UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT			
Author's full name :	MOHD SYUKRAN BIN AB RAZAK		
Date of birth :	4 NOVEMBER 1990		
Title :	THE POTENTIAL OF OVEN DRY SEWAGE SLUDGE AS PARTIAL SAND REPLACEMENT IN CONCRETE		
Academic Session :	<u>2015/2016</u>		
I declare that this thesis is	s classified as:		
	(Contains confidential information under the Official Secret Act 1972)*		
	(Contains restricted information as specified by the organization where research was done)*		
	I agree that my thesis to be published as online open access (Full text)		
I acknowledge that Universiti Malaysia Pahang reserve the right as follows:			
1. The Thesis is the Pro	perty of University Malaysia Pahang		
2. The Library of Univer	sity Malaysia Pahang has the right to make copies for the purpose		
of research only.			
	ight to make copies of the thesis for academic exchange.		
Certified By:			
(Student's S			
<u>901104-1</u> New IC / Pass			
Date : 23 JU			
<u> </u>			

NOTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

THE POTENTIAL OF OVEN DRY SEWAGE SLUDGE AS PARTIAL SAND REPLACEMENT IN CONCRETE

MOHD SYUKRAN BIN AB RAZAK

Thesis submitted in fulfilment of the requirements for the award of the degree of B.Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering (Hons.) Civil Engineering.

Signature	:	
Name of Supervisor	:	DR. DOH SHU ING
Position	:	SENIOR LECTURER
Date	:	

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree

Signature	:	
Name	:	MOHD SYUKRAN BIN AB RAZAK
ID Number	:	AA12028
Date	:	

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope of Study	3
1.5	Importance of Study	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	ction	4
2.2	Wastew	vater Production	4
	2.2.1	Sewage Sludge	6
2.3	Concre	te	15
	2.3.1	Cement	19
	2.3.2	Water	21
	2.3.3	Aggregates	21
	2.3.4	Durability and Strength of Concrete	25

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introdu	Introduction	
3.2	Materia	al Used	33
	3.2.1	Cement	33
	3.2.2	Fine Aggregate	33
	3.2.3	Coarse Aggregate	33
	3.2.4	Water	34
	3.2.5	Sewage Sludge	34
3.3	Mix Pro	oportion	34
3.4	Specim	en Preparation	35
	3.4.1	Sewage Sludge Preparation	35
	3.4.2	Mixing and Casting	38
	3.4.3	Samples Demoulded and Cured	38
3.5	Testing	Method	39
	3.5.1	Sieve Analysis	39
	3.5.2	Slump Test	39
	3.5.3	Compressive Strength Test	40
	3.5.4	Flexural Strength Test	41
	3.5.5	Ultrasonic Pulse Velocity Test	41
	3.5.6	Rebound Hammer Test	42

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction	43
4.2	Slump Test	43
4.3	Rebound Hammer Test	45
4.4	Ultrasonic Pulse Velocity Test	47
4.5	Compressive Strength Test	51
4.6	Flexural Strength Test	56
4.7	Summary	59

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Introduction	60
5.2	Conclusion	60
5.3	Recommendation for Future Research	62

REFERENCES

APPENDICES

A	Result for Compressive Strength Test	68
В	Result for Flexural Strength Test	70
С	Result for Rebound Hammer Test	72
D	Result for Ultrasonic Pulse Velocity Test	77
E	Photo of Laboratory Preparation	83

63

LIST OF TABLES

Table No	D. Title	Page
2.1	Concentration solids in sludge	8
2.2	Public sewage treatment plants in Malaysia	9
2.3	Concrete mixture ratio	15
2.4	Grading of fine aggregate	24
3.1	Indication of Ultrasonic Pulse Velocity Test	42
4.1	Slump classification	44
4.2	Slump test result	44
4.3	Ultrasonic Pulse Velocity Test for Control Mix (Water Curing)	48
4.4	Ultrasonic Pulse Velocity Test for Control Mix (Air Curing)	48
4.5	Ultrasonic Pulse Velocity Test for 10% Replacement (Water	49
	Curing)	
4.6	Ultrasonic Pulse Velocity Test for 10% Replacement (Air	49
	Curing)	
4.7	Ultrasonic Pulse Velocity Test for 20% Replacement (Water	50
	Curing)	
4.8	Ultrasonic Pulse Velocity Test for 20% Replacement (Air	50
	Curing)	
4.9	Compressive Strength Results for 3 rd Day Specimens (Water	51
	Curing)	
4.10	Compressive Strength Results for 3 rd Day Specimens (Air	51
	Curing)	
4.11	Compressive Strength Results for 7th Day Specimens (Water	52
	Curing)	
4.12	Compressive Strength Results for 7 th Day Specimens (Air	53
	Curing)	
4.13	Compressive Strength Results for 28th Day Specimens (Water	54
	Curing)	
4.14	Compressive Strength Results for 28 th Day Specimens (Air	54
	Curing)	
4.15	Flexural Strength Development of Various Mix Design (Water	57

