FTIR spectrum (wavelengths, cm ⁻¹) of PP-DPE at different of adipic acid concentration (a) 0 wt%, (b) 0.5 wt%, (c) 1.0 wt% and (d) 1.5 wt%	69
4.14	FTIR spectrum (wavelengths, cm ⁻¹) of PP-MS at different of adipic acid concentration (a) 0 wt%, (b) 0.5 wt%, (c) 1.0 wt%	71

	and (d) 1.5 wt%	
4.15	CO ₂ permeability on the membrane prepared using (a) DPE (b) MS	74
4.16	N_2 permeability on the membrane prepared using (a) DPE (b) \ensuremath{MS}	75
4.17	Effect of additive concentration on the CO_2/N_2 gas selectivity (a) iPP-DPE and (b) iPP-MS membrane	77
4.18	Carbon Dioxide permeability against selectivity relative to nitrogen of polymeric membranes examples presented here, small dot and mixed matrix membrane, larger dot with Robeson's upper bound on performance.	79
4.19	Carbon Dioxide permeability against selectivity relative to nitrogen of iPP membranes prepared by using (a) DPE and (b) MS	79
4.20	The interaction effect graph between dry time and dry temperature on the (a) contact angle and (b) selectivity	85
4.21	The interaction effect graph between concentration and dry temperature on the contact angle measurement	87
4.22	The interaction effect graph between concentration and dry time on the contact angle measurement	88
4.23	Contour Plot (a) and 3D plot (b) for contact angle model graph	93
4.24	Contour Plot (a) and 3D plot (b) for selectivity model graph	94
4.25	Final morphologies and structure of PP-DPE membranes of the optimum membrane with magnification of 2 kx .Where a: cross section; b: bottom surface and c: top surfaces	97
4.26	Pore size distribution of the membrane prepared by dry temperature at 54.96 °C and drying time of 18.66 min	98
4.27	FTIR spectrum (cm ⁻¹) of membrane with concentration 25 wt% using DPE diluents, immersion time of 5 hr, dry temperature of 54.96 °C and dry time in 18.66 minutes	100

LIST OF SYMBOLS

Α	Isotactic polypropylene concentration (wt. %)
В	Immersion time in methanol (hour)
С	Dry Temperature (°C)
D	Dry Time (minutes)
Κ	Degrees of freedom associated with SSR
R^2	Coefficient of determination
Xi	Coded value of the <i>i</i> th independent variable
Xi	Uncoded value of the <i>i</i> th independent variable
X_i^*	Uncoded <i>i</i> th independent variable at the center point
ΔXi	Step change value
Y	Response

Greek symbols

eta_0	Constant coefficient
β_1/β_2	Linear coefficient
β_{11}/β_{22}	Quadratic coefficients
β_{12}	Quadratic interaction coefficients
ε	Approximation error

LIST OF ABBREVIATIONS

IPP	Isotactic polypropylene
RSM	Responds Surface Methodology
CCD	Centre Composite Design
TIPS	Thermally Induced Phase Separation
SEM	Scanning Electron Microscopy
FTIR	Fourier Transform Infrared Spectroscopy
DPE	Dipenyl Ether
PE	Polyethylene
PTFE	Polytetrafluorethylene
PVDF	poly (vinylidene fluoride)
N ₂	Nitrogen
CO_2	Carbon Dioxide

OPTIMIZING ISOTACTIC POLYPROPYLENE MEMBRANE PREPARATION CONDITION VIA TIPS FOR CARBON DIOXIDE AND NITROGEN SEPARATION

WAN ZULAISA AMIRA BINTI WAN JUSOH

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering in Chemical

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2016

ABSTRACT

Over the past few decades, the emission of the flue gases into the atmosphere has increased and warms the earth's surface. One of the options to minimize this problem is by recovering carbon dioxide (CO₂) from flue gas before releasing it to surrounding. Gas separation technology using membrane is a simple system that can effectively remove the CO₂ from flue gas as well as offering low installation cost. However, in the flue gas, there is water vapour content that causes the membrane to swell. Thus, for this study, in order to increase the durability and performance of membrane for CO_2 and nitrogen (N₂) separation, the hydrophobic membrane is proposed. This study focuses on the effect of the addition of adipic acid on the hydrophobicity of the isotactic polypropylene (iPP) membranes. Response Surface Method (RSM) consists of 2-Level Factorial (FFD) and Centre Composite Design (CCD) for screening and optimization processes in the production of iPP microporous membrane were performed respectively. From this study, it was found that there are no such work has been reported in the open literature on the optimization of iPP membrane for gas separation. For morphology by using Scanning Electron Microscopy (SEM), observation on the iPP- DPE membranes exhibited smaller pore size compared to iPP-Methyl Salicylate (MS) membrane. Meanwhile, increasing adipic acid showed decreasing membrane pore size distribution. The result obtained by Fourier Transform Infrared Spectroscopy (FTIR) showed that there is no bonding changes between raw iPP and membrane fabricated by Thermally Induced Phase Separation Method (TIPS). Membrane prepared by Dipenyl Ether (DPE) and without addition of adipic acid produced the highest contact angle, CO₂ permeability and selectivity which are 112°, 22.01 GPU and 1.59 respectively. Analysis of variance of FFD showed that the impact of drying temperature and drying time were important than polymer concentration and immersion time in methanol toward contact angle and selectivity. The optimum membranes prepared in this experiment were membranes with the contact angle value and selectivity of 106.49 $^{\circ}$ and 1.96 respectively at drying temperature of 54.96 °C and drying time of 18.66 min. These drying temperature and time are adequate for total methanol evaporation from pores which contributed to high selectivity and high contact angle value. The low error (below 30%) between predicted and actual value indicating that regression equations obtained from the FFD and CCD were expected to apply in the preparation of iPP membranes, can reasonably predict and optimize the performance of the iPP membranes.

ABSTRAK

Sejak beberapa dekad yang lalu, pelepasan gas serombong ke udara telah meningkat dan memanaskan permukaan bumi. Salah satu cara untuk mengurangkan masalah ini adalah dengan menangkap karbon dioksida (CO₂) daripada gas serombong sebelum ia di bebaskan ke sekeliling. Teknologi pemisahan gas yang menggunakan membran ialah satu sistem ringkas yang boleh memisah CO₂ daripada asap serombong selain dari menawarkan satu kos pemasangan yang rendah. Walau bagaimanapun, dalam gas serombong, terdapat kandungan wap air yang menyebabkan membran membengkak. Jadi, untuk kajian ini, usaha meningkatkan ketahanan dan prestasi membran untuk pemisahan CO₂ dan nitrogen (N₂), membran yang bersifat hidropobik telah dicadangkan. Kajian ini memberi tumpuan kepada kesan penambahan asid adipik pada sifat hidrofobik daripada polipropilena isotactic (iPP)membran.Kaedah Gerak Balas Permukaan (RSM) terdiri daripada Dua Peringkat Reka Bentuk Faktorial (FFD) dan Reka Bentuk Komposit Berpusat (CCD) masing-masing telah digunakan untuk penelitian dan pengoptimuman proses pengeluaran iPP membran. Dengan menggunakan Mikroskopi Imbasan Elektron (SEM), pemerhatian pada membran struktur iPP-DPE mempamerkan saiz liang yang lebih kecil berbanding dengan membran iPP-Metil Salicilit (MS). Dengan peningkatan adipik asid, saiz liang pada membran semakin mengecil. Hasil yang didapati oleh Fourier Transform Infrared Spektroskopi (FTIR) menunjukkan bahawa tiada sebarang perubahan ikatan di antara iPP asal dan membran yang terhasil dari Aruhan Pemisahan Fasa Secara Pemanasan (TIPS). Membran yang disediakan oleh Dipenil Eter (DPE) dan tanpa penambahan asid adipik menghasilkan sudut sesentuh, ketelapan karbon dioksida dan pemilihan yang tertinggi dimana masing-masing ialah 112°,22.01 GPU dan 1.59. Analisis varians dari FFD, menunjukkan bahawa kesan pengeringan suhu dan masa pengeringan adalah lebih penting dari kepekatan polimer dan masa rendaman dalam metanol terhadap sudut sesentuh dan kemilihan gas. Membran paling optimum disediakan dalam eksperimen ini adalah membran dengan nilai sudut sesentuh dan kepilihan masing-masing adalah 106.49 ° dan 1.96 pada suhu pengeringan 54.96 °C dan masa pengeringan 18.66 min. Suhu dan masa pengeringan ini adalah mencukupi untuk semua metanol untuk meruap dari liang dimana ia menyumbangkan pemilihan dan sudut sesentuh yang tinggi. Ralat yang rendah (bawah 30%) di antara nilai yang dijangka dan nilai sebenar adalah di menyatakan bahawa persamaan diperolehi daripada FFD dan CCD telah dijangka akan digunakan dalam penyediaan membran IPP, munasabah boleh meramalkan dan mengoptimumkan persembahan membran IPP.