Curing)

4.16 Flexural Strength Development of Various Mix Design (Air Curing) 58

LIST OF FIGURES

Figure No.	Title	Page
2.1	Proportions of population equivalent (PE) served by the	5
	various sewerage system	
2.2	Management of sewage sludge	7
2.3	Sludge sizing	11
2.4	Concrete processes	16
3.1	Research methodology flow	32
3.2	Specimen preparation flow	35
3.3	Collecting sewage sludge at sewage treatment plant	36
3.4	Undried sewage sludge	36
3.5	Oven	37
3.6	Dried sewage sludge	37
3.7	Sewage sludge sieving process	38
3.8	Schematic of the cone slump test	40
4.1	Slump test results for sewage sludge as partial sand	44
	replacement	
4.2	Correlation Chart for Rebound Hammer against Compressive	45
	Strength (Control Mix)	
4.3	Correlation Chart for Rebound Hammer against Compressive	46
	Strength (10% Replacement)	
4.4	Correlation Chart for Rebound Hammer against Compressive	47
	Strength (20% Replacement)	
4.5	Compressive strength chart for 3 rd day specimens	52
4.6	Compressive strength chart for 7 th day specimens	53
4.7	Compressive strength chart for 28 th day specimens	54
4.8	Compressive Strength Development of Various Mix Design	55
	(Water Curing)	
4.9	Compressive Strength Development of Various Mix Design	56
	(Air Curing)	
4.10	Flexural Strength Development of Various Mix Design	57
	(Water Curing)	

XV

LIST OF SYMBOLS

%	Percent
mm	Millimetre
mm^2	Millimetre square
m ³	Cubic metre
μm	Micro metre
g	Gram
kg	Kilogram
kg/m ³	Kilogram per cubic metre
N/mm ²	Newton per square millimetre
kN	Kilo newton
°C	Degree Celsius
0	Degree
kN/sec	Kilo newton per second
f _c	Compressive strength of concrete specimen
Р	Maximum load carried by the specimen during testing
А	Area
R	Modulus of Rupture
\mathbb{R}^2	Correlation coefficient
l	Distance between the support
b	Net width
d	Depth

LIST OF ABBREVIATIONS

- ASTM American Society for Testing and Materials
- BS British Standard
- MS Malaysian Standards
- IWK Indah Water Konsortium
- SS Sewage Sludge
- i.e. That is
- e.g. For example

THE POTENTIAL OF OVEN DRY SEWAGE SLUDGE AS PARTIAL SAND REPLACEMENT IN CONCRETE

MOHD SYUKRAN BIN AB RAZAK

Thesis submitted in fulfilment of the requirements for the award of the degree of B.Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JUNE 2016

ABSTRACT

The consumption of natural sand taken from the river was too high due to its excessive use in concrete. The demands for this natural sand were increasing from time to time, especially on developing countries, for instance, Malaysia. Thus, the construction industries are in stress to identify alternative methods and materials to reduce the demand for natural sand. Sewage sludge has been seen as one of the alternative that can replace sand in concrete mixture production and therefore could reduce the excessive production of sewage sludge. It has been reported that Malaysia produce about 3 million m³ of sewage sludge per year and it has been estimated to rise to 7 million m³ in the year of 2020. These situations have contributed to increasing of solid waste generated and have led to environmental issues. This research was ran to study the properties of concrete cube mixture that contained various percentage of sewage sludge that have been sieved as partial sand replacement, which were 0%, 10% and 20%. The size of the specimens that been used were 100x100x100 mm (length x width x height). The specimens subjected to two types of curing method, which were water and air curing for 3, 7 and 28 days period. The specimens then tested for compressive strength test, flexural strength, rebound hammer test and ultrasonic pulse velocity test. The results from these tests shows the suitable percentage of sewage sludge as partial sand replacement and suitable curing method for this concrete mix production.

ABSTRAK

Pengambilan pasir semula jadi yang diambil dari sungai terlalu tinggi kerana penggunaan yang berlebihan dalam konkrit. Permintaan untuk pasir semula jadi telah meningkat dari semasa ke semasa, terutamanya di negara-negara membangun, misalnya, Malaysia. Oleh itu, industri pembinaan berada di dalam situasi tertekan untuk mengenal pasti kaedah dan bahan alternatif untuk mengurangkan permintaan untuk pasir semula jadi. Bahan enapcemar telah dilihat sebagai salah satu alternatif yang boleh menggantikan pasir dalam pengeluaran campuran konkrit dan lantas mampu mengurangkan pengeluaran berlebihan bahan enapcemar. Dilaporkan bahawa Malaysia menghasilkan kira-kira 3 juta m³ bahan enapcemar setiap tahun dan ia telah dianggarkan akan meningkat kepada 7 juta m³ pada tahun 2020. Keadaan ini akan menyumbang kepada peningkatan sisa pepejal yang dihasilkan dan boleh membawa kepada isu-isu alam sekitar. Tesis ini adalah untuk mengkaji sifat-sifat campuran kiub konkrit yang mengandungi pelbagai peratusan bahan enapcemar yang telah disaring sebagai pengganti pasir, yang mengandungi peratusan penggantian pasir 0%, 10% dan 20%. Saiz spesimen yang akan digunakan adalah 100x100x100 mm (panjang x lebar x tinggi). Spesimen akan tertakluk kepada dua jenis kaedah pengawetan, iaitu air dan pengawetan udara untuk 3, 7 dan 28 hari. Spesimen itu akan dijadikan ujian untuk ujian kekuatan mampatan, ujian kekuatan lenturan, ujian tukul pemulihan dan ujian halaju denyut ultrasonik. Keputusan daripada ujian ini akan menunjukkan peratusan ideal bahan enapcemar sebagai pengganti separa pasir dan kaedah pengawetan sesuai untuk pengeluaran campuran konkrit ini.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

As the world populations grow from time to time, the amounts and types of wastes being generated by the community have increased tremendously. Most of the wastes that have been produced nowadays will remain in the environment for hundreds or thousands of years. The invention of non-decaying waste materials, combined with the growing of consumer population, has caused in a waste disposal crisis. There were many types of industrial waste material and one of them is sewage sludge.

Sewage sludge or also known as bio solids is a by-product of municipal wastewater treatment. In Malaysia, the sewage sludge was mainly produced from domestic and light industrial area. It has been reported by Indah Water Konsortium Sdn. Bhd. (IWK) (1997) that Malaysia produce about 3 million m³ of sewage sludge per year and it has been estimated to rise to 7 million m³ in the year of 2020 (Noorain, 2013). Currently, IWK runs and manages over 4300 public sewerage system all over Malaysia and desludge and treats sludge from over 0.8 million septic tanks regularly and monitors effluent samples from sewage treatment plants to ensure they meet the standards made by Department of Environment.

Rapid urbanization, a consequence of economic development, nationally and globally, and also the increased of population in Malaysia has led to production of large quantities if sewage sludge in Malaysia and has posed serious environmental problems for their disposal. It has been reported that the total cost of managing the sewage sludge

alone is estimated at US\$ 0.33 billion per year. However, the treated-sewage sludge is commonly being disposed either at landfills or being burned in incinerators.

1.2 PROBLEM STATEMENT

Concrete is a combination consists of cement, aggregate and water. The most commonly used fine aggregate is sand derived from the river banks. The consumption of natural sand taken from the river was too high due to its excessive use in concrete. The demands for this natural sand were increasing from time to time, especially on developing countries, for instance, Malaysia. Thus, the construction industries are in stress to identify alternative methods and materials to reduce the demand for natural sand.

On the contrary, the advantages of utilization of by-products or materials gained from the sewerage treatment plant, sewage sludge for instance, may reduce the negative environmental load impact and also the waste management cost, reduction of production cost as well as improving the quality of concrete produced.

In this context, the sewage sludge that have been dried and sieve should be similar to sand (fine aggregate) and satisfy the requirement of sand in concrete, which is to solidify and the necessary strength for a certain structure. Sand can fill up the pores or voids inside the concrete which is also a contributing factor for the strength of the concrete. As the sewage sludge would be finer than sand, it will act much better than sand to fill up the voids in concrete.

1.3 OBJECTIVE

The objectives of the study are:

- a) To determine the suitability of sewage sludge as partial sand replacement in concrete.
- b) To study the mechanical properties of sewage sludge concrete.
- c) To compare the effect of air and water curing of sewage sludge concrete.

1.4 SCOPE OF STUDY

This study is focused on the behaviour of the concrete mixture when it containing various percentage of sewage sludge as partial sand replacement. The percentage varies from 0%, 20% and 40% by volume. Two mixes were prepared during this study, which are control mix and modified mix. The different between these two mixes is the percentage of sewage sludge included where the control mix consist 0% of sewage sludge while the modified mix consist varies of sewage sludge percentage.

The size of the concrete cube is fixed to 100x100x100 millimetres dimension and for the flexural test, mould with size of 100mm x 100mm x 500mm is used. For the curing process, the period of the concrete cube subjected to water is from 3, 7 and 28 days. The methods used for curing are air and water curing. The test for compressive and flexural strength of the concrete cube is conducted after the process of curing for each specimen.

1.5 IMPORTANCE OF STUDY

This study will provide all the information and knowledge regarding sewage sludge as the partial sand replacement in concrete. The strength, durability and the effect of the composition will be identified later on this study. The result from this study is expected to help reducing the excessive amount of sewage sludge wastage in Malaysia along with preserving the natural sand for the future usage. Furthermore, the information gained from this study will provide better understanding about this modified concrete mixture for further study and commercialization purpose